Searches for supersymmetry based on events with b jets and four W bosons in pp collisions at 8 TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1016/j.physletb.2015.04.002</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Feb 05 15:37:00 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/97076</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/4.0/</td>
</tr>
</tbody>
</table>
Searches for supersymmetry based on events with b jets and four W bosons in pp collisions at 8 TeV

CERN Collaboration*

CERN, Switzerland

A R T I C L E I N F O
Article history:
Received 12 December 2014
Received in revised form 18 February 2015
Accepted 1 April 2015
Available online 13 April 2015
Editor: M. Doser

Keywords:
CMS
Physics
Supersymmetry

A B S T R A C T
Five mutually exclusive searches for supersymmetry are presented based on events in which b jets and four W bosons are produced in proton–proton collisions at \(\sqrt{s} = 8 \) TeV. The data, corresponding to an integrated luminosity of 19.5 fb\(^{-1} \), were collected with the CMS experiment at the CERN LHC in 2012. The five studies differ in the leptonic signature from the W boson decays, and correspond to all-hadronic, single-lepton, opposite-sign dilepton, same-sign dilepton, and \(\geq 3 \) lepton final states. The results of the five studies are combined to yield 95% confidence level limits for the gluino and bottom-squark masses in the context of gluino and bottom-squark pair production, respectively. In the limit when the lightest supersymmetric particle is light, gluino and bottom squark masses are excluded below 1280 and 570 GeV, respectively.

© 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP\(^3\).

1. Introduction

The Standard Model (SM) of particle physics provides an accurate description of known particle properties and interactions. The discovery of a Higgs boson by the ATLAS [1] and CMS [2] Collaborations at the CERN LHC represents the latest major milestone in the validation of the SM. Despite its success, the SM is known to be incomplete because, for example, it does not offer an explanation for dark matter and it contains ad-hoc features, such as the fine-tuning [3–9] required to stabilize the Higgs boson mass at the electroweak scale. Many extensions to the SM have been proposed. In particular, supersymmetry (SUSY) may provide a candidate for dark matter in R-parity conserving models [10] as well as a natural solution to the fine-tuning problem [3–9].

The CMS and ATLAS Collaborations have performed many searches for physics beyond the SM. Thus far, no significant evidence for new physics has been obtained. The search for supersymmetry is particularly interesting phenomenologically because of the large number of new particles expected. The LHC SUSY search program consists therefore of a wide array of searches [11–22]. Any particular manifestation of SUSY in nature would likely result in topologies that are detectable in a variety of final states. Individual searches can therefore be combined to provide complementarity and enhanced sensitivity in the global search for new physics.

Naturalness arguments suggest that the supersymmetric partners of the gluon (gluino, \(\tilde{g} \)) and third-generation quarks (the top and bottom squarks, \(\tilde{t} \) and \(\tilde{b} \)) should not be too heavy [23–26]. Direct or cascade production of third-generation squarks can lead to final states with several W bosons and bottom quarks, and considerable imbalance \(\vec{p}_{T}^{\text{miss}} \) in transverse momentum. The missing momentum arises from neutrinos in events where one or more W bosons decay leptonically, but also, for the R-parity conserving models considered here, because the lightest SUSY particle (LSP), taken to be the lightest neutralino \(\tilde{\chi}_{1}^{0} \), is weakly interacting and stable, escaping without detection. The studies presented here focus on SUSY simplified model scenarios [27,28] with four W bosons. Each of the W bosons can decay either into a quark–antiquark pair or into a charged lepton and its neutrino. Depending on the decay modes of the W bosons, the final states contain 0–4 leptons. This makes combining the final states with different lepton multiplicities beneficial. The dilepton signature is split according to the relative electric charges of the leptons, providing five mutually exclusive analyses for the combination: fully hadronic, single-lepton, opposite-sign dilepton, same-sign dilepton, and \(\geq 3 \) leptons (multilepton). The results are based on proton–proton collision data collected at \(\sqrt{s} = 8 \) TeV with the CMS experiment at the LHC during 2012, and correspond to an integrated luminosity of 19.5 fb\(^{-1} \).

The first simplified model we consider describes gluino pair production, followed by the decay of each gluino to a top quark–antiquark pair (\(\tilde{t}\bar{t} \)) and the LSP. For cases where the top squark mass is larger than the gluino mass, the decay will proceed...
through a virtual top squark (T1tttt model, Fig. 1 left). Alternatively, when the top squark mass is smaller than the gluino mass and phase space allows, the decay will proceed through an on-shell top squark (T5tttt model, Fig. 1 middle). Each top quark decays to a bottom quark and a W boson, leading to final states with four W bosons, four bottom-quark jets (b jets), and considerable p_T^{miss}. The second simplified model we consider describes bottom–antibottom squark pair production, where we assume that each bottom squark decays to a top quark and a chargino ($\tilde{\chi}^\pm$), and that the chargino then decays to yield a W boson and the LSP (T6ttWW model, Fig. 1 right). The final state thus contains four W bosons, two b jets, and large p_T^{miss}.

The paper is organized as follows. Section 2 describes the CMS detector. The event simulation, trigger, and reconstruction procedures are described in Section 3. Section 4 presents details of the individual analyses, with particular emphasis on the opposite-sign dilepton search, which is presented here for the first time. The combination methodology and results are presented in Section 5. Section 6 provides a summary.

2. Detector

The central feature of the CMS detector is a superconducting solenoid, of 6 m internal diameter, that produces an axial magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and plastic scintillator hadron calorimeter. Muons are detected in gas ionization chambers embedded in the steel flux-return yoke outside the magnet. The tracking system covers the pseudorapidity range $|\eta| < 2.5$, the muon detectors $|\eta| < 2.4$, and the calorimeters $|\eta| < 3.0$. Steel and quartz-fiber forward calorimeters cover $3 < |\eta| < 5$. A detailed description of the CMS apparatus and coordinate system are given in Ref. [29].

3. Event reconstruction, trigger, and simulation

The recorded events are reconstructed using the CMS particle-flow algorithm [30,31]. Electron candidates are reconstructed by associating tracks to energy clusters in the electromagnetic calorimeter [32,33]. Muon candidates are reconstructed by combining information from the tracker and the muon detectors [34].

Particle-flow constituents are clustered into jets using the anti-k_T clustering algorithm with a distance parameter of 0.5 [35]. Corrections are applied as a function of jet transverse momentum (p_T) and η to account for non-uniform detector response [36,37]. Contributions from additional pp collisions overlapping with the event of interest (pileup) are estimated using the jet area method [38,39] and are subtracted from the jet p_T. The total visible jet activity H_T is defined as the scalar sum of the jet p_T in the event, and H_T^{miss} as the p_T imbalance of the reconstructed jets, where the p_T and η requirements for accepted jets are specified for the individual searches in Section 4. The identification of b jets is performed using the combined secondary vertex algorithm at the medium working point [40], which has a b-jet tagging efficiency of 70% and a light-flavor jet misidentification rate below 2% for jets with p_T values in the range of interest for this analysis. The missing transverse momentum vector p_T^{miss} is defined as the projection on the plane perpendicular to the beam axis of the negative vector sum of the momenta of all reconstructed particles. Its magnitude is referred to as E_T^{miss}.

The data sample used for the fully hadronic analysis was recorded with trigger algorithms that required events to have $H_T > 350$ GeV and $E_T^{miss} > 100$ GeV. The single-lepton analysis uses triple- or double-object triggers. The triple-object triggers require a lepton with $p_T > 15$ GeV, together with $H_T > 350$ GeV and $E_T^{miss} > 45$ GeV. The double-object triggers have the same H_T requirement, no E_T^{miss} requirement, and a lepton p_T threshold of 40 GeV. The data samples for the dilepton and multilepton analyses were collected with ee, eμ, and $\mu\mu$ double-lepton triggers, which require at least one e or one μ with $p_T > 17$ GeV and another with $p_T > 8$ GeV.

Simulated Monte Carlo (MC) samples of signal events are produced using the MADGRAPH 5.1.3.30 [41] generator, as are SM tt, Drell–Yan, W + jets, and single top quark events. The tt events include production in association with a photon, or with a W, Z, or H boson. The production of single top quarks in association with an additional quark and a Z boson is simulated with the MC@NLO 2.0.0 [42,43] generator. The PYTHON 6.4.24 [44] generator is used to simulate the generic multijet QCD and diboson (WW, ZZ, and WZ) processes, as well as to describe the parton shower and hadronization for the MADGRAPH samples. All SM samples are processed with the full simulation of the CMS detector, based on the GEANT4 [45] package, while the signal samples are processed with the CMS fast simulation [46] program. The fast simulation is validated through comparison of its predictions with those of the full simulation, and efficiency corrections based on data are applied [47]. The effect of pileup interactions is included by superimposing a number of simulated minimum bias events on top of the hard-scattering process, with the distribution of the number of reconstructed vertices matching that in data.

4. Search channels

This paper reports the combination of five individual searches for new physics by CMS. The fully hadronic [19], single-lepton [20], same-sign dilepton [21], and multilepton [22] searches have all been published, and are summarized briefly below. The opposite-sign dilepton search is presented here for the first time and is therefore described in greater detail.

4.1. Fully hadronic analysis

Considering that signal events contain four W bosons, the fully hadronic branching fraction is about 24%. The fully hadronic analysis [19] requires at least three jets with $p_T > 50$ GeV and $|\eta| < 2.5$, and vetoes events containing an isolated electron or muon with
\(p_T > 10 \text{ GeV} \) and \(|\eta| < 2.5 \) (2.4) for electrons (muons). The \(H_T \) and \(H_T^{\text{miss}} \) values are required to exceed 500 and 200 GeV, respectively. To render the analysis more sensitive to a variety of final-state topologies resulting from longer cascades of squarks and gluinos, and therefore a large number of jets, the events are divided into three exclusive jet-multiplicity regions: \(N_{\text{jets}} = (3-5), (6-7), \) and \(\geq 8 \). The events are further divided into exclusive regions of \(H_T \) and \(H_T^{\text{miss}} \). The exploitation of higher jet multiplicities is motivated by natural SUSY models in which the gluino decays into top quarks [19]. This analysis does not impose a requirement on the number \(N_{\text{jets}} \) of tagged b jets, thereby maintaining a high signal efficiency.

The main SM backgrounds for the fully hadronic channel arise from \(Z + \text{jets} \) events in which the \(Z \) boson decays to a \(\nu \bar{\nu} \) neutrino pair; from \(W + \text{jets} \) and \(t\bar{t} \) events with a \(W \) boson that decays directly or through a \(\tau \) lepton to an \(e \) or \(\mu \) and the associated neutrino(s), with the \(e \) or \(\mu \) undetected or outside the acceptance of the analysis; from \(W + \text{jets} \) and \(t\bar{t} \) events with a \(W \) boson that decays to a hadronically decaying \(\tau \) lepton and its associated neutrino; and from QCD multijet events. For the first three background categories, the neutrinos provide a source of genuine \(H_T^{\text{miss}} \). For the QCD multijet event background, large values of \(H_T^{\text{miss}} \) arise from the mismeasurement of jet \(p_T \) or from the neutrinos produced in the semileptonic decays of hadrons. All SM backgrounds are determined from control regions in the data, and are found to agree with the observed numbers of events in the signal regions.

4.2. Single-lepton analysis

With four \(W \) bosons, the branching fraction of signal events to states with a single electron or muon is about 42\%, including contributions from leptonically decaying \(\tau \) leptons. The single-lepton analysis [20] requires the presence of an electron or muon with \(p_T > 20 \text{ GeV} \) and no second electron or muon with \(p_T > 15 \text{ GeV} \), with the same \(\eta \) restrictions on the \(e \) and \(\mu \) as in Section 4.1. Jets are required to have \(p_T > 40 \text{ GeV} \) and \(|\eta| < 2.4 \). The \(S_T^{\text{lep}} \) variable is evaluated, defined by the scalar sum of \(E_T^{\text{miss}} \) and the lepton \(p_T \). Events must satisfy \(N_{\text{jets}} \geq 6, N_{\text{jets}} \geq 2, H_T > 400 \text{ GeV}, \) and \(S_T^{\text{lep}} > 250 \text{ GeV} \). A further variable, the azimuthal angle \(\Delta \phi(W, \ell) \) between the \(W \) boson candidate and the lepton, is evaluated. For this variable, the \(p_T \) of the \(W \) boson candidate is defined by the vector sum of the lepton \(p_T \) and \(E_T^{\text{miss}} \). For single-lepton \(t\bar{t} \) events, the angle between the directions of the \(W \) boson and the charged lepton has a maximum value that is determined by the mass of the \(W \) boson and its momentum. The requirement of large \(E_T^{\text{miss}} \) selects events with Lorentz-boosted \(W \) bosons. This leads to a narrow distribution in \(\Delta \phi(W, \ell) \). SUSY decays will be no such maximum, since the \(E_T^{\text{miss}} \) mostly results from the two neutralinos and their directions are largely independent of the lepton direction. Therefore the \(\Delta \phi(W, \ell) \) distribution is expected to be flat for SUSY events. The analysis requires \(\Delta \phi(W, \ell) > 1 \). The search is then performed in exclusive regions of \(S_T^{\text{lep}} \) for \(N_{\text{jets}} = 2 \) and \(N_{\text{jets}} \geq 3 \).

The main SM backgrounds for the single-lepton channel arise from dilepton \(t\bar{t} \) events in which one lepton is not reconstructed or lies outside the acceptance of the analysis, from residual single-lepton \(t\bar{t} \) events, and from events with single-top quark production. The backgrounds are evaluated using data control samples. The total number of background events is found to agree with the observed number of events in each signal region.

4.3. Same-sign dilepton analysis

The branching fraction for events with four \(W \) bosons to a final state with at least two same-sign leptons (ee, \(\mu \mu \), or \(e\mu \)) is 7\%, including the contributions of \(\tau \) leptons. For the present study, we make use of the high-\(p_T \) selection of the same-sign dilepton analysis in Ref. [21], which requires at least two same-sign light leptons (e, \(\mu \)) with \(p_T > 20 \text{ GeV} \) and \(|\eta| < 2.4 \), and invariant mass above 8 GeV. To prevent overlap between the same-sign dilepton and multilepton analyses, an explicit veto on additional leptons with \(p_T > 10 \text{ GeV} \) and \(|\eta| < 2.4 \) is added for the same-sign dilepton analysis, as in the search for \(t\bar{t} \) production described in Ref. [22]. Jets are required to satisfy \(p_T > 40 \text{ GeV} \) and \(|\eta| < 2.4 \). Events must have \(N_{\text{jets}} > 2, H_T > 200 \text{ GeV}, \) and \(E_T^{\text{miss}} > 50 \text{ GeV} \). The events are examined in exclusive regions of \(H_T \) and \(E_T^{\text{miss}} \) for \(2 \leq N_{\text{jets}} \leq 3 \) and \(N_{\text{jets}} > 4 \), all for \(N_{\text{jets}} = 0, 1, \) and \(\geq 2 \).

There are three main sources of SM background in this analysis: non-prompt leptons, rare SM processes, and electrons with wrong charge assignments. The main sources of non-prompt leptons are leptons from bottom- and charm-quark decays, misidentified hadrons, muons from light-meson decays in flight, and electrons from unidentified photon conversions. The background from non-prompt leptons is evaluated from data control regions. Diboson, tW, and t\(t\bar{t} \) production are the most important rare SM background sources. Their contributions are estimated from MC simulation. Opposite-sign dileptons can also contribute to the background when the charge of an electron is misidentified because of bremsstrahlung emitted in the tracker material. This contribution is estimated using a technique based on \(Z \rightarrow e^+e^- \) data. No significant deviations are observed from the SM expectations.

4.4. Multilepton analysis

The branching fraction for events with four \(W \) bosons to decay to a final state with three or more charged leptons (e or \(\mu \)) is 6\%, including \(\tau \) lepton contributions. The multilepton sample used in the present study corresponds to the selection of events with three or more such leptons presented in Ref. [22]. The electrons or muons are required to have \(p_T > 10 \text{ GeV} \) and \(|\eta| < 2.4 \), except at least one of the three leptons must have \(p_T > 20 \text{ GeV} \). Jets are required to have \(p_T > 30 \text{ GeV} \) and \(|\eta| < 2.4 \). Events must satisfy \(N_{\text{jets}} \geq 2, N_{\text{jets}} \geq 1, H_T > 60 \text{ GeV}, \) and \(E_T^{\text{miss}} > 50 \text{ GeV} \). The events are examined in exclusive regions of \(H_T \) and \(E_T^{\text{miss}} \) for \(2 \leq N_{\text{jets}} \leq 3 \) and \(N_{\text{jets}} > 4 \), both with \(N_{\text{jets}} = 1, 2 \), and for \(N_{\text{jets}} \geq 3 \).

Compared to the fully hadronic, single-lepton, or dilepton signatures, the multilepton search targets final states with small branching fractions, but provides good signal sensitivity because the three-lepton requirement strongly suppresses backgrounds. Only a few SM processes exhibit such signatures. Background from diboson production is highly suppressed by the \(N_{\text{jets}} \) requirement. The main backgrounds arise from events with a combination of \(t\bar{t} \) production and non-prompt leptons, as well as from rare SM processes like tW and t\(t\bar{t} \) production. The non-prompt lepton background is evaluated using data control regions and the rare SM background from simulation. There is no statistically significant excess of events found in the signal regions above the SM expectations.

4.5. Opposite-sign dilepton analysis

The branching fraction for events with four \(W \) bosons to a final state with at least one opposite-sign lepton pair (e or \(\mu \)) is 14\%, including the contributions of \(\tau \) leptons. The opposite-sign dilepton search requires the presence of exactly two opposite-sign leptons (e or \(\mu \)), each with \(p_T > 20 \text{ GeV} \) and \(|\eta| < 2.4 \). Events with a third lepton satisfying \(p_T > 20 \text{ GeV} \) and \(|\eta| < 2.4 \) are vetoed. Jets must satisfy \(p_T > 30 \text{ GeV} \) and \(|\eta| < 2.5 \). This analysis targets the \(t\bar{t}t\bar{t} \) and \(T5t\bar{t}t \) scenarios described in the Introduction.
Many variables are examined in order to define a signal region (SR) that maximizes signal content while minimizing the contributions of SM events. We choose those variables that demonstrate the greatest discriminating power between signal and SM events, and that exhibit the smallest level of correlation amongst themselves: \(N_{\text{jets}}, N_{b\text{jets}}, E_T^{\text{miss}} \), and the \(\eta \) values of the two jets with largest \(p_T \). The criteria that yield the highest sensitivity in the parameter space of the T1tttt model, summarized in Table 1, are optimized using simulated events. Events are divided into bins of \(E_T^{\text{miss}} \). The bin with highest \(E_T^{\text{miss}} \) (> 180 GeV) is the most sensitive for the bulk of the signal phase space, but the bins with lower \(E_T^{\text{miss}} \) are important for compressed spectra, i.e., for signal scenarios with small mass differences between the SUSY particles.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_T^{\text{miss}})</td>
<td>Missing transverse momentum</td>
<td>> 30 GeV</td>
</tr>
<tr>
<td>(N_{\text{jets}})</td>
<td>Number of jets</td>
<td>> 4</td>
</tr>
<tr>
<td>(N_{b\text{jets}})</td>
<td>Number of b-tagged jets</td>
<td>> 2</td>
</tr>
<tr>
<td>(\eta_{j1})</td>
<td>Pseudorapidity for jet with largest (p_T)</td>
<td>< 1</td>
</tr>
<tr>
<td>(\eta_{j2})</td>
<td>Pseudorapidity for jet with next-to-largest (p_T)</td>
<td>< 1</td>
</tr>
</tbody>
</table>

A control region (CR) is defined by the sum of the two event samples obtained by separately inverting the \(\eta_{j1} < 1 \) and \(\eta_{j2} < 1 \) requirements. The contribution of signal events to the control region depends on the gluino mass \((m_g)\) and the LSP mass \((m_{\text{LSP}})\) and can be as large as 10%. The contributions of signal events to the CR are taken into account in the interpretation of the results.

An extrapolation factor \(R_{\text{ext}} \) is defined as a function of \(E_T^{\text{miss}} \) and \(N_{b\text{jets}} \), as the ratio of the number of SM events in the SR to that in the CR. In simulated events the \(R_{\text{ext}} \) factor is observed to change slowly as a function of \(E_T^{\text{miss}} \), as shown in Fig. 2. The \(R_{\text{ext}} \) ratio is similarly found to be independent of \(N_{b\text{jets}} \), making it possible to extract its value directly from data using events with \(N_{b\text{jets}} = 2 \), without altering the other signal and control selection criteria. The contribution of signal events to the \(N_{b\text{jets}} = 2 \) region is small compared to the statistical uncertainty in the extrapolation factor and is therefore neglected. Thus the background estimate is derived entirely from data, minimizing systematic uncertainties.

The SM background prediction for the SR is obtained by multiplying \(R_{\text{ext}} \) with the number of data events in the CR:

\[
N^\text{SR}_{\text{predicted}} = R_{\text{ext}} N^\text{CR}_{\text{data}}
\]

(1)

The performance of the background estimation method is studied both in the SR, using simulation, and in a cross-check region defined by \(2 \leq N_{\text{jets}} \leq 4 \), using data and simulation. For both regions, the SM background consists primarily of \(t\bar{t} \) events, with a small contribution from W + jets production. Fig. 3 shows agreement between the predicted and actual \(E_T^{\text{miss}} \) distributions for the SR and cross-check regions.

The systematic uncertainty in the background prediction is based on the statistical uncertainties in the data, used to extract the \(R_{\text{ext}} \) factors, and on the level of agreement between the predicted and actual results found using simulation in the SR (Fig. 3 right). No significant bias in the method is observed in simulation, and an additional systematic uncertainty of 25–50% is assigned to account for the statistical precision of the latter term.

The predicted and observed \(E_T^{\text{miss}} \) distributions for the signal region are shown in Fig. 4 and listed in Table 2. No excess of events is observed with respect to the SM prediction. For the interpretation of results (Section 5), all four \(E_T^{\text{miss}} \) bins are used. Besides their use in the combination, we present in Appendix A the interpretation of the T1tttt and T5tttt scenarios based on the results of the opposite-side dilepton analysis alone.

5. Combination of analyses

The results from the five analyses are combined to provide more stringent conclusions. The combined results are interpreted in the context of the SUSY scenarios illustrated in Fig. 1. The 95% confidence level (CL) upper limits (UL) on the cross sections are calculated using the LHC-style CLs method [48–50]. Because of their large branching fractions, the fully hadronic and single-lepton analyses are most sensitive in the largest part of the phase space. However, the analyses based on higher lepton multiplicities become important for the more compressed mass spectra and for models with fewer b jets.

Systematic uncertainties in the signal selection efficiency are evaluated using the same techniques for all analyses. They are evaluated separately for the different signal models, search regions, and for each hypothesis for the SUSY particle masses. The systematic uncertainties in the signal modeling are taken to be 100% correlated among the mass hypotheses. As an example, a summary of systematic uncertainties for the T1tttt model is given in Table 3. The total systematic uncertainty varies between 7 and 35% depending on the decay modes considered, the search regions, and the mass points. An important source of systematic uncertainty for the analyses that require multiple leptons arises from the lepton identification and isolation efficiencies, which are evaluated using \(Z \to \ell^+ \ell^- \) events. The uncertainty in the energy scale of jets...
gives rise to a 1–15% systematic uncertainty that increases with more stringent kinematic requirements. For compressed spectra, the modeling of initial-state radiation (ISR) [18] is an important source of uncertainty. The PDF4LHC recommendations [51,52] are used to evaluate the uncertainty associated with the parton distribution functions (PDFs). For most of the analyses the background evaluation methods differ, and so the systematic uncertainties are treated as uncorrelated. The overlap between most control regions is studied and found to be negligible. The only exception occurs

\begin{table}
\centering
\begin{tabular}{lll}
\hline
\textbf{E}_{\text{T}}^{\text{miss}} \text{ requirement} & \text{Background prediction} & \text{Observed data yields} \\
\hline
30 < \text{E}_{\text{T}}^{\text{miss}} < 80 \text{ GeV} & 19.9 \pm 3.7 & 17 \\
80 < \text{E}_{\text{T}}^{\text{miss}} < 130 \text{ GeV} & 11.8 \pm 3.0 & 10 \\
130 < \text{E}_{\text{T}}^{\text{miss}} < 180 \text{ GeV} & 5.7 \pm 2.2 & 5 \\
\text{E}_{\text{T}}^{\text{miss}} > 180 \text{ GeV} & 1.2 \pm 1.1 & 1 \\
\hline
\end{tabular}
\caption{Predicted SM background and observed data yields as a function of \text{E}_{\text{T}}^{\text{miss}} for the opposite-sign dilepton analysis. The uncertainties in the total background predictions include both the statistical and the systematic components.}
\end{table}

5.1. Gluino-mediated top squark production with virtual top squarks

The results are first interpreted in the context of \(\tilde{g} \rightarrow t \tilde{\chi}^0_1 \) production with \(\tilde{g} \rightarrow t \tilde{\chi}^0_1 \) through a virtual \(\tilde{t} \), the process referred to as \(Tt \). The signature contains four top quarks and has significant jet activity (Fig. 1 left). The fully hadronic and single-lepton analyses are therefore expected to be especially sensitive, because of their larger signal efficiencies. Fig. 5 (left) shows the 95% CL upper limits on the product of the cross section and branching fraction in the \((m_{\tilde{t}_1}^2, m_{\tilde{t}_2})\) plane. The exclusion curves are evaluated by comparing the cross section upper limits with the next-to-leading-order (NLO) plus next-to-leading-logarithm (NLL) theoretical production cross sections [54–58]. The thick red dashed line indicates the 95% CL expected limit, which is defined as the median of the upper limit distribution obtained using pseudo-experiments and a likelihood model. The ±1 standard deviation experimental systematic uncertainties \(\sigma_{\text{experiment}} \) are shown by the thin red line around the expected limit. The observed limit is given by the thick solid black
line, where the uncertainty band (thin black lines) indicates the ±1 standard deviation uncertainty σ_{theory} in the theoretical cross section. The theoretical uncertainty is mainly due to uncertainties in the renormalization and factorization scales, and in the knowledge of the PDFs. To quote the gluino mass exclusion, we conservatively consider the observed upper limit minus σ_{theory}. It is seen that gluinos below 1280 GeV are excluded for $m_{\tilde{g}} \approx 0$ GeV. Assuming a gluino mass of 1000 GeV, an LSP with a mass below 600 GeV is excluded.

The exclusion curves for each individual analysis are shown in Fig. 5 (right). As expected, for low LSP masses, the single-lepton and fully hadronic analyses provide the most stringent results. For $m_{\tilde{g}} \approx 0$ GeV, the combination is seen to extend the gluino mass exclusion by about 35 GeV compared to the single-lepton analysis, which provides the most stringent corresponding individual result. Large values of $m_{\tilde{g}}$ lead to more compressed mass spectra, softer decay products, and therefore smaller E_T^{miss}. As a result, the fully hadronic and single-lepton analyses become less sensitive, since they require high-p_T jets and large E_T^{miss}. The dilepton and multilepton analyses depend less on the p_T spectrum of the final-state particles, and their sensitivity decreases less for smaller mass splittings. Thus the analyses requiring two or more leptons contribute most to the overall sensitivity when the difference $m_{\tilde{g}} - m_{\tilde{t}}$ becomes small. For $m_{\tilde{g}} \approx 1000$ GeV, the exclusion limit on $m_{\tilde{g}}$ is extended by about 60 GeV because of the addition of the multilepton channels.

5.2. Gluino-mediated top squark production with on-shell top squarks

If the top squarks are light enough, the gluino can decay through an intermediate on-shell top squark. In this model, referred to as $T\tilde{t}ttt$, the values of $m_{\tilde{t}_1}$, $m_{\tilde{g}}$, and $m_{\tilde{t}_2}$ function as independent parameters. Results are presented for a fixed mass $m_{\tilde{t}_1} = 50$ GeV and scanned over the masses of the on-shell top squark and gluino. The 95% CL upper limits on the product of the cross section and the branching fraction in the $m_{\tilde{t}_1}$ versus $m_{\tilde{g}}$ plane are shown in Fig. 6, top. In the context of the $T\tilde{t}ttt$ model, gluinos with masses below around 1300 GeV are excluded for top squark masses around 700 GeV. Fig. 6, bottom, shows the results for the individual studies. The contribution from the fully hadronic analysis remains important even for relatively small top squark masses $m_{\tilde{t}} \approx 200$ GeV because of the high H_T search regions: signal events in this case contain smaller E_T^{miss} but larger H_T. However, for $m_{\tilde{t}} < 150$ GeV, the fully hadronic analysis loses sensitivity. The single-lepton analysis provides the most stringent individual results, but loses sensitivity as $m_{\tilde{t}}$ decreases. The sensitivity of the dilepton and multilepton searches depends less strongly on $m_{\tilde{t}}$, but their sensitivity even in the compressed region is rather small, although they contribute to the combination at very small $m_{\tilde{t}}$. The combination improves the exclusion reach in the gluino mass by about 50 GeV for small $m_{\tilde{t}}$.

5.3. Bottom squark pair production

We also consider bottom squark pair production with the bottom squarks decaying as $b \rightarrow t\tilde{t}_1$ and $\tilde{t}_1 \rightarrow W^- \tilde{g}^0$, known as $T\tilde{t}W\tilde{W}$ (Fig. 1 right). The single-lepton and opposite-sign dilepton analyses have very little sensitivity to such a model because of the stringent N_{jets} and N_{jets} requirements, and are not included in the combination. The fully hadronic analysis, which does not impose a requirement on N_{jets}, contributes some sensitivity. The main sen-

Table 3

Relative (%) systematic uncertainties in the signal efficiency of the $T\tilde{t}ttt$ model for the fully hadronic (0 ℓ), single-lepton (1 ℓ), opposite-sign dilepton (2 OS ℓ), same-sign dilepton (2 SS ℓ), and multilepton (≥ 3 ℓ) analyses. The given ranges reflect the variation across the different search regions and for different values of the SUSY particle masses.

<table>
<thead>
<tr>
<th>Source</th>
<th>0 ℓ</th>
<th>1 ℓ</th>
<th>2 OS ℓ</th>
<th>2 SS ℓ</th>
<th>≥ 3 ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>Lepton identification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and isolation efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parton distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet energy scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b-tagged jet identification</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial-state</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>25</td>
<td>15</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>
sensitivity comes from the same-sign and multilepton searches with either $N_{\text{jets}} = 1$ or 2.

For the $t\bar{t}WtW$ model, the LSP mass is set to 50 GeV. The resulting 95% CL upper limits on the product of the cross section and branching fraction in the $m_{\tilde{g}}$ versus $m_{\tilde{q}}$ plane are shown in Fig. 7, top. In the context of this model, bottom squark masses up to 570 GeV are excluded for LSP masses around 150–300 GeV. Fig. 7, bottom, shows the exclusion limits for the individual analyses assuming a fixed bottom squark mass of 600 GeV. The same-sign dilepton analysis provides the best sensitivity for chargino masses below 400 GeV, and the combination with the multilepton analysis leads to a 15% improvement in the cross section upper limit and even up to 35% improvement in the expected cross section upper limit, which represents an improvement in the expected bottom mass exclusion limits of around 50 GeV. For larger chargino masses, the fully hadronic analysis is more sensitive because jets from W boson decays become more energetic.

6. Summary

Five searches for supersymmetry with non-overlapping event samples are combined to obtain more stringent exclusion limits on models in which b jets and four W bosons are produced. The results are based on data corresponding to an integrated luminosity of 19.5 fb$^{-1}$ of pp collisions, collected with the CMS detector at $\sqrt{s} = 8$ TeV in 2012. Because of their large branching fractions, the single-lepton and fully hadronic analyses have the largest sensitivity for most of the range of the supersymmetric mass spectra, whereas the analyses with higher lepton multiplicities have higher sensitivity for models with more compressed mass spectra. The complementarity of the searches is exploited to provide comprehensive coverage across a wide region of parameter space. The combined searches yield 95% confidence level exclusions of up to 1280 and 570 GeV for the gluino and bottom-squark masses in the context of gluino and bottom-squark pair production, respectively. The increase in sensitivity that arises from the combination of the five analyses corresponds to an increase of about 50 GeV in the SUSY mass reach compared to the individual analyses.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS
and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation For Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 2010BT4XTM (Italy); Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund.

Appendix A. Additional plots for the opposite-sign dilepton search

This appendix presents additional results for the opposite-sign dilepton search. The results of this analysis alone for the T1tttt (Fig. 1 left) and T5tttt (Fig. 1 middle) models are shown, respectively, in Figs. A.1, top and bottom. In the context of the T1tttt model, gluinos with masses below around 980 GeV are excluded for LSP masses below 400 GeV. In the T5tttt model, gluinos with masses below 1000 GeV are probed for top squark masses around 650 GeV.

References

CMS Collaboration

V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

1 Institut für Hochenergiephysik der OeAW, Wien, Austria

2 Wissenschaftliche Mitarbeiterin

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussels, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Université de Mons, Mons, Belgium

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

a Universidade Estadual Paulista, São Paulo, Brazil
b Universidade Federal do ABC, São Paulo, Brazil

A. Aleksandrov, V. Genchev, R. Hadjiiska, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

University of Sofia, Sofia, Bulgaria

Institute of High Energy Physics, Beijing, China

C. Asawatangtrakuldee, Y. Ban, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, L. Zhang, W. Zou

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Universidad de Los Andes, Bogota, Colombia

N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

Z. Antunovic, M. Kovac

University of Split, Faculty of Science, Split, Croatia

V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

Institute Rudjer Boskovic, Zagreb, Croatia

University of Cyprus, Nicosia, Cyprus

M. Bodlak, M. Finger, M. Finger Jr.

Charles University, Prague, Czech Republic

Y. Assran, A. Ellithi Kamel, M.A. Mahmoud, A. Radi

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Eerola, M. Voutilainen

Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

J. Talvitie, T. Tuuva

Lappeenranta University of Technology, Lappeenranta, Finland

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3–CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

S. Gadrat

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS–IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Z. Tsamalaidze

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Athens, Athens, Greece

University of Ioannina, Ioannina, Greece

G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Wigner Research Centre for Physics, Budapest, Hungary

N. Beni, S. Czellar, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

University of Debrecen, Debrecen, Hungary

S.K. Swain

National Institute of Science Education and Research, Bhubaneswar, India

S.B. Beri, V. Bhatnagar, R. Gupta, U. Bhawandeep, A.K. Kalsi, M. Kaur, R. Kumar, M. Mittal, N. Nishu, J.B. Singh

Panjab University, Chandigarh, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

A. Abdulsalam, D. Dutta, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research, Mumbai, India

S. Sharma

Indian Institute of Science Education and Research (IISER), Pune, India
H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdibadi, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Felcini, M. Grunewald

University College Dublin, Dublin, Ireland

INFN Sezione di Bari, Bari, Italy

INFN Sezione di Bologna, Bologna, Italy

S. Albergo, G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Catania, Catania, Italy

G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, E. Gallo, S. Gonzi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano

INFN Sezione di Firenze, Firenze, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Laboratori Nazionali di Frascati, Frascati, Italy

R. Ferretti, F. Ferro, M. Lo Vetere, E. Robutti, S. Tosi

INFN Sezione di Genova, Genova, Italy

INFN Sezione di Milano-Bicocca, Milano, Italy

INFN Sezione di Napoli, Napoli, Italy

M. Felcini, M. Grunewald

University College Dublin, Dublin, Ireland

M. Gabusi, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, P. Vitulo

M. Biasini, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia, A. Spiezia

S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, G. Della Ricca, B. Gobbo, C. La Licata, M. Marone, A. Schizzi, T. Umer, A. Zanetti

M. Gabusi, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, P. Vitulo

M. Biasini, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia, A. Spiezia

S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, G. Della Ricca, B. Gobbo, C. La Licata, M. Marone, A. Schizzi, T. Umer, A. Zanetti

S. Chang, A. Kropivnitskaya, S.K. Nam

Rangwon National University, Chunchon, Republic of Korea

D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Kyungook National University, Daegu, Republic of Korea

T.J. Kim, M.S. Ryu

Chonbuk National University, Jeonju, Republic of Korea
J.Y. Kim, D.H. Moon, S. Song
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh
Korea University, Seoul, Republic of Korea

H.D. Yoo
Seoul National University, Seoul, Republic of Korea

M. Choi, J.H. Kim, I.C. Park, G. Ryu
University of Seoul, Seoul, Republic of Korea

Sungkyunkwan University, Suwon, Republic of Korea

A. Juodagalvis
Vilnius University, Vilnius, Lithuania

J.R. Komaragiri, M.A.B. Md Ali
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia
Universidad Iberoamericana, Mexico City, Mexico

I. Pedraza, H.A. Salazar Ibarguen
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

A. Morelos Pineda
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

D. Krofcheck
University of Auckland, Auckland, New Zealand

P.H. Butler, S. Reucroft
University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
E.A. Albayrak, E. Gülmez, M. Kaya, O. Kaya, T. Yetkin
Bogazici University, Istanbul, Turkey

K. Cankocak, F.I. Vardarlı
Istanbul Technical University, Istanbul, Turkey

L. Levchuk, P. Sorokin
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner
Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, USA

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio
The University of Alabama, Tuscaloosa, USA

A. Avetisyan, T. Bose, C. Fantasia, P. Lawson, C. Richardson, J. Rohlf, J. St. John, L. Sulak
Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

D. Winn

Fairfield University, Fairfield, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez
University of Nebraska-Lincoln, Lincoln, USA

J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

E. Brownson, S. Malik, H. Mendez, J.E. Ramirez Vargas

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

N. Parashar, J. Stupak

Purdue University Calumet, Hammond, USA

A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

Rice University, Houston, USA

University of Rochester, Rochester, USA

R. Ciesielski, L. Demortier, K. Goulianos, C. Mesropian

The Rockefeller University, New York, USA

K. Rose, S. Spanier, A. York
University of Tennessee, Knoxville, USA

O. Bouhali57, A. Castaneda Hernandez, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon58, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Rose, A. Safonov, I. Suarez, A. Tatarinov, K.A. Ulmer
Texas A&M University, College Station, USA

N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev
Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy
Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

1 Deceased.
2 Also at Vienna University of Technology, Vienna, Austria.
3 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
4 Also at Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
5 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
6 Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
7 Also at Universidade Estadual de Campinas, Campinas, Brazil.
8 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3–CNRS, Palaiseau, France.
9 Also at Joint Institute for Nuclear Research, Dubna, Russia.
10 Also at Suez University, Suez, Egypt.
11 Also at Cairo University, Cairo, Egypt.
12 Also at Fayoum University, El-Fayoum, Egypt.
13 Also at Ain Shams University, Cairo, Egypt.
14 Also at Sultan Qaboos University, Muscat, Oman.
15 Also at Université de Haute Alsace, Mulhouse, France.
16 Also at Brandenburg University of Technology, Cottbus, Germany.
17 Also at Institute of Nuclear ResearchATOMKI, Debrecen, Hungary.
18 Also at Eötvös Loránd University, Budapest, Hungary.
19 Also at University of Debrecen, Debrecen, Hungary.
20 Also at University of Visva-Bharati, Santiniketan, India.
21 Also at King Abdulaziz University, Jeddah, Saudi Arabia.
22 Also at University of Ruhuna, Matara, Sri Lanka.
23 Also at Isfahan University of Technology, Isfahan, Iran.
24 Also at University of Tehran, Department of Engineering Science, Tehran, Iran.
25 Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
26 Also at Università degli Studi di Siena, Siena, Italy.
27 Also at Centre National de la Recherche Scientifique (CNRS)-IN2P3, Paris, France.
28 Also at Purdue University, West Lafayette, USA.
Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.

Also at National Research Nuclear University; Moscow Engineering Physics Institute; (MEPhI), Moscow, Russia.

Also at California Institute of Technology, Pasadena, USA.

Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.

Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.

Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.

Also at University of Athens, Athens, Greece.

Also at Paul Scherrer Institut, Villigen, Switzerland.

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.

Also at Gaziosmanpasa University, Tokat, Turkey.

Also at Adiyaman University, Adiyaman, Turkey.

Also at Mersin University, Mersin, Turkey.

Also at Cag University, Mersin, Turkey.

Also at Piri Reis University, Istanbul, Turkey.

Also at Anadolu University, Eskisehir, Turkey.

Also at Ozyegin University, Istanbul, Turkey.

Also at Izmir Institute of Technology, Izmir, Turkey.

Also at Necmettin Erbakan University, Konya, Turkey.

Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.

Also at Marmara University, Istanbul, Turkey.

Also at Kafkas University, Kars, Turkey.

Also at Yıldız Technical University, Istanbul, Turkey.

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

Also at Argonne National Laboratory, Argonne, USA.

Also at Erzincan University, Erzincan, Turkey.

Also at Texas A&M University at Qatar, Doha, Qatar.

Also at Kyungpook National University, Daegu, Korea.