Observation of the simplest Criegee intermediate CH$_2$OO in the gas-phase ozonolysis of ethylene

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1126/sciadv.1400105</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Association for the Advancement of Science (AAAS)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Dec 08 21:10:14 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/96419</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-NonCommercial</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc/4.0/</td>
</tr>
</tbody>
</table>
Ozonolysis is one of the most common oxidation pathways for unsaturated hydrocarbons in the troposphere. It is the predominant sink for biogenic and anthropogenic alkenes and is a significant source of OH radicals (1), but many aspects of this complex reaction pathway remain poorly understood even after decades of study (1–4). It is generally understood, however, that the reaction proceeds via a concerted 1,3-cycloaddition of O₃ across the alkene double bond, through a van der Waals complex, to form a 1,2,3-trioxolane primary ozone (denoted as a POZ, and shown in Fig. 1). This initial step is highly exothermic; consequently, the POZ is formed with high vibrational energy and promptly decomposes to form a carbonyl and a carbonyl oxide, which is commonly referred to as a Criegee intermediate (CI) (2). Although a portion of the internal energy in the POZ is lost to translational and rotational degrees of freedom of the two fragments, the CI is formed with a considerable amount of vibrational energy (5).

Nascent CIs are generally categorized as either “excited” CIs, which have sufficient vibrational energy to isomerize or dissociate rapidly, or “stabilized” CIs (SCIs), which had been initially formed with high vibrational energy but have been stabilized by collisional energy transfer. However, SCIs remain quite reactive owing to their zwitterionic character (6, 7) and undergo rapid bimolecular reaction with other atmospheric species; as such, only one instance of a SCI resulting from gas-phase ozonolysis has been reported, albeit at low resolution (8). Theoretical and indirect experimental studies (9) have determined the branching fraction to SCI to be as high as 0.54 for CH₂O formed in the ozonolysis of ethylene (10). The branching fraction for larger SCIs is highly dependent on a number of factors, including temperature, pressure, and the nature of its substituents (11). A schematic of the initial reaction pathways for the ozonolysis of ethylene, the simplest alkene, is shown in Fig. 1.

Although the Criegee mechanism is now widely accepted (12), CIs eluded direct detection in the gas phase until 2008, when Taatjes et al. (13) measured the simplest CI, CH₂O (2), by photolysis of dimethyl sulfoxide and photoionization mass spectroscopy. In 2012, the same group showed that the photolysis of diiodomethane (CH₂I₂) in the presence of excess molecular oxygen was a more efficient method for selectively generating CH₂O (14). This production method has since been used by many groups to measure the vibrational (15), rotational (16–18), and electronic (19, 20) spectra of small CIs, as well as to study their reactivity with common atmospheric molecules (7, 8, 21–23). Although this method has been enormously valuable in characterizing the spectroscopy and kinetics of CH₂O, a number of questions remain about the product branching of the nascent CIs formed directly from ozonolysis. Furthermore, the generation of larger CIs with the photolysis method is contingent on the availability of analogously larger diiodo-substituted precursors. For these reasons, we have studied the ozonolysis of ethylene at atmospheric pressure and temperature, using Fourier transform microwave (FTMW) spectroscopy and a modified pulsed nozzle. This work has resulted in the detection of species ranging from the pre-reactive complex to secondary reaction products. Most significantly, the simplest CI, CH₂O, was detected in trace amounts.

RESULTS AND DISCUSSION

The first step of the O₃ + C₂H₄ reaction is highly exothermic (ΔH = −50 kcal/mol) (24, 25), but the overall reaction rate coefficient is relatively small (1.45 × 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹) (10). Nascent CH₂O is highly reactive with many species, including the O₃ and C₂H₄ reactants. For these reasons, detection of CH₂O likely requires (i) large concentrations of O₃ and C₂H₄ to ensure a high reaction rate, (ii) rapid sampling after the two reactants are mixed to minimize secondary chemistry, and (iii) an exquisitely sensitive and selective detection method capable of measuring many different species at parts per billion concentrations (that is, ~10⁻⁹ molecules/pulse). The Balle-Flygare type cavity FTMW spectrometer used in these experiments (16, 26), described in Materials and Methods fulfills this last requirement. To address the second requirement, we constructed a nozzle source (see Fig. 2) based on the design of Lovas et al. (27, 28), who studied the O₃−C₂H₄ complex by “freezing” the products mid-reaction through supersonic expansion into a vacuum chamber.

In total, nine product species were detected in our experiment at room temperature and pressure. All required the presence of both O₃ and

1Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 2Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA. 3Department of Science and Mathematics, Coker College, Hartsville, SC 29550, USA.

1Corresponding author. E-mail: mmccarthy@cfa.harvard.edu
The reaction proceeds through a van der Waals complex and then forms a high-energy primary ozonide, which immediately decomposes into a Cl and formaldehyde. Depending on the energy available, the Cl may undergo unimolecular dissociation or bimolecular reactions with other atmospheric species. Shaded text boxes indicate species detected in our experiment.

Fig. 1. The initial reactions in the ozonolysis of ethylene. The reaction proceeds through a van der Waals complex and then forms a high-energy primary ozonide, which immediately decomposes into a Cl and formaldehyde. Depending on the energy available, the Cl may undergo unimolecular dissociation or bimolecular reactions with other atmospheric species. Shaded text boxes indicate species detected in our experiment.

C2H4 and were sensitive to the flow rates and relative O3 and C2H4 concentrations. The signal attributed to CH2OO, shown in Fig. 3, was scrutinized carefully. Although weak, the frequency of this line matches the published high-resolution data (16, 17) to within 3 kHz, and we ensured that it was not an oscilloscope artifact or image by shifting the probe frequency. Additionally, the line vanished when a second microwave source, aligned perpendicularly to the cavity axis in a double resonance scheme, excited the 20_a-10_1 transition (16, 17). For these reasons, the line can be unequivocally attributed to CH2OO. Its signal intensity corresponds to about 5.9 × 10^9 molecules/pulse, which is close to the detection limit of the microwave spectrometer. Other detected species are listed in Table 1. All can be attributed to established secondary chemistry of the O3 + C2H4 reaction, as illustrated in Figs. 4 and 5, and discussed below. A small number of the product species in the figures were not detected, because they either could not be detected in our spectrometer, were too reactive, or do not have published rotational lines.

Figure 4 illustrates the two unimolecular pathways available for excited CH2OO, denoted as the “hot ester” and “hydrogen transfer” mechanisms. The hot ester pathway involves a ring-closing mechanism to form dioxirane (4), then O-O bond cleavage through an unstable dioxymethylene intermediate (5) to make formic acid (6). This pathway was experimentally verified by the matrix isolation FTIR experiments of Lovas et al. (32), and we detected dioxirane and formic acid in high relative concentrations: 50 and 3300 times that of CH2OO, respectively. Dioxymethylene is very reactive and has not been studied in the microwave region and, consequently, was not measured here. Some fraction of formic acid was presumably formed with sufficient vibrational energy to isomerize to CO2 + H2 and CO + H2O, but these two- and three-atom species do not have rotational frequencies in the 5 to 42 GHz range of our spectrometer. There is also some evidence of HCO + OH formation (38), but HCO cannot be measured in our spectrometer, and OH was not observed, likely because of its reactivity.

The second pathway available is the hydrogen transfer mechanism. In Cls with hydrocarbon substituents in the syn position, this pathway is a 1,4-hydrogen transfer and is highly favored, leading to either stabilized vinyl hydroperoxides or OH radicals (1, 3, 5). Indeed, this pathway is thought to be the dominant source of nighttime hydroxyl radicals in the troposphere (4). Because of the absence of β-hydrogens, CH2OO may instead undergo a 1,3-hydrogen transfer to the unstable hydroperoxymethylene (7), which immediately decomposes to HCO + OH. The microwave spectrum of 7 has not been previously measured and was therefore not measured here. However, this pathway is believed to have a barrier height more than 13 kcal/mol higher than the hot ester pathway (39) and is thus expected to be a minor reaction.

Figure 5 shows the major bimolecular reaction pathways of CH2OO in our experiment. Under true atmospheric conditions, the reaction of CH2OO with water is believed to be its dominant pathway (1) because of the prevalence of water in the troposphere (40). Other key co-reactants include SO2, NO2, and the water dimer; the reactivity of CH2OO with each has been well studied (23, 40–42). Reactions with ozone, alkenes, and carbonyl oxides have also been studied (43), but are less important in the atmosphere because of the relative scarcity of these molecules. Under our experimental conditions, however, O3, C2H4, and CH2O are present in high abundance, and thus, the bimolecular chemistry with CH2OO is dominated by the reactions of these three species.

CH2OO is highly reactive with carbonyl groups, and formaldehyde (3) is the most prevalent carbonyl in our system, not only because it is the cofragment of POZ decomposition but also because many bimolecular reactions of CH2OO yield formaldehyde. Indeed, Table 1 shows that formaldehyde is present in concentrations three orders of magnitude greater than any other product. The reaction with formaldehyde (reaction A; Fig. 5) proceeds through ethylene ozonide (8, also called 1,2,4-trioxolane or the secondary ozonide), which immediately decomposes to hydroxymethyl formate (9) or formaldehyde and formic acid.
Table 1. Products species detected in the O\textsubscript{3} + C\textsubscript{2}H\textsubscript{4} reaction. Bold parenthetical numbers refer to species in Figs. 4 and 5. Rotational transitions of each product were monitored at the frequencies listed in the third column, which are obtained from the references in the fourth column. The absolute abundances in each pulse are estimated using a calibrated OCS sample and have a margin of error of about an order of magnitude owing to uncertainties in the rotational temperature and instrument response function.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Rotational transition</th>
<th>Frequency (MHz)</th>
<th>Reference</th>
<th>Absolute abundance (molecules/pulse)</th>
<th>Relative abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3-Trioxolane (POZ)</td>
<td>1,1–0\textsubscript{0,0}</td>
<td>12,591.52</td>
<td>(29)</td>
<td>Not observed</td>
<td>—</td>
</tr>
<tr>
<td>O\textsubscript{3} – C\textsubscript{2}H\textsubscript{4}</td>
<td>2,1–1\textsubscript{1,1}</td>
<td>15,800.7834</td>
<td>(30)</td>
<td>3 × 1012</td>
<td>500</td>
</tr>
<tr>
<td>CH\textsubscript{2}OO</td>
<td>1,0–0\textsubscript{0,0}</td>
<td>23,186.4873</td>
<td>(16, 17)</td>
<td>6 × 108</td>
<td>1</td>
</tr>
<tr>
<td>Formaldehyde*</td>
<td>2,1–2\textsubscript{2,1}</td>
<td>14,488.4803</td>
<td>(31)</td>
<td>2 × 1016</td>
<td>3.3 × 106</td>
</tr>
<tr>
<td>Dioxirane</td>
<td>2,1–2\textsubscript{2,2}</td>
<td>31,752.8794</td>
<td>(32)</td>
<td>3 × 1011</td>
<td>50</td>
</tr>
<tr>
<td>Formic acid</td>
<td>1,0–0\textsubscript{0,0}</td>
<td>22,471.1795</td>
<td>(33)</td>
<td>2 × 1013</td>
<td>3333</td>
</tr>
<tr>
<td>Ethylene oxide</td>
<td>1,1–0\textsubscript{0,0}</td>
<td>12,828.6233</td>
<td>(34)</td>
<td>5 × 1011</td>
<td>83</td>
</tr>
<tr>
<td>Ethylene oxide</td>
<td>1,0–1\textsubscript{1,1}</td>
<td>11,385.9111</td>
<td>(35)</td>
<td>8 × 1011</td>
<td>133</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>1,1–2\textsubscript{2,2}</td>
<td>8,243.4683</td>
<td>(36)</td>
<td>7 × 1012</td>
<td>1166</td>
</tr>
<tr>
<td>Formic anhydride</td>
<td>2,1–1\textsubscript{1,1}</td>
<td>11,734.1252</td>
<td>(37)</td>
<td>2 × 1012</td>
<td>333</td>
</tr>
</tbody>
</table>

*The only accessible transition of formaldehyde in the 5 to 42 GHz range of our spectrometer is a low-frequency K-type doublet, which makes the molecular abundance calculation less certain.

Our experimental results are in good agreement with this mechanism, as evidenced by the detection of ethylene oxide, but in trace amounts relative to formic acid. Because the rotational spectrum of hydroxymethyl formate is unknown, its abundance could not be determined. Taatjes and co-workers (22) measured the reaction rate of CH\textsubscript{2}OO with acetaldehyde and found no evidence of secondary ozonide, but their experiments were done under low-pressure (4 torr) conditions, and secondary ozonide stabilization is likely pressure-dependent. The rate coefficient was recently estimated as \(k_\text{A} = 6.0 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) (22, 43), but older studies (42) have reported values between 10-12 and 10-17 cm3 molecule-1 s-1.

The reaction of CH\textsubscript{2}OO with C\textsubscript{2}H\textsubscript{4} (reaction B) was studied both experimentally (21) and theoretically (43, 44) and found to yield 1,2-dioxolane (10) through a barrierless pathway, although Crehuet et al. (44) suggest that a minor pathway, leading to ethylene oxide (11) and formaldehyde, is also possible. A portion of the ethylene oxide may isomerize to the more stable acetaldehyde isomer (12). We detected both 11 and 12, but the microwave spectrum of 10 has yet to be measured. Vereecken et al. (43) suggest an overall rate coefficient of \(k_\text{B} = 5.45 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) for this reaction, but the experimental work of Buras et al. (21) indicates a rate coefficient of \(k_\text{B} = 7 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \), nearly an order of magnitude smaller.

The reactions of CH\textsubscript{2}OO with ozone (reaction C) and with itself (reaction D) both yield formaldehyde and molecular oxygen. The former reacts with a rate coefficient of \(k_\text{C} = 1 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) (43), although there is some disagreement about whether the reaction proceeds through a biradical (43) or a cyclic (45, 46) intermediate. Neither intermediate would likely be sufficient for detection in our system, nor are there microwave spectral data available to test that hypothesis. Vereecken et al. (43) report that the CH\textsubscript{2}OO self-reaction proceeds exothermically through a cyclic peroxide before decomposing to 2 CH\textsubscript{2}O + O\textsubscript{2}.

Buras and co-workers (47) have measured this rate coefficient as \(k_\text{D} = 6.0 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \). Finally, CH\textsubscript{2}OO may react with CO to form formic anhydride (reaction E), as suggested by Kühne et al. (48). As CO is a dissociation product of vibrationally excited formic acid, this reaction is certainly possible, and we see evidence of formic anhydride (13). However, no experimental or theoretical rate constants have been published for this reaction, and we cannot measure the concentration of CO; thus, the importance of this reaction in our experiments remains unclear. Formic anhydride has also been suggested to be a product of the reaction of CH\textsubscript{2}OO with formic acid (49).

A simple kinetic model of the experimental CH\textsubscript{2}OO abundance is in qualitative agreement with the theoretically published rate constants. In this model, [CH\textsubscript{2}OO] was treated as a steady-state concentration, with its formation resulting from O\textsubscript{3} + C\textsubscript{2}H\textsubscript{4} alone [\(k_\text{form} = 1.45 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) (10)], and its destruction occurring
through unimolecular reaction $[k_{\text{uni}} = 75 \, s^{-1} \,(22, 47)]$, and the bimolecular reactions listed in Fig. 5 involving species with large abundances (k_A through k_D) only.

$$
\frac{d[\text{CH}_2\text{OO}]}{dt} = k_{\text{form}}[\text{O}_3][\text{C}_2\text{H}_4] - k_{\text{uni}}[\text{CH}_2\text{OO}] - k_A[\text{CH}_2\text{OO}][\text{CH}_2\text{O}] - k_B[\text{CH}_2\text{OO}][\text{C}_2\text{H}_4] - k_C[\text{CH}_2\text{OO}][\text{O}_3] - k_D[\text{CH}_2\text{OO}]^2 \approx 0 \quad (1)
$$

The concentrations of O$_3$, C$_2$H$_4$, and CH$_2$O are large and were thus treated as constant. Equation 1 was solved for [CH$_2$OO] using the initial concentrations of [O$_3$] = 0.005 M and [C$_2$H$_4$] = 0.0003 M, and the experimentally measured [CH$_2$O] ≲ 0.002 M. Although several wide-ranging values of k_A and k_B have been published, neither has a large effect on [CH$_2$OO], and thus, the most recently published value was selected. Other bimolecular reactions, including reaction E, were not included in this model because their rate coefficients have not been measured. The margins of error of all rate constants were assumed to be no smaller than an order of magnitude. This zeroth-order model, while rudimentary, predicts ($3 \pm 1) \times 10^9$ CH$_2$OO molecules/pulse, in very good agreement with the about 6 \times 10^9 molecules/pulse detected. The estimated CH$_2$O abundance is uncertain because the only observable transition in the range of our spectrometer is a low-frequency K-type doublet, and consequently, its value has been derived solely on the basis of a population difference between two closely spaced K levels rather than two rotational levels. The derived value is therefore larger than expected given the initial concentration of C$_2$H$_4$, but it is likely due to the organic mixture rich in formaldehyde that builds up over time inside the nozzle body (see Materials and Methods). Regardless, it should be emphasized that the results of the kinetic model are largely insensitive to the CH$_2$O concentration; an order of magnitude decrease in [CH$_2$O] results in a predicted steady-state value of [CH$_2$OO] = 3.7 \times 10^9$ molecules/pulse, which is well within the margin of error. We find instead that the reaction with ozone is the dominant destruction mechanism for CH$_2$OO in our model.

As demonstrated by the numerous observed species, the mechanism of the ozonolysis of ethylene is quite complex. Although the experimental results agree qualitatively with the simple kinetic model, an as-of-yet undiscovered mechanism may conceivably be responsible for some fraction of the steady-state CH$_2$OO abundance. For example, Wang et al. (50) calculated the energetic barriers and rate constants for the CH$_2$O + O$_3$ reaction, and found CH$_2$OO + O$_2$ to be a possible product channel. However, the barrier is higher than 60 kcal/mol, and the rate coefficient at 298 K was found to be on the order of 10$^{-33}$ cm3 molecule$^{-1}$ s$^{-1}$. Given the concentration of ozone and formaldehyde found in these experiments, we would expect the formation of only 102 CH$_2$OO molecules/pulse from this mechanism. Similarly, the CH$_2$OO signal in our previous discharge studies of CH$_4$/O$_2$ (16) was tentatively attributed to a secondary reaction of excited CH$_3$OO (51). However, only trace amounts of CH$_3$OO were detected in the present discharge-free experiments, and thus, this reaction is not expected to significantly contribute to the CH$_2$OO signal.

Experiments are currently under way to detect the monosubstituted CI, CH$_3$CHOO, via the reaction of O$_3$ with C$_2$H$_4$. Under similar experimental conditions, many of the analogs to the products in the O$_3$ + C$_2$H$_4$ reaction have been observed, including propylene ozonide, propylene oxide, syn-vinyl alcohol, propionaldehyde, acetic acid, and acetone, in addition to the formaldehyde, acetaldehyde, and formic acid found in the ethylene reaction. However, neither the O$_3$-C$_3$H$_6$ van der Waals complex nor methyldioxirane, c-[(OOCR)-CH$_3$] has been studied in the microwave region. Because detection of O$_3$-C$_2$H$_4$ (1) and dioxirane (4) was a critical step in optimizing the experimental conditions in this study, our inability to optimize the experimental conditions in the O$_3$ + C$_2$H$_4$ system using these analogs has made it difficult to definitively assign any signal to CH$_3$CHOO.
CONCLUSIONS

We have reported the first detection of CH$_2$OO in the gas-phase ozonolysis of ethylene at atmospheric temperature and pressure, using FTMW spectroscopy and a modified nozzle designed for rapid sampling. Although the signal was weak, it can be unequivocally attributed to CH$_2$OO. Other products were detected in relative amounts that qualitatively support the established reaction pathways of the nascent excited and stabilized CIs in the literature. Although it is conceivable that an alternative mechanism is responsible for the CH$_2$OO signal, the detected signals match very well with the kinetic model, and no other plausible mechanism has been suggested in the literature. Our results appear to confirm this long postulated oxidation mechanism. With improvements to the experimental methods described here, including developing a more consistent ozone source and increasing the steady-state concentration of CH$_2$OO, this direct ozonolysis method may allow for the formation and characterization of larger CIs under atmospheric conditions. Direct formation from O$_3$ + alkenes greatly simplifies the formation kinetic analysis and can yield important information about branching and OH radical formation, which are key questions for understanding the critical role of ozonolysis in atmospheric chemistry.

MATERIALS AND METHODS

In our nozzle design, two 1/16-inch-diameter holes were drilled into the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-shape (Fig. 2). Stainless steel tubing (inner diameter 1/16 inch) was welded on the inner body of a Parker-Hannifin Series 9 pulsed nozzle in a V-sha...

Acknowledgments: We gratefully acknowledge F. Lovas, J. Stanton, T. Lam Nguyen, W. Green, Z. Buras, and J. Kroll for helpful discussions. We would also like to thank W. Pringle for the loan of an ozonator, E. E. Palmer and P. Antonucci for technical assistance, and K. Crabtree for developing the data acquisition software. Funding: This work was supported by the National Science Foundation under grant no. OHE-1058063. C.C.W. acknowledges the support of the Camille and Henry Dreyfus Foundation Postdoctoral Program in Environmental Chemistry. Author contributions: C.C.W., M.-A.M.-D., and G.G.B. collected the data; C.C.W., R.W.F., and M.C.M. designed the study; and C.C.W. and M.C.M. wrote the manuscript. Competing interests: The authors declare that they have no competing financial interests.

Submitted 14 November 2014
Accepted 6 March 2015
Published 6 March 2015
10.1126/sciadv.1400105