Constraints on Models of the Higgs Boson with Exotic Spin and Parity using Decays to Bottom-Antibottom Quarks in the Full CDF Data Set

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Constraints on Models of the Higgs Boson with Exotic Spin and Parity using Decays to Bottom-Antibottom Quarks in the Full CDF Data Set

0031-9007/15/114(14)/141802(9) © 2015 American Physical Society

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439, USA
3 University of Athens, 157 71 Athens, Greece
4 Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798, USA
6a Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6b University of Bologna, I-40127 Bologna, Italy
7 University of California, Davis, Davis, California 95616, USA
8 University of California, Los Angeles, Los Angeles, California 90024, USA
9 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
10 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
11 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
12 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Košice, Slovakia
13 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14 Duke University, Durham, North Carolina 27708, USA
15 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
16 University of Florida, Gainesville, Florida 32611, USA
17 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18 University of Geneva, CH-1211 Geneva 4, Switzerland
19 Glasgow University, Glasgow G12 8QQ, United Kingdom
20 Harvard University, Cambridge, Massachusetts 02138, USA
21 Division of High Energy Physics, Department of Physics, University of Helsinki, FIN-00014 Helsinki, Finland
22 University of Illinois, Urbana, Illinois 61801, USA
23 The Johns Hopkins University, Baltimore, Maryland 21218, USA
24 Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
25 Center for High Energy Physics, Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea; and Ewha Womans University, Seoul 120-750, Korea
26 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
27 University of Liverpool, Liverpool L69 7ZE, United Kingdom
28 University College London, London WC1E 6BT, United Kingdom
29 Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
30 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
31 University of Michigan, Ann Arbor, Michigan 48109, USA
32 Michigan State University, East Lansing, Michigan 48824, USA
33 Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
34 University of New Mexico, Albuquerque, New Mexico 87131, USA
35 The Ohio State University, Columbus, Ohio 43210, USA
36 Okayama University, Okayama 700-8530, Japan
37 Osaka City University, Osaka 558-8585, Japan
38 University of Oxford, Oxford OX1 3RH, United Kingdom
39a Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
39b University of Padova, I-35131 Padova, Italy
40 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
41a Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
41b University of Pisa, I-56127 Pisa, Italy
41c University of Siena, I-56127 Pisa, Italy
41d Scuola Normale Superiore, I-56127 Pisa, Italy
41e INFN Pavia, I-27100 Pavia, Italy
41f University of Pavia, I-27100 Pavia, Italy

PRL 114, 141802 (2015) PHYSICAL REVIEW LETTERS week ending 10 APRIL 2015

141802-2
A search for particles with the same mass and couplings as those of the standard model Higgs boson but different spin and parity quantum numbers is presented. We test two specific alternative Higgs boson hypotheses: a pseudoscalar Higgs boson with spin-parity \(J^P = 0^- \) and a gravitonlike Higgs boson with \(J^P = 2^+ \), assuming for both a mass of 125 GeV/c\(^2\). We search for these exotic states produced in association with a vector boson and decaying into a bottom-antibottom quark pair. The vector boson is reconstructed through its decay into an electron or muon pair, or an electron or muon and a neutrino, or it is inferred from an imbalance in total transverse momentum. We use expected kinematic differences between events containing exotic Higgs bosons and those containing standard model Higgs bosons. The data were collected by the CDF experiment at the Tevatron proton-antiproton collider, operating at a center-of-mass energy of \(\sqrt{s} = 1.96 \) TeV, and correspond to an integrated luminosity of 9.45 fb\(^{-1}\). We exclude deviations from the predictions of the standard model with a Higgs boson of mass 125 GeV/c\(^2\) at the level of 5 standard deviations, assuming signal strengths for exotic boson production equal to the prediction for the standard model Higgs boson, and set upper limits of approximately 30% relative to the standard model rate on the possible rate of production of each exotic state.

The observation of a narrow bosonic resonance \(H \) with mass near 125 GeV/c\(^2\) by the ATLAS [1] and CMS [2] Collaborations at the Large Hadron Collider (LHC) in the channel \(H \rightarrow \gamma \gamma \) and \(H \rightarrow Z \rightarrow \ell^+\ell^-\ell^+\ell^- \) decay modes, and the evidence of such a particle at the Tevatron, primarily in association with a vector boson and in decays to bottom-antibottom quark pairs [3,4], shifted the focus of the Higgs boson experimental program to the determination of the properties of the newly discovered particle. The central question that needs to be addressed experimentally is whether only one Higgs boson is sufficient to explain the observed data. Specifically, the spin and parity of the Higgs boson should be established in order to determine if it plays the role predicted for it by the standard model (SM) of particle physics or if it represents the first hint of more exotic interactions.

The properties of the new particle observed at the LHC are consistent with those predicted by the SM for the Higgs boson. The products of cross sections and branching ratios are as predicted [1,5–7]. The decays of the new particle to \(ZZ^{(*)} \), \(jj \), and \(WW^{(*)} \) final states, where the asterisk indicates an off-mass-shell \(Z \) or \(W \) vector boson, provide excellent samples for testing its spin and parity quantum numbers \(J \) and \(P \), due to the measurable angular distributions of the decay products [8,9], which depend on the quantum numbers of the decaying particle. The tests at the LHC in the bosonic decay channels exclude exotic states with spin and/or parity different from the SM prediction of \(J^P = 0^+ \) with high confidence level.

At the Tevatron, the primary sensitivity to the Higgs boson comes from modes in which it is produced via its coupling to vector bosons but decays to a pair of fermions. While ATLAS and CMS have reported strong evidence for fermionic decays of the Higgs boson [10,11], spin and parity quantum numbers have not been tested in these searches. As the D0 Collaboration has shown [12], testing the spin and parity of the Higgs boson at the Tevatron...
provides independent information on the properties of this particle.

The Tevatron data can test alternative J^P hypotheses in the WH, ZH production modes with $H \to bb$, by examining the kinematic distributions of the observable decay products of the vector boson and the Higgs-like boson [13]. Testing the spin and parity of the Higgs boson in $H \to bb$ decays provides independent information on the properties of this particle. The models tested are described in Ref. [14]. For the SM case, Higgs boson associated production is an S-wave process (i.e., the VH system is in a state with relative orbital angular momentum $L = 0$, where $V = W$ or Z), with a cross section that rises proportionally to the boson speed β close to threshold. Here, $\beta = 2p/\sqrt{s}$, where p is the momentum of the Higgs boson in the VH reference frame and \sqrt{s} is the total energy of the VH system in its rest frame [14]. In the 0^- case, the production is a P-wave process and the cross section rises proportionally to β^3. There are several possible $J^P = 2^+$ models, but for gravitonlike models [13], the production is in a D-wave process, with a cross section that rises proportional to β^5. This dependence of the cross section on the spin-parity quantum numbers provides good kinematic leverage for discriminating exotic from SM Higgs boson production, since the exotic production rate is enhanced faster than the SM one at larger β, corresponding to a larger invariant mass of the final state system and higher momenta of the decay products. The models studied predict neither the production cross sections for $pp \to WH, ZH$ nor the decay branching fraction $B(H \to bb)$. Instead, the authors suggest [13] to purify a sample of Higgs boson candidate events and to study the invariant masses of the Wbb and Zbb systems, which differ strongly among the $0^+, 0^-$, and 2^+ models.

The study of the properties of a purified signal sample with minimal sculpting of the kinematic distributions is effective at the LHC in the $H \to ZZ \to \ell^+\ell^-\ell^+\ell^-$ mode, which has a signal-to-background ratio s/b exceeding 2:1. However, this is not the case for the Tevatron, where the SM Higgs boson searches typically have a s/b of 1:50 [15]. With the use of multivariate analyses (MVAs), small subsets of the data sample can be purified to achieve a s/b ratio of $\approx 1:1$. Since the events in these subsets are selected with MVA discriminants that are functions of the kinematic properties of signal and background, their distributions are highly sculpted to resemble those predicted by the SM Higgs boson, and thus are not optimal in testing alternative models.

The strategy chosen for this Letter is to generalize the CDF searches for the SM Higgs boson in the $WH \to \ell\nu bb$ mode [16], the $ZH \to \ell^+\ell^-bb$ mode [17], and the $WH + ZH \to E_T bb$ [18] mode [19], where the Z boson decays into a neutrino pair or the charged lepton from the W-boson decay escapes detection. $ZH \to \ell^+\ell^-bb$ events may be reconstructed as $WH \to \ell\nu bb$ events, if one lepton fails to meet the identification criteria, or as $E_T bb$ events, if both leptons fail to meet the criteria. The generalization involves searches for pseudoscalar ($J^P = 0^-$) and gravitonlike ($J^P = 2^+$) bosons (denoted X here), using MVA techniques similar to those developed for the SM searches. Admixtures of SM and exotic Higgs particles with indistinguishable mass are also considered, where exotic and SM production do not interfere due to different spin-parity quantum numbers. We set limits on the production rate times the decay branching ratio $B(X \to bb)$ of the exotic boson assuming a production cross section and decay branching ratio of the exotic boson as predicted by the SM for the Higgs boson. We also test the hypotheses of the exotic models by comparing the data with the predictions.

The CDF II detector is described in detail elsewhere [20,21]. Silicon-strip tracking detectors [22] surround the interaction region and provide precise measurements of charged-particle trajectories in the range $|\eta| < 2$ [23]. A cylindrical drift chamber provides full coverage over the range $|\eta| < 1$. The tracking detectors are located within a 1.4 T superconducting solenoidal magnet with field oriented along the beam direction. The energies of individual particles and particle jets are measured in segmented electromagnetic and hadronic calorimeters arranged in a projective-tower geometry surrounding the solenoid. Tracking drift chambers and scintillation counters are located outside of the calorimeters to help identify muon candidates [24]. The Tevatron collider luminosity is measured with multilayer gas Cherenkov detectors [25]. The data set used in the analyses reported in this Letter corresponds to an integrated luminosity of 9.45 fb$^{-1}$. The data are collected using a three-level on-line event selection system (trigger). The first level, relying on special-purpose hardware [26], and the second level, using a mixture of dedicated hardware and fast software algorithms, reduce the event accept rate to a level readable by the data acquisition system. The accepted events are processed on-line at the third trigger level with fast reconstruction algorithms, and recorded for off-line analysis [27].

To predict the kinematic distributions of SM Higgs boson events, we use the PYTHIA [28] Monte Carlo (MC) program, with CTEQ5L [29] parton distribution functions (PDFs) of leading order in the strong coupling parameter α_s. We scale these MC predictions to the highest-order cross section calculations available. To predict the exotic signal kinematic distributions, we use a modified version of MADEVENT [30] provided by the authors of Ref. [13].

The predictions for the SM WH and ZH cross sections [31] are based on the next-to-leading order (NLO) calculation of v_{2HV} [32] and include next-to-next-to-leading order (NNLO) quantum chromodynamical (QCD) contributions [33], as well as one-loop electroweak corrections [34]. In the predictions for the decay branching fractions of the SM Higgs boson [35,36], the partial decay widths for
all decays except to pairs of W and Z bosons are computed with \texttt{HDECAY} \cite{37}, and the WW and ZZ decay widths are computed with \texttt{PROPHETCY4F} \cite{38}. The relevant rates are $\sigma_{WH} = (129.5 \pm 9.8)$ fb, $\sigma_{ZH} = (78.5 \pm 5.9)$ fb, and $B(H \rightarrow b\bar{b}) = (57.8 \pm 1.0)$%. The uncertainties on the predicted branching ratio from uncertainties in the bottom-quark mass, α, and missing higher-order effects are estimated in Refs. \cite{39,40}.

We model SM processes and instrumental backgrounds using data-driven and MC methods. Simulated diboson (WW, WZ, ZZ) MC samples are normalized using the NLO calculations from \texttt{MCFA} \cite{41}. For $\bar{t}t$ we use a production cross section of 7.04 ± 0.7 pb \cite{42}, which is based on a top-quark mass of 173 GeV/c^2 and MSTW 2008 NNLO PDFs \cite{43}. The single-top-quark production cross section is corrected for NLO effects, except in the case of the $WH \rightarrow \ell\nu b\bar{b}$ search. The normalization of the $W +$ jets MC sample in the $WH \rightarrow \ell\nu b\bar{b}$ search, and the normalization of the instrumental and QCD multijet samples in all searches, are constrained from data samples selected by inverting a subset of the signal selection criteria, where the expected s/b ratio is several orders of magnitude smaller than in the search samples. The quality of background modeling is shown in final-state invariant mass distribution plots included in the Supplemental Material \cite{46}, which show good agreement with the data in all cases.

The analyses used to search for the exotic pseudoscalar and gravitonlike Higgs bosons are modifications of the searches for the SM Higgs boson, optimized for separating the exotic signals from both the SM background sources and the possible SM Higgs boson signal. They use the most recent and efficient CDF algorithm, \texttt{HOBIT} \cite{47}, for identifying jets from the hadronization of bottom quarks (b tagging). \texttt{HOBIT} is a multivariate classifier that uses kinematic properties of reconstructed trajectories of charged particles (tracks) associated with displaced vertices, the impact parameters of the tracks, and other characteristics of reconstructed groups of collimated particles (jets) that help separate b jets from light-flavored jets. The \texttt{HOBIT} classifier does not perform well for jets with $E_T > 200$ GeV and the data-based calibration procedures associated with it suffer from greater uncertainties in this kinematic region. We therefore do not tag jets with $E_T > 200$ GeV. The same tight (T) and loose (L) tag requirements are used as in the SM Higgs analyses.

In each final state, the search channels are subdivided according to the number of jets, the lepton category, and the b-tag category. The $WX \rightarrow \ell\nu b\bar{b}$ events are divided into 15 subchannels, corresponding to the TT, TL, $1T$, LL, and $1L$ tagging categories of the two jets, for each lepton category: central leptons (electrons or muons), forward electrons, and isolated-track leptons. The $ZX \rightarrow \ell^+\ell^- b\bar{b}$ events are divided into 16 subchannels, corresponding to the TT, TL, $1T$, LL tagging categories in the two- and three-jet final states, separately for $Z \rightarrow \ell^+\ell^-$ and $Z \rightarrow \mu^+\mu^-$ events. The $WX + ZX \rightarrow \ell\nu b\bar{b}$ events are divided into 6 subchannels corresponding to the TT, TL, and $1T$ tagging categories in 2-jet and 3-jet final states. A total of 37 analysis channels are defined. The expected and observed event yields in all channels are summarized in Table I, summed over lepton, jet, and b-tag categories.

Two discriminant functions are defined for each subchannel, one to separate the exotic Higgs boson signal (separately defined for the 0^- and the 2^+ signals) from the backgrounds, and the other as the discriminant used in the search for the SM Higgs boson. For the $ZX \rightarrow \ell^+\ell^- b\bar{b}$ analysis, only the exotic discriminant is used. The exotic signal discriminants have either $M_V^0 b\bar{b}$ (the invariant mass of the final-state system) among their input variables or H_T (the sum of all transverse energies reconstructed in the final state, including muon energies and E_T). Distributions of the discriminant functions for all search channels are shown for the data and simulation in the Supplemental Material SuppMat. Since the events are primarily classified to test for the exotic models, the SM Higgs interpretation of the data will not be the same as in the searches optimized for the SM Higgs boson.

To summarize the data in the large number of contributing channels, we follow Ref. \cite{4}. We sum the contents of bins with similar s/b ratios over the output histograms of all channels. Figure 1 shows the comparison of the data with the best-fit background predictions and the summed signals, separately for the SM Higgs and exotic boson signals. The signal strength modifier is denoted by μ_{exotic}, which multiplies the SM signal strength to predict the rate in the exotic model under test. Both distributions show agreement between the background predictions and the observed data over 5 orders of magnitude. No evidence for an excess of exotic signal-like candidates is seen.

A number of systematic uncertainties among the various analyses affect the sensitivity of the final result. All correlations within and between channels are taken into account in deriving the following combined limits, cross

<table>
<thead>
<tr>
<th>Process</th>
<th>$\ell^+\ell^- b\bar{b}$</th>
<th>$\ell\nu b\bar{b}$</th>
<th>$E_T b\bar{b}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V + X_{0^-}$</td>
<td>8 \pm 1</td>
<td>49 \pm 4</td>
<td>81 \pm 6</td>
</tr>
<tr>
<td>$V + X_{2^+}$</td>
<td>7 \pm 1</td>
<td>43 \pm 4</td>
<td>65 \pm 5</td>
</tr>
<tr>
<td>VH</td>
<td>7 \pm 1</td>
<td>33 \pm 3</td>
<td>40 \pm 3</td>
</tr>
<tr>
<td>$V +$ jets</td>
<td>820 ± 141</td>
<td>$23,323 \pm 2,860$</td>
<td>$9,193 \pm 2,273$</td>
</tr>
<tr>
<td>Dibosons</td>
<td>72 ± 11</td>
<td>$1,288 \pm 148$</td>
<td>544 ± 66</td>
</tr>
<tr>
<td>Top</td>
<td>222 ± 22</td>
<td>$2,053 \pm 211$</td>
<td>$1,935 \pm 164$</td>
</tr>
<tr>
<td>QCD</td>
<td>58 ± 21</td>
<td>$2,406 \pm 603$</td>
<td>$16,283 \pm 1,447$</td>
</tr>
<tr>
<td>Total bkg</td>
<td>$1,172 \pm 272$</td>
<td>$29,070 \pm 3,037$</td>
<td>$27,956 \pm 3,188$</td>
</tr>
<tr>
<td>Observed</td>
<td>1,182</td>
<td>26,337</td>
<td>28,518</td>
</tr>
</tbody>
</table>
to study the impact of the jet-energy-scale uncertainty [49] on the rates and shapes of the signal and background expectations. We treat the jet-energy-scale variations uncorrelated among the three analyses in the combined search [50]. Uncertainties on lepton identification and trigger efficiencies range from 2% to 6% and are applied to both signal and MC-based background predictions. The uncertainty on the integrated luminosity is 6%, of which 4.4% originates from detector acceptance uncertainties and 4.0% is due to the uncertainty on the inelastic $p\bar{p}$ cross section [51]. The luminosity uncertainty is correlated between the signal and MC-based background predictions.

Bayesian exclusion limits at 95% credibility level (C.L.) [52] on the production rates times the branching fraction $B(X \to b\bar{b})$ for 0$^+$ and 2$^+$ Higgs bosons are reported in Table II, both separately for each channel and combined, in units of the SM Higgs boson production rate. The limits are computed from a likelihood defined as the product of the probability densities for the bin contents of the MVA histograms over all bins of each histogram and all channel histograms, assuming Poisson probability densities for the bin contents, uniform prior densities for the SM and exotic signal strength modifiers μ_{exotic} and μ_{SM}, and Gaussian prior densities for the nuisance parameters describing systematic uncertainties. Posterior densities and upper limits on the SM and exotic Higgs boson rates are obtained from pseudoexperiments (PEs), where in each PE the likelihood is integrated over the nuisance parameters and then it is maximized. The medians of the distributions of results from PEs are used as the most probable values. The SM ratio between WW and ZZ production rates is assumed when combining WW and ZZ searches. Limits are listed either assuming that the SM Higgs boson is present as a background, or absent. Since the exotic 0$^+$ and 2$^+$ signals populate kinematic regions different from those of the SM Higgs boson, and since the SM Higgs boson production rate is small, the expected and observed limits on the exotic rates are very similar whether the SM Higgs boson is present or not. The observed combined limits are somewhat stronger than expected, with an exclusion rate of $\mu_{\text{exotic}} < 0.32$ in the 0$^+$ case (approximately a 1 standard

<table>
<thead>
<tr>
<th>Channel</th>
<th>Obs [limit/H_{SM}]</th>
<th>Median exp [limit/H_{SM}]</th>
<th>Obs [limit/H_{SM}]</th>
<th>Median exp [limit/H_{SM}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell^+\ell^- b\bar{b}$</td>
<td>1.86 (1.77)</td>
<td>1.46 (1.52)</td>
<td>1.57 (1.49)</td>
<td>1.59 (1.61)</td>
</tr>
<tr>
<td>$E_T b\bar{b}$</td>
<td>0.49 (0.43)</td>
<td>0.68 (0.69)</td>
<td>0.41 (0.37)</td>
<td>0.79 (0.83)</td>
</tr>
<tr>
<td>Combined</td>
<td>0.32 (0.28)</td>
<td>0.44 (0.45)</td>
<td>0.35 (0.31)</td>
<td>0.54 (0.56)</td>
</tr>
</tbody>
</table>
The dominant contribution to this deficit comes from the $\bar{W}X$ channel. The two-dimensional cross section fits, which allow for arbitrary rates of both SM and exotic Higgs bosons to be simultaneously present, are shown in Fig. 2, separately for the 0^- and 2^+ searches.

We report the observed values and the expected distributions of the log-likelihood ratio (LLR) [52] in the SM and the exotic hypotheses and list the combined results in Table III. The Table includes the p values for the null and test hypotheses, defined as the conditional probabilities $p_{null} = P(\text{LLR} \leq \text{LLR}_{\text{obs}} | \text{SM})$ and $p_{\text{test}} = P(\text{LLR} \geq \text{LLR}_{\text{obs}} | \text{exotic})$, respectively, the values of $\text{CL}_{\text{s}} = p_{\text{test}}/(1-p_{\text{null}})$, and the equivalent number of Gaussian standard deviations z corresponding to each p value, defined by $p = [1 - \text{erf}(z/\sqrt{2})]/2$ [52]. There is a deficit in the observed number of events in the signal-like bins $\log_{10}(s/b) > -1.5$ of the exotic discriminant, which is visible in Fig. 1 in both the 0^- and the 2^+ searches. The dominant contribution to this deficit comes from the $WX + ZX \rightarrow E_Tbb$ search. This deficit in the exotic search is not evidence against the SM Higgs boson, as the exotic search tests for events with different kinematic properties (high M_{VW}) than those of the SM Higgs boson. Indeed, the combined cross section fit, shown in Fig. 2, is consistent with the SM Higgs boson rate with a discrepancy of less than 0.5 standard deviations.

In conclusion, we search in the entire CDF data sample for Higgs-boson-like particles of the same mass, production, and decay modes, and production rates as the discovered SM Higgs boson, but with 0^- or 2^+ spin-parity quantum numbers. We exclude deviations from the SM predictions with a Higgs boson of mass $m_H \approx 125$ GeV/c^2 at the level of 5 standard deviations, assuming signal strengths for exotic boson production equal to the prediction for the SM Higgs boson, and set upper limits of approximately 30% relative to the SM rate on the possible rate of production of 0^- and 2^+ exotic states, both allowing for an admixture of SM production and exotic production, and assuming only exotic production.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación.
and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.

*Deceased.

[52x697]Curie Fellowship Contract No. 302103.

University of British Columbia, Vancouver, BC V6T 1Z1, Canada.

Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.

University of California Irvine, Irvine, CA 92697, USA.

Institute of Physics, Academy of Sciences of the Czech Republic, 182 21, Czech Republic.

CERN, CH-1211 Geneva, Switzerland.

Cornell University, Ithaca, NY 14853, USA.

University of Cyprus, Nicosia CY-1678, Cyprus.

Office of Science, U.S. Department of Energy, Washington, DC 20585, USA.

University College Dublin, Dublin 4, Ireland.

ETH, 8092 Zürich, Switzerland.

University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

Università degli Studi di Napoli Federico I, I-80138 Napoli, Italy.

Los Alamos National Laboratory, Los Alamos, NM 87544, USA.

Hampton University, Hampton, VA 23668, USA.

Harvard Medical School, Boston, MA 02114 USA.

Massachusetts General Hospital, Boston, MA 02114 USA.

Los Alamos National Laboratory, Los Alamos, NM 87544, USA.

Università degli Studi di Napoli Federico I, I-80138 Napoli, Italy.

University of Zürich, 8006 Zürich, Switzerland.

Massachusetts General Hospital, Boston, MA 02114 USA.

Hampton University, Hampton, VA 23668, USA.

Los Alamos National Laboratory, Los Alamos, NM 87544, USA.

Università degli Studi di Napoli Federico I, I-80138 Napoli, Italy.

University of Oregon, Eugene, OR 97403, USA.

University of Notre Dame, Notre Dame, IN 46556, USA.

Northwestern University, Evanston, IL 60208, USA.

National Research Nuclear University, Moscow 115409, Russia.

Northwestern University, Evanston, IL 60208, USA.

University of Notre Dame, Notre Dame, IN 46556, USA.

University of Oviedo, E-33007 Oviedo, Spain.

CNRS-IN2P3, Paris, F-75205 France.

Universidade Tecnica Federico Santa Maria, 110v Valparaiso, Chile.

The University of Jordan, Amman 11942, Jordan.

Université catholique de Louvain, 1348 Louvain-La-Neuve, Belgium.

University of Zürich, 8006 Zürich, Switzerland.

Massachusetts General Hospital, Boston, MA 02114 USA.

Hampton University, Hampton, VA 23668, USA.

Los Alamos National Laboratory, Los Alamos, NM 87544, USA.

Università degli Studi di Napoli Federico I, I-80138 Napoli, Italy.

[15] This is the approximate s/b ratio in CDF’s WH → ℓνbb search with two jets and two tight b tags [16].

[18] The missing transverse energy, measuring the total transverse energy imbalance in an event, is defined by $E_T = \sum_{towers} E_T h_T$, where h_T is the unit vector normal to the beam and pointing to a given calorimeter tower, and E_T is the transverse energy measured in that tower [23].

[23] Positions and angles are expressed in a cylindrical coordinate system, with the z axis directed along the proton beam. The azimuthal angle ϕ around the beam axis is defined with respect to a horizontal line pointing outwards from the center of the Tevatron, and radii are measured with respect to the beam axis. The polar angle θ is defined with respect to the proton beam direction, and the pseudorapidity η is defined to be $\eta = -\ln \left[\tan(\theta/2) \right]$. The transverse energy (as measured by the calorimeters) and momentum (as measured by the tracking systems) of a particle are defined as $E_T = E \sin \theta$ and $p_T = p \sin \theta$, respectively.
