Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1418778111</td>
</tr>
<tr>
<td>Publisher</td>
<td>National Academy of Sciences (U.S.)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Dec 27 17:54:55 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/97145</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean

Jessica N. Fitzsimmons, Edward A. Boyle, and William J. Jenkins

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2008.

Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on recent abyssal dFe enrichments near hydrothermal vents, however, the leaky vent hypothesis [Toner BM, et al. (2012) Oceanography 25(1):209–212] argues that some hydrothermal Fe persists in the dissolved phase and contributes a significant flux of dFe to the global ocean. We show here the first, to our knowledge, dFe (<0.4 μm) measurements from the abyssal southeast and southwest Pacific Ocean, where dFe of 1.0–1.5 nmol/kg near 2,000 m depth (0.4–0.9 nmol/kg above typical deep-sea dFe concentrations) was determined to be hydrothermally derived based on its correlation with primordial 3He and dissolved Mn (dFe:He of 0.9–2.7 × 10–3). Given the known sites of hydrothermal venting in these regions, this dFe must have been transported thousands of kilometers away from its vent site to reach our sampling stations. Additionally, changes in the size partitioning of the hydrothermal dFe between soluble (<0.02 μm) and colloidal (0.02–0.4 μm) phases with increasing distance from the vents indicate that dFe transformations continue to occur far from the vent source. This study confirms that although the southern East Pacific Rise only leaks 0.02–1% of total Fe vented into the abyssal Pacific, this dFe persists thousands of kilometers away from the vent source with sufficient magnitude that hydrothermal vents can have far-field effects on global dFe distributions and inventories (>3% of global aerosol Fe input).

New concentrations of the micronutrient iron in seawater are known to limit primary production and nitrogen fixation in large regions of the global ocean (1, 2). As a result, the marine dissolved Fe (dFe) distribution indirectly influences global climate because it serves to modulate the metabolic success of phytoplankton that sequester carbon into the deep ocean, both in the modern era and during the geologic past (3). The marine dFe distribution is controlled by a balance of Fe sinks, namely, biological uptake, scavenging, and precipitation to the particulate phase, and Fe sources, largely arising from atmospheric dust deposition over the ocean and continental margin Fe fluxes (4).

Black smoker hydrothermal vents exude fluids with μM–mM Fe concentrations (5, 6), which can be as much as seven orders of magnitude greater in Fe concentration than typical deep ocean dFe of ~0.2–0.8 nM (7–10). Thus, only a small fraction of hydrothermal Fe would need to escape precipitation to significantly alter oceanic dFe distributions. For decades, however, hydrothermal Fe has been neglected as a major source of dFe to the open ocean because it was thought to precipitate quantitatively as particulate sulfides or oxides near the vent site upon mixing with seawater (11, 12), leaving no residual trace in the dissolved phase.

However, in recent years with the advent of high-resolution sampling and analysis of trace metals, abyssal hot spots of enhanced dFe concentration >1 nmol/kg have been detected near known vent sites in the Pacific (13–15), Atlantic (8, 16), Indian (17), Arctic (18), and Southern Oceans (10), clearly demonstrating that hydrothermal venting increases deep-sea dFe concentrations proximal to vent sites. This led to the development of the leaky vent hypothesis (19), which posits that some hydrothermal Fe may persist in the dissolved phase that contributes significantly to the deep ocean dFe inventory. Hydrothermal inputs to the dFe phase have even been modeled along fast-spreading (20) and slow-spreading (16) ridges. Assuming that these models’ parameterization of dFe scavenging is valid for hydrothermal dFe, this vent-derived dFe should persist thousands of kilometers from the vent source, even reaching the biologically active euphotic zone where dFe is a required micronutrient. This potentially significant effect of hydrothermal dFe on global Fe distributions would require that hydrothermal vents be considered an important source of dFe to the global ocean. However, no abyssal dFe measurements have sufficiently demonstrated that hydrothermal dFe does persist thousands of kilometers from its vent site to prove the leaky vent hypothesis or ground truth these models. This shortcoming results from both a weak understanding of the global distribution of hydrothermal vents and a dearth of trace metal sampling along distal hydrothermal plumes in the deep ocean.

Following the earlier description by Boyle and Jenkins (15), we address this problem by reporting the deep ocean dFe concentrations in the South Pacific Ocean, where no measurements of dFe concentration deeper than 1,000 m have been reported previously (21). In the South Pacific, the East Pacific Rise (EPR) supports extensive hydrothermal activity, and distal transport of dFe from both a weak understanding of the global distribution of hydrothermal vents and a dearth of trace metal sampling along distal hydrothermal plumes in the deep ocean.
hydrothermal dFe might be especially promoted there because Fe(II) lifetimes are near their longest in the open ocean due to low oxygen concentrations following microbial consumption along global overturning circulation (22). Moreover, the South Pacific Ocean is an important place to determine the influence of hydrothermal Fe injection on ocean productivity and climate because abyssal Southern Hemisphere water masses eventually upwell into the Fe-limited Southern Ocean. Thus, South Pacific dFe enrichments from hydrothermal venting have the potential to fuel increased productivity and carbon export in the Fe-limited Southern Ocean (20), where an understanding of the processes stimulating primary production is still an active area of research, both on modern and geologic timescales (3, 23–25).

Results and Discussion
Enhanced dFe concentrations (filtered with a pore size of 0.4 μm) of 1.0–1.5 nmol/kg were found centered at ~2,000 m depth at three stations in the South Pacific: KM0703 SPEEDO Station 19 (20°S, 170°W) in the western South Pacific and Melville BiG RAPA Stations 4 (23.5°S, 88.75°W) and 7 (26.25°S, 104°W) in the eastern South Pacific (station map in Fig. 1; Fe data in Fig. 2). These dFe concentrations are elevated above typical North Pacific (7, 13) and Atlantic (8, 9, 26) abyssal dFe concentrations of 0.3–0.6 nmol/kg and thus constitute a clear dFe anomaly. The 2,000-m dFe maxima at these sites are not coincident with apparent oxygen utilization (AOU) maxima at 500–1,000 m and thus cannot be caused by the remineralization of Fe from sinking organic material (Fig. 2). In fact, at all stations the “ferricline” (the relatively abrupt increase in dFe with depth) occurs at 400–500 m depth, corresponding exactly with the depths of rapidly increasing AOU and phosphate concentrations, such that dFe, AOU, and phosphate all reach relative maxima by 1,000 m. This 500–1,000 m ferricline also matches ferricline depths recorded in prior studies of the southeast (27) and equatorial Pacific (14) and is attributed to remineralization of sinking organic matter. Like phosphate and AOU, remineralization-derived dFe concentrations stabilize between 500 and 1,000 m at concentrations of 0.3 nmol/kg at Stations 7 and 19 and 0.6 nmol/kg at Station 4. As expected in a remineralization-dominated region, dFe and AOU have a linear relationship along these depths (Fig. 3, solid circles) that results in calculated seawater dFe:C ratios of 2.4–4.5 × 10^{-6}, falling within the 1.4–4.7 × 10^{-6} range observed in the North and equatorial Pacific (28).

Below these remineralization-dominated depths, dFe increases again to anomalously enriched values of ~1.0–1.5 nmol/kg at 2,000 m, most of which we suggest is contributed by the distal transport of hydrothermally vented Fe from the East Pacific Rise (EPR). We base this hypothesis on several lines of evidence. First, the enriched dFe data near 2,000 m (shown as crosses in Fig. 3) fall off the linear relationship of dFe:AOU, indicating that the high Fe concentrations are not produced by remineralization. If these dFe data are included in the Fe:C ratio estimates, not only do the linear correlations between dFe and AOU have much greater errors, but the resulting Fe:C ratios (designated as “Fe:C (all)” in Fig. 3) also increase to 5.1–9.2 × 10^{-6}, which is higher than has ever been recorded in the open ocean Pacific (28).

Additionally, the dFe profiles show striking similarities to profiles of excess 3He (Figs. 4 and 2), which is derived from primordial degassing at hydrothermally active sites (29). The 3He data were not measured from the same samples as dFe but were taken from archive Pacific Ocean datasets and interpolated quantitatively onto the locations and depths of dFe measurement (Methods and Fig. 1); we assume that the abyssal 3He distributions are smooth and stable over the timescales of these measurements. The coincident 3He and dFe maxima at 2,000 m point to a hydrothermal dFe source. A concomitant enrichment in dissolved manganese (dMn) at 2,000 m depth (Fig. 2) further corroborates the hypothesis of hydrothermal influence because Mn is also released from vents at high concentrations (5, 30) but otherwise has low deep ocean concentrations (31) (Mn data and Fe/Mn ratios are discussed further in SI Text). These correlated dFe, dMn, and 3He profiles (Fig. 2) confirm that hydrothermal venting enriches dFe by 0.4–0.9 nmol/kg above background concentrations in the abyssal South Pacific Ocean, which is even larger than the 0.1–0.5 nmol/kg enrichments estimated by the

Fig. 1. Map of study locations. (A) The southwest Pacific, where KM0703 SPEEDO Station 19 (20°S, 170°W) is indicated in red and the hydrothermally active Tonga–Kermadec Arc is indicated as a topographic high along 175°W. (B) The southeast Pacific, where Melville BiG RAPA Stations 7 (26.25°S, 104°W) and 4 (23.5°S, 88.75°W) are indicated in red and the hydrothermally active EPR is designated. Shown as squares are stations of historical 3He data that were used to interpolate the average 3He profiles onto this study’s sampling locations (historic 3He data from cchdo.ucsd.edu); the more proximal stations had a greater influence on the interpolated 3He profile than the distal stations. Shown as crosses are sites of confirmed or inferred hydrothermal venting deeper than 1,000 m (33). Directions of mean advection at 2,000 m (36) are indicated with black arrows.
recent model of hydrothermal Fe delivery to the deep ocean from fast-spreading ridges (20).

Elevated dFe concentrations near sites of hydrothermal venting have previously been observed in the abyssal Pacific (13, 14, 32). What makes the South Pacific dFe data of this study truly remarkable, however, is that they are sampled from locations hundreds to thousands of kilometers from the nearest known vent source, and they still demonstrate elevated dFe concentrations of $\sim 1.0 – 1.5$ nmol/kg. Although we cannot prove exactly which vents contributed to the observed distal dFe maxima, we hypothesize below and in SI Text which vent regions most likely sourced the dFe based on knowledge of the abyssal circulation (33), and we show that the dFe must have traveled extreme distances to reach the sampling locations, supporting the leaky vent hypothesis. Transit times (t) from the vent sites are also estimated, assuming a conservatively slow off-axis abyssal South Pacific current speed of 2 mm/s (34) (thus, calculated transit times are maximum times). This allows an assessment of whether dFe would be expected to have survived scavenging, given typical abyssal dFe residence times of 70–270 y (7, 35).

KM0703 SPEEDO Station 19 in the western South Pacific receives the majority of its hydrothermal influence from southern EPR hydrothermal vents ($\sim 15^\circ$S) that travel more than 6,000 km from the east ($t > 95$ y) at 2,000–3,500 m depth. Despite being only 600–700 km to the east of Lau Basin vent sources, abyssal circulation moves hydrothermal plumes from the Lau Basin westward and away from KM0703 Station 19, as determined by both steric height calculations (36) and 3He data.

Fig. 2. Oceanographic profiles showing a hydrothermal influence on dFe, 3He, and dMn at 2,000 m. Relevant profiles taken from (A) SPEEDO-KM0703 Station 19 in the southwest Pacific, (B) Melville BiG RAPA Station 7 in the southeast Pacific, and (C) Melville BiG RAPA Station 4 in the southeast Pacific. Note that dFe SDs on replicate analyses (tabulated in Table S1) were typically the size of the symbol and are thus not shown. The interpolated excess 3He data are shown as blue circles at the depths where dFe measurements were made, whereas the data used to generate those average values are shown as light blue crosses.
The ultimate sources of KM0703 Station 19 dFe and 3He maxima, then, must be the hydrothermal activity occurring near 15°S (38), which forms a well-established hydrothermal plume across the Pacific. Melville BiG RAPA Stations 4 and 7 in the southeast Pacific also have a clear southern EPR source. Despite the westward trajectory of southern EPR hydrothermal plumes near ~15°S (38), circulation studies using steric height estimations (39) have determined that south of 20°S, enhanced abyssal 3He as well as enriched Fe/Mn oxides in sediments to the east of the EPR in the Peru/Chile Basins are derived from eastward advection of EPR plumes (29). Thus, an eastward flowing EPR Fe source near 25°S would have to travel at least 800 km to influence Station 7 ($t = 12.5$ y) and over 2,400 km to influence Station 4 ($t = 38$ y), although we cannot confirm that hydrothermal dFe values at Stations 4 and 7 are derived from the same vent site. Thus, in the South Pacific, not only is hydrothermal Fe maintained in the dissolved phase locally at the vent site, but it is able to escape scavenging and be transported hundreds to several thousands of kilometers from the vent site, all while maintaining elevated dFe concentrations.

How is this Fe stabilization in the dissolved phase achieved? Two hypotheses have been proposed, and likely both contribute to hydrothermal dFe stabilization. First, pyrite nanoparticles between 4 and 200 nm have been shown to account for 5–25% of

![Fig. 3. dFe–AOU relationships for each of the three sampling locations: (Left) SPEEDO-KM0703 Station 19 in the southwest Pacific, (Middle) Melville BiG RAPA Station 7 in the southeast Pacific, and (Right) Melville BiG RAPA Station 4 in the southeast Pacific. The stations included in the Fe:C regression calculation are in open circles (~500–1,000 m depth), whereas the red circles show the deeper sample depths affected by hydrothermal Fe; these correspond to the equivalent symbols in Fig. 4. The Fe:C ratio is derived from the regression (open circles only), whereas the ratio indicated as “Fe:C (all)” includes all points (even those experiencing hydrothermal Fe inputs in red). Fe:C ratios are calculated using an AOU:C ratio of 1.6 (61) and are in units of μmol/kg.](image)

![Fig. 4. Distal hydrothermal dFe/3He. (A) dFe and 3He data and (B) the Type II regressions used to evolve dFe/3He ratios. Station locations are (Left) KM0703 Station 19 in the southwest Pacific, (Middle) BiG RAPA Station 7 in the southeast Pacific, and (Right) BiG RAPA Station 4 in the southeast Pacific. Data excluded from the dFe/3He regression calculation are shown in both A and B as open circles and include all data shallower than 1,000 m and the deepest samples of Stations 4 and 7, where dFe appears to have been scavenged, while 3He remains elevated.](image)
the dFe in global vent fluids (40, 41). These colloids would pass through the 0.4-μm filter used to operationally define dissolved Fe in this study, and due to their small size they would sink very slowly, providing a mechanism by which inorganic dFe might be carried away from vents in the dissolved fraction. Potentially a more ubiquitous pathway, recent studies have shown that organic ligands bind 4–8% of the dissolved Fe in hydrothermal plumes (42–44). This organic chelation protects the Fe from precipitation and stabilizes it in the dissolved phase as it is advected away from the vent site. Particulate Fe(H) (>0.4 μm) has also been shown to be protected from oxidation by organic compounds near hydrothermal vents (45), further emphasizing the role of organics in stabilizing hydrothermal Fe species. A recent study has even implicated the microbial iron pump near deep-sea hydrothermal vents in converting hydrothermal Fe into dissolved Fe–C complexes (46).

To further investigate the mechanism of hydrothermal dissolved Fe stabilization, we measured the size partitioning of dFe between soluble Fe (sFe, <0.02 μm) and colloidal Fe phases (0.02 μm < cFe < 0.4 μm; cFe = dFe − sFe). sFe is typically considered to be truly dissolved, whereas cFe is composed of particles so small that they remain suspended in solution and are circulated and collected along with the dissolved Fe pool; both inorganic and organically bound dFe can be present in both size fractions. The size partitioning results shown in Fig. 5 suggest that when hydrothermally derived dFe is high (Station 7), colloidal Fe is the dominant dFe fraction (cFe composes 76% of dFe), whereas a more diluted/scavenged dFe signal (Stations 19 and 4) has a more soluble Fe-rich dFe pool (50% soluble, 50% colloidal Fe). Thus, assuming a similarly partitioned Fe source among the three stations studied here, colloidal Fe appears to compose most of the dFe near the vent site (Station 7) and is transformed into a soluble Fe maximum (Station 4) as the dFe is scavenged away farther from the vents. These observations are consistent with the two published near-field Fe size partitioning studies, both of which demonstrated that near the site of hydrothermal venting colloidal Fe is the primary dFe phase (42, 47).

In the southeast Pacific, not only does percentage soluble Fe (sFe/dFe) increase with distance from the vents, but the absolute sFe concentration also increases with distance from the vent, rising from 0.35 nmol/kg at Melville BiG RAPA Station 7 to a sFe maximum of 0.51 nmol/kg at Station 4. This Station 4 sFe concentration and the 0.44 nmol/kg sFe at Station 19 are well above background abyssal sFe concentrations in the Pacific of 0.2–0.3 nmol/kg (48) and must have been transferred from the particulate (pFe) or colloidal fraction. This downstream sFe amplification leads us to conclude that interphase Fe transformations not only occur at the local site of hydrothermal venting but must continue hundreds to thousands of kilometers from the vent source. The nature of these pFe, sFe, and cFe transformations are unknown, but potential mechanisms that could explain the observed pattern include the chelation of Fe in inorganic colloids by truly soluble organic compounds over time/distance and/or the exchange between soluble and colloidal organically bound Fe complexes. These data support the recent theory that exchange processes between sFe and cFe commonly transform marine dFe toward a 50–50% sFe-cFe partitioning, provided sufficient time and an absence of external dFe sources (49, 50).

To evaluate the extent of scavenging of dFe along these trajectories, we compared our dFe distributions to excess 3He concentration, which is a conservative tracer of hydrothermal input to the abyssal ocean. Excess 3He values measured from nearby World Ocean Circulation Experiment stations were interpolated onto the depths and locations of the measured dFe data (see Fig. 1 for the locations of 3He profiles and Fig. 2 for the 3He interpolation), and dFe/3He ratios were determined (Fig. 4B). Only depths near the hydrothermally derived dFe maxima (Fig. 4, filled circles) were included in the regression calculation to avoid the influence of upper ocean biological processing and subplume Fe scavenging on the observed dFe. Resulting dFe/3He ratios ranged from a Fe/3He molar ratio of 0.9–2.7 × 10², which are much lower than the 2–10 × 10³ values found in high-temperature vent fluids (both at EPR 19°S and in the western Pacific vents (20)). Thus,
only 0.02–1.0% of total vented hydrothermal Fe survives transport hundreds to thousands of kilometers away in the dissolved phase. Even within the three far-field stations of this study, the dFe/He ratios decrease with increasing distance from the vent source, with the lowest ratio representing a distally persistent, scavenging-influenced hydrothermal signal.

It is worth noting that in the southwest Pacific the 3He and dFe profiles are nearly identical, whereas in the southeast Pacific the 3He remains elevated to the bottom, while dFe decreases to background concentrations below 2,500–3,000 m. An elevated 3He signal in the absence of Fe enrichment implies dFe scavenging. The depth range of this dFe-3He decoupling (3,000–4,000 m; Fig. 4A) is below the typical sill depth of the southern EPR and Chile Ridge (2,500–3,000 m), and thus we hypothesize that the 3He measured below those depths may be relic 3He that reached those depths after long circulation times during which the He was mixed conservatively but the hydrothermal dFe was scavenged [deep ocean residence time of dFe is 70–270 y (7, 35)].

The results of this study support a leaky vent model of dFe inputs to the abyssal South Pacific Ocean and also demonstrate transport of hydrothermal Fe in the dissolved phase up to 6,000 km from the vent source. If the dFe/He ratio of 0.99 ± 10 at each dFe concentration, then the total amount of Fe in the dissolved phase is ~7 × 1010 mol/y aerosol inputs of dissolved Fe into the surface ocean (21). Although this might seem to be a relatively insignificant marine Fe source compared with dust, we know that abyssal Southern Hemisphere waters eventually upwell in the Fe-limited Southern Ocean (20) where upper ocean productivity plays a significant role in global carbon export (52), allowing the relatively small percentage of open ocean dFe contributed by hydrothermal vents calculated here to play a disproportionately large role in global climate by its influence in the Fe-limited Southern Ocean. If this persistent hydrothermal dFe were to reach the surface and fertilize phytoplankton with an Fe:C ratio of 6 μmol Fe per mol carbon [typical of blooming diatoms in the Fe-limited South Pacific Ocean (53)], this dFe could support ~1.1014 mol/mol of new carbon, which is comparable in magnitude to the global production (4 × 1014 mol/mol) (54).

This estimate of ~7 × 1010 mol/y leaky dFe flux from hydrothermal vents, however, has both positive and negative uncertainties. dFe/He ratios vary globally as a function of bedrock geology and ridge spreading rate, and values along the slow-spreading Mid-Atlantic Ridge (16) have been found to be as much as 78× higher than those in the Pacific, indicating that the global estimate of hydrothermal Fe inputs to the dFe inventory calculated here is biased low. Assuming our lowest Fe/3He ratio of 0.99 ± 10 and an Atlantic ratio of 70 ± 10 μmol/mol, Saito et al. (16) calculated a slightly higher hydrothermal dFe flux of 9.9 × 1010 mol/y. In contrast, our carbon production estimate may be biased high since it assumes full biological availability of the hydrothermal dFe, which might not be true if the dFe was in an inorganic nanoparticulate form (55). However, potentially the largest problem with these flux estimates is the poor constraint of scavenging rates of hydrothermal dFe, which depend on both Fe speciation and deep water biogeochemical conditions. We have little information about which chemical features control the persistence of hydrothermal dFe, and we know even less about the relative rates of scavenging for hydrothermal dFe compared with typical abyssal dFe, so it is difficult to determine which dFe/He ratios are most applicable to these flux calculations. Common abyssal dFe is scavenged onto sinking particles over 70–270 y (7, 35), so scavenging of some portion of this persistent hydrothermal dFe is likely before upwelling to the surface ocean. Only more studies of dFe/3He distributions in the abyssal ocean can reveal whether a persistent ratio is ever reached upon plume dilution as well as the global distributions of this ratio.

In this study we showed that hydrothermally derived dFe is transported thousands of kilometers from the vent source in the South Pacific Ocean, in support of the leaky vent hypothesis as well as recent models implying a significant hydrothermal Fe source to the oceanic dFe budget. The mechanism of dFe stabilization is an active area of investigation, and size partitioning dFe data from this study further indicate that Fe transformations continue to occur at great distance from the vent source (namely, transformations of colloidal or particulate Fe near the vent site to soluble Fe distally). Future research must focus on distal hydrothermal dFe transformation pathways and especially scavenging rates to constrain the spatial and temporal extent of this abyssal dFe source. Additionally, global Fe and climate models that have neglected hydrothermal Fe inputs require its future inclusion.

Methods

The stations discussed in this paper were collected on two cruises sponsored by the Center for Microbial Oceanography: Research and Education (C-MORE) and were the only abyssal open ocean stations sampled on these cruises. Stations in the southwest Pacific in November 2007 on the RV Kilo Moana in the eastern Pacific were sampled on the RV Melville in November–December 2010 on the C-MORE BIG RAPA cruise. Trace metal-uncontaminated seawater was collected using the Moored in situ trace element sampler (MITESS) system (56) and filtered through 0.4-μm Nuclepore filters into Teflon or high-density polyethylene (HDPE) bottles by previously established methods (57) (Teflon vs. HDPE bottles indicated in Table S1). Soluble Fe samples were collected after filtration through a 0.2-μm Anodisc filter. On the Melville BIG RAPA cruise, seawater was collected using the MITESS/Vanes system and filtered through 0.4-μm Nuclepore filters into HDPE bottles (57). Soluble Fe samples were collected using a cross-flow ultrafiltration system in static mode using a 10-kDa nominal molecular weight cutoff regenerated cellulose filter (Pellicon XL, PLCGC; Millipore) after conditioning with 350 mL of filtered sample seawater. Detailed descriptions and an intercalibration between the two soluble Fe sample collection methods used in this study have been described previously (58).

Samples were analyzed in triplicate for their Fe concentration by isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) on a hexapole collision cell IsoProbe ICP-MS. The ID-ICP-MS method employs a 56Fe spike and batch preconcentration with nitroliricatae resin (59). Procedure blanks for the western Pacific stations were 0.20 nmol/kg but very stable to ±0.03 nmol/kg because they derived qualitatively from the constant amount of NTA Superflow resin precipitate Fe the Procedure blanks over the six analytical sessions for the eastern Pacific stations were much lower, ranging from 0.025 to 0.060 nmol/kg, and the detection limit (three times the SD of the procedure blanks for each analytical session) averaged 0.025 nmol/kg. Comprehensive laboratory analyses of SaFe D2 standard for dFe during the period of these analyses averaged 0.99 ± 0.03 nmol/kg (Bottle 242, ±1 SD, n = 8) and 0.92 ± 0.01 nmol/kg (Bottle 446, ±1 SD, n = 8), which agrees well with the current consensus value of 0.933 ± 0.023 nmol/kg (May 2013 consensus: www.geotraces.org/science/intercalibration).

Dissolved manganese (dMn) was extracted from filtered seawater by a modified version of an automated flow injection preconcentration method (60), followed by dMn concentration analysis using quadrupole ICP-MS and standard addition calibrations. The 12 mL filtered and acidified samples were pipetted into acid-cleaned 50-mL Corning centrifuge tubes. To generate standard curves throughout the run, 60, 120, and 180 μL of 100 mM Mn standard were added to SAFe surface water; this allowed for final Mn standard concentrations of 0.5, 1.0, and 1.5 mM, respectively. The pH of each sample was brought to 6.2 ± 0.2 with ammonium acetate buffer (pH 6.9) before being pumped through the extraction system. The extraction system was identical to that described by Milne et al. (60), except that the micro-column was filled with NovaPak PA1 resin (Elemental Scientific). After elution through the column in 1.0 mL of 1M 4m-distilled nitric acid, extracted Mn standards were analyzed by dMn by ICP-MS on a VGFisons PQ2+. The SaFe D1 standard reference seawater was found to have a dMn concentration of 0.352 ± 0.020 nmol/kg (n = 8, ±1 SD of replicate analyses), agreeing...
We thank Jong-Mi Lee and Rick Kayser for collecting stations; although all isopycnal surface was interpolated to the geographic location of the dFe stations (squares) in Fig. 1 were used in the interpolation, the more proximal stations had a greater influence on the resulting profile than the distal stations. Finally, the resultant profiles of dFe were interpolated to the sampling depths of the dFe profiles. The statistical uncertainties associated with this interpolation were small relative to the variance in the dFe. He relationships subsequently derived.

ACKNOWLEDGMENTS. We thank Jong-Mi Lee and Rick Kayser for collecting and filtering samples on the Big RAPA cruise, Dan Repeta, who served as chief scientist on the Melville Big RAPA cruise, and Jon Zehr and Joe Montoya, who served as chief scientists on the KM0703 SPEEDO cruise. We also thank Chris German, for comments on an early draft of this manuscript. Finally, we thank the officers and crew of the RV Kilo Moana and the RV Melville for their efforts on our behalf. This work was funded by a National Science Foundation (NSF) Graduate Research Fellowship (NSF Award DGE-0443200) and the Center for Microbial Oceanography: Research and Education (NSF-OIA Award EF-0424599). E.A.B.’s participation in the SPEEDO cruise was funded by a Gordon and Betty Moore Foundation grant to Jon Zehr.

5. He was computed using the reported the helium isotope ratio anomaly and He concentration, correcting for helium solubility isotope fractionation at equilibrium with air, and then each helium profile than the distal stations. Finally, the resultant profiles of dFe were interpolated to the sampling depths of the dFe profiles. The statistical uncertainties associated with this interpolation were small relative to the variance in the dFe.

He relationships subsequently derived.

ACKNOWLEDGMENTS. We thank Jong-Mi Lee and Rick Kayser for collecting and filtering samples on the Big RAPA cruise, Dan Repeta, who served as chief scientist on the Melville Big RAPA cruise, and Jon Zehr and Joe Montoya, who served as chief scientists on the KM0703 SPEEDO cruise. We also thank Chris German, for comments on an early draft of this manuscript. Finally, we thank the officers and crew of the RV Kilo Moana and the RV Melville for their efforts on our behalf. This work was funded by a National Science Foundation (NSF) Graduate Research Fellowship (NSF Award DGE-0443200) and the Center for Microbial Oceanography: Research and Education (NSF-OIA Award EF-0424599). E.A.B.’s participation in the SPEEDO cruise was funded by a Gordon and Betty Moore Foundation grant to Jon Zehr.

5. He was computed using the reported the helium isotope ratio anomaly and He concentration, correcting for helium solubility isotope fractionation at equilibrium with air, and then each helium profile than the distal stations. Finally, the resultant profiles of dFe were interpolated to the sampling depths of the dFe profiles. The statistical uncertainties associated with this interpolation were small relative to the variance in the dFe.

He relationships subsequently derived.

ACKNOWLEDGMENTS. We thank Jong-Mi Lee and Rick Kayser for collecting and filtering samples on the Big RAPA cruise, Dan Repeta, who served as chief scientist on the Melville Big RAPA cruise, and Jon Zehr and Joe Montoya, who served as chief scientists on the KM0703 SPEEDO cruise. We also thank Chris German, for comments on an early draft of this manuscript. Finally, we thank the officers and crew of the RV Kilo Moana and the RV Melville for their efforts on our behalf. This work was funded by a National Science Foundation (NSF) Graduate Research Fellowship (NSF Award DGE-0443200) and the Center for Microbial Oceanography: Research and Education (NSF-OIA Award EF-0424599). E.A.B.’s participation in the SPEEDO cruise was funded by a Gordon and Betty Moore Foundation grant to Jon Zehr.

5. He was computed using the reported the helium isotope ratio anomaly and He concentration, correcting for helium solubility isotope fractionation at equilibrium with air, and then each helium profile than the distal stations. Finally, the resultant profiles of dFe were interpolated to the sampling depths of the dFe profiles. The statistical uncertainties associated with this interpolation were small relative to the variance in the dFe.

He relationships subsequently derived.

ACKNOWLEDGMENTS. We thank Jong-Mi Lee and Rick Kayser for collecting and filtering samples on the Big RAPA cruise, Dan Repeta, who served as chief scientist on the Melville Big RAPA cruise, and Jon Zehr and Joe Montoya, who served as chief scientists on the KM0703 SPEEDO cruise. We also thank Chris German, for comments on an early draft of this manuscript. Finally, we thank the officers and crew of the RV Kilo Moana and the RV Melville for their efforts on our behalf. This work was funded by a National Science Foundation (NSF) Graduate Research Fellowship (NSF Award DGE-0443200) and the Center for Microbial Oceanography: Research and Education (NSF-OIA Award EF-0424599). E.A.B.’s participation in the SPEEDO cruise was funded by a Gordon and Betty Moore Foundation grant to Jon Zehr.

5. He was computed using the reported the helium isotope ratio anomaly and He concentration, correcting for helium solubility isotope fractionation at equilibrium with air, and then each helium profile than the distal stations. Finally, the resultant profiles of dFe were interpolated to the sampling depths of the dFe profiles. The statistical uncertainties associated with this interpolation were small relative to the variance in the dFe.

He relationships subsequently derived.

ACKNOWLEDGMENTS. We thank Jong-Mi Lee and Rick Kayser for collecting and filtering samples on the Big RAPA cruise, Dan Repeta, who served as chief scientist on the Melville Big RAPA cruise, and Jon Zehr and Joe Montoya, who served as chief scientists on the KM0703 SPEEDO cruise. We also thank Chris German, for comments on an early draft of this manuscript. Finally, we thank the officers and crew of the RV Kilo Moana and the RV Melville for their efforts on our behalf. This work was funded by a National Science Foundation (NSF) Graduate Research Fellowship (NSF Award DGE-0443200) and the Center for Microbial Oceanography: Research and Education (NSF-OIA Award EF-0424599). E.A.B.’s participation in the SPEEDO cruise was funded by a Gordon and Betty Moore Foundation grant to Jon Zehr.