Effective lifetimes exceeding 300 s in gettered p-type epitaxial kerfless silicon for photovoltaics

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Effective lifetimes exceeding 300 s in gettered p-type epitaxial kerfless silicon for photovoltaics
D. M. Powell, J. Hofstetter, D. P. Fenning, R. Hao, T. S. Ravi, and T. Buonassisi

Citation: Applied Physics Letters 103, 263902 (2013); doi: 10.1063/1.4844915
View online: http://dx.doi.org/10.1063/1.4844915
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/103/26?ver=pdfcov
Published by the AIP Publishing
Effective lifetimes exceeding 300 μs in gettered p-type epitaxial kerfless silicon for photovoltaics

D. M. Powell,a) J. Hofstetter,1 D. P. Fenning,1 R. Hao,2 T. S. Ravi,2 and T. Buonassisi1,b)

1Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Crystal Solar Inc., Santa Clara, California 95054, USA

(Received 1 September 2013; accepted 21 November 2013; published online 23 December 2013)

We evaluate defect concentrations and investigate the lifetime potential of p-type single-crystal kerfless silicon produced via epitaxy for photovoltaics. In gettered material, low interstitial iron concentrations (as low as $(3.2 \pm 2.2) \times 10^9 \text{cm}^{-3}$) suggest that minority-carrier lifetime is not limited by dissolved iron. An increase in gettered lifetime from <20 to $>300 \mu$s is observed after increasing growth cleanliness. This improvement coincides with reductions in the concentration of Mo, V, Nb, and Cr impurities, but negligible change in the low area-fraction (<5%) of dislocated regions. Device simulations indicate that the high bulk lifetime of this material could support solar cell efficiencies $>23\%$. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4844915]

Kerfless crystalline silicon (c-Si) represents a promising approach to reduce the cost of solar-cell manufacturing by producing wafers directly from gaseous or molten silicon, avoiding ingot crystallization and wire-sawing.1–6 Kerfless materials could reduce silicon consumption by $\sim 10 \times$ relative to ingot c-Si technology with high-efficiency thin devices.1,2 Kerfless materials could also streamline the manufacturing process, obviating the use of some consumables, reduce factory cost, and allow for potentially non-planar modules with thin-wafer production.4,6

While a variety of approaches are available for kerfless wafer production,1–4,6 we posit that attempts to commercialize kerfless wafers have historically been inhibited by low bulk minority-carrier lifetime (τ_{bulk}). Wafers from vertical ribbon growth processes2 contain average dislocation densities of 10^4–$>10^6 \text{cm}^{-2}$,7–9 which in combination with metal impurities including iron,2 limit minority-carrier lifetime and device performance (record efficiencies: 18.2% edge-defined film-fed growth, 17.8% string ribbon).9,10 Given the strong dependence of manufacturing,6,11 and installation12 costs on module efficiency, we stress the risk of bulk-defect-induced efficiency reductions to offset the cost savings of a kerfless process.

In this contribution, we evaluate the gettering response of kerfless epitaxial (epi) silicon and characterize defects in the material. Wafers grown from gas on porous silicon were introduced as the Canon ELTRAN process for integrated-circuit applications.3,13 Epitaxial silicon is grown atop a porous release bilayer at an average rate of $>4 \mu\text{m/min.}$3,14 with a low structural defect density of approximately $<1 \times 10^4 \text{cm}^{-2}$.15–17 The epi silicon is exfoliated, leaving a single-crystal kerfless c-Si wafer and reusable substrate (over 50 cycles demonstrated).3,14 Epi kerfless silicon may offer additional performance advantages, such as repeatable n- and p-type doping that is tunable through the wafer thickness.17

Solar cell efficiency results up to 20.6% have been reported with epi silicon; however, the maximum reported effective lifetimes (τ_{eff}) of approximately 150 μs, on n-type wafers,19 may limit device efficiency. Even for thin wafers, τ_{bulk} requirements increase for high-efficiency devices.20,21 For a planar high-efficiency device architecture with a 50 μm thick substrate, our PC1D simulation22 predicts $\tau_{\text{bulk}} > 340 \mu$s (diffusion length $\sim 20 \times$ wafer thickness)30 is required for maximum efficiency. Interdigitated back-contact architectures, as employed in commercial devices exceeding 24% efficiency, have more stringent requirements, $\tau_{\text{bulk}} > 5$ ms, for maximum efficiency.23

Herein, we demonstrate that kerfless epi silicon can achieve the τ_{bulk} required to support planar cell architectures with efficiencies $>23\%$. Wafers are produced in two generations (“Gen I” and “Gen II” henceforth) with growth system contamination control increasing by generation. After gettering with both standard and extended processes at an injection level (Δn) of 10^{15}cm^{-3}, τ_{eff} is $<20 \mu$s in Gen I material while τ_{eff} is improved to $>300 \mu$s in Gen II. We perform injection-dependent lifetime measurements to determine the concentration and performance-impact of interstitial iron and conclude that this defect is not the principal performance-limit in either generation of gettered material. The wafer surface area fraction of high ($>10^5 \text{cm}^{-2}$) dislocation density is comparable between generations (both cases <5%), suggesting that structural defects are not responsible for the observed lifetime improvement. Via bulk mass spectrometry, we evaluate the concentrations of metal impurities and hypothesize that reduced concentrations of slowly-diffusing impurities incorporated during growth may enable the lifetime improvement observed in the second generation of material.

As samples for this study, boron-doped p-type kerfless wafers are epitaxially grown to a thickness of 55–110 μm. Gen II material is produced in an upgraded growth system that has been developed for industrial production with improved impurity management in system components and greater automation. As-grown wafers are exfoliated and laser-cut into approximately $4 \times 4 \text{cm}^2$ samples. Bulk resistivity is measured with a four-point probe (Keithley 4200, Cascade Microtech probe), yielding 0.50 Ωcm (Gen I) and 1.79 Ωcm (Gen II), with doping concentrations24 and carrier diffusivities subsequently calculated.

a)Electronic mail: dnpowell@alum.mit.edu
b)Electronic mail: buonassisi@mit.edu

© 2013 AIP Publishing LLC

On: Tue, 21 Jan 2014 01:49:06
0033-6951/2013/103(26)/263902(5)/$30.00

03, 263902-1

103, 263902
First, we describe the processing and characterization performed on the material. Injection-dependent τ_{eff} is measured by quasi-steady-state photocurrent (QSSPC) and transient photoconductance decay (PCD) (Sinton WCT-120) with Al$_2$O$_3$ surface passivation. After chemical polishing and RCA cleaning, 20 nm of Al$_2$O$_3$ is deposited on both sides with thermal atomic-layer-deposition at 200°C (Cambridge NanoTech Savannah 200). Samples are then annealed in N$_2$ for 10 min at approximately 350°C.

To account for the amount of illumination that is absorbed by each sample during lifetime measurements, a thickness-dependent “optical constant” is calculated (0.59–0.65) using a PC1D model for the short-circuit current of a sample under illumination from a Sinton WCT-120 flash lamp. The model assumes a 20 nm passivation layer with an index of refraction of 1.63. To minimize noise in the data, 50 measurements are averaged for high lifetime (>100 µs) samples. Error bounds for lifetime are ±10%. Lifetime values are reported at an injection condition of $\Delta n = 10^{15}$ cm$^{-3}$ unless otherwise specified.

To estimate τ_{bulk}, the surface recombination velocity (SRV) of our Al$_2$O$_3$ passivation is evaluated by comparing a τ_{eff} of 1.43 ms measured with a double-side polished 253 µm 3 Ω cm float zone wafer after chemical polishing (to match the preparation of the kerfless samples), to the intrinsic τ_{bulk} per the model of Richter et al. The resulting SRV of 8.1 cm/s is applied at all injection-levels for the kerfless samples, although doping and surface differences may modify the result. We note, however, that interstitial iron concentration ([Fe$_{i}$]) measurements are insensitive to SRV if it is unaffected by illumination and sufficiently passivating.

Phosphorus-diffusion gettering in a POCl$_3$ tube furnace (Tystar Tytan 3800) is performed after as-grown passivation and RCA cleaning followed by a HF dip. Two-sided gettering is performed on free-standing wafers. Two processes are tested: A standard process with a 25 min 845°C/C14 is performed on free-standing wafers. Two processes are tested: a standard process with a 25 min 845°C/C14 is performed on free-standing wafers. Two processes are RCA cleaning followed by a HF dip. Two-sided gettering and RCA cleaning followed by a HF dip.

Lifetime values are reported at an injection condition of $\Delta n = 10^{15}$ cm$^{-3}$ unless otherwise specified.

To identify the performance impact of Fe$_{i}$, we compare τ_{bulk} against the maximum lifetime obtainable with a given [Fe$_{i}$]. Estimated τ_{bulk} calculated with our estimate of SRV, for champion samples after gettering and illumination are shown in Figure 2. Dashed lines show the estimated lifetime limits from Auger and radiative recombination and a simplified Shockley-Read-Hall recombination model at Fe$_{i}$ per the QSS-Model from Cuevas. The data suggests that lifetimes for the kerfless samples are quoted with Fe$_{i}$-B$_{11}$ pairs dissociated (illuminated). Five measurements are averaged to avoid re-dissociation of Fe$_{i}$-B$_{11}$ pairs during “dark” Gen II lifetime measurements for [Fe$_{i}$], although 50 measurements are averaged in Figure 1. Error bounds for [Fe$_{i}$] are calculated assuming ±1.5% uncertainty for repeated lifetime measurements and random propagation through the [Fe$_{i}$] calculation.

Next, we examine the impact of three potential lifetime-limiting defects in each generation of kerfless epi material. First, we evaluate the role of dissolved iron, a common performance-limiting defect in kerfless ribbon materials. In Gen I material after standard gettering, we measure a τ_{eff} of 12 ± 1.2 µs, an implied open circuit voltage (V_{OC}) at 1 sun of 647 mV, and an [Fe$_{i}$] of $(5.0 \pm 7.4) \times 10^{10}$ cm$^{-3}$ in a 52 µm thick sample. The LTA process results in an [Fe$_{i}$] of $(3.9 \pm 8.9) \times 10^{10}$ cm$^{-3}$, but yields a reduced τ_{eff} of 9 ± 0.9 µs and implied-V_{OC} of 628 mV in a 57 µm sample. The change in [Fe$_{i}$] between processes is inconclusive, as the observed change is within the calculated error. After standard gettering of Gen II material, τ_{eff} is 342 ± 34 µs, implied-V_{OC} is 710 mV, and [Fe$_{i}$] is $(2.5 \pm 0.23) \times 10^{10}$ cm$^{-3}$ with a 95 µm sample (Figure 1). With the LTA process, τ_{eff} is 313 ± 31 µs, implied-V_{OC} is 713 mV, and [Fe$_{i}$] is $(3.2 \pm 2.2) \times 10^{10}$ cm$^{-3}$ with an 80 µm sample. Although the standard process provides a higher τ_{eff} than the LTA, τ_{bulk} is nearly equivalent, arising from different surface lifetimes due to different sample thicknesses. We note that the Gen II LTA sample is not centered during QSSPC measurements to maximize τ_{eff}. When centered, the Gen II LTA τ_{eff} is 294 ± 29 µs.

To identify the performance impact of Fe$_{i}$, we compare τ_{bulk} against the maximum lifetime obtainable with a given [Fe$_{i}$]. Estimated τ_{bulk} calculated with our estimate of SRV, for champion samples after gettering and illumination are shown in Figure 2. Dashed lines show the estimated lifetime limits from Auger and radiative recombination and a simplified Shockley-Read-Hall recombination model at Fe$_{i}$ per the QSS-Model from Cuevas. The data suggests that
defects other than Feₐ limit bulk minority-carrier lifetimes in both Gen I and Gen II materials after gettering because τ_{bulk} values are well below the Feₐ-limited lifetime and τ_{bulk} is not improved with the LTA process.

The estimated τ_{bulk} is improved by approximately two orders of magnitude in Gen II relative to Gen I material. With similar [Feₐ], a reduction of another lifetime-limiting defect is suggested (Figure 2). Structural defects are one possibility and are believed to originate in single-crystal epi wafers from incomplete pore closure during porous silicon annealing. Stacking faults and dislocations are revealed in portions of Gen I (1 cm²) and Gen II (4 cm²) samples after gettering and analyzed with an optical microscope and counting software. The wafer surface area covered by regions of high (>10⁵ cm⁻²) dislocation density, a predictor of performance loss of both Gen I and Gen II materials are comparable (<5%), and thus deemed not to be the defect responsible for the dramatic increase in lifetime between generations.

Next, we consider the role of impurity species besides iron. Inductively coupled plasma mass spectrometry (ICP-MS, Fraunhofer Center for Silicon Photovoltaics) is performed to measure the concentrations of 20 impurity elements before gettering in approximately 1 g of Gen I and 2 g of Gen II material (1 and 2 ICP-MS samples respectively). Gen II material exhibits reduced concentrations of deleterious impurities that are slowly-diffusing and may prove difficult to getter; Molybdenum (82% reduction to detection limit), Vanadium (59% reduction), and Niobium (40% reduction). Chromium also decreased in Gen II material (91% reduction); however, the difference in post-gettering performance between generations leads us to suspect the aforementioned species. No change above the error of the measurement was detected for the other impurities tested (Mg, Al, P, Ti, Mn, Fe, Ni, Co, Cu, Zn, Zr, Ag, Sn, W, and Au). The evidence suggests that a reduction of slowly-diffusing impurities in the as-grown material may be critical for the observed lifetime improvement in Gen II material.

In light of this analysis, we comment on the ultimate lifetime potential of epi material in comparison to industry-standard ingot multicrystalline silicon (mc-Si). The area fraction of high (>10⁵ cm⁻²) dislocation density is low (<5%), suggesting that dislocations may be less of a lifetime limitation for epi than even small-grained mc-Si. We note that mc-Si wafers obtain similarly low [Feₐ] ≤10¹⁰ cm⁻³ directly after low-temperature annealing, yet average effective lifetimes are shown to be limited to 200 μs. In addition, the absence of grain boundaries in epi material eliminates a potential source of open-circuit voltage loss. Future work will elucidate the performance impact of structural defects in kerfless epi. However, we hypothesize that the control of impurities, especially through substrate re-uses, may be the crucial determinant of lifetime for this material.

Finally, we estimate the performance potential of epi-based solar cells using a PC1D simulation for a high-efficiency device architecture (Table I), and explore the optimal epi wafer thickness. The device includes a lightly-doped 120 Ω/sq emitter with low series and contact resistance, and a locally contacted and passivated rear. PC1D was used to simulate this 2-D architecture with cell-area-normalized values for rear contact resistance and reflectance, as is done by default in PC1D for external reflectivity.

With a 50 μm wafer, the simulation indicates that the excess electron density at the maximum-power point is approximately 1.4 × 10¹⁵ cm⁻³ in the bulk of the device with high lifetime material. The champion standard gettering Gen II sample is 357 ± 36 μs after illumination at Δn = 1.4 × 10¹⁵ cm⁻³, resulting in an estimated τ_{bulk} of 924 μs assuming a SRV of 8.1 cm/s (Figure 1). This lifetime in the bulk of the device achieves an estimated efficiency of 22.4% with a 50 μm wafer and >23% with increased wafer thicknesses (Figure 3(a)). Lower-performance material, τ_{bulk} = 50 μs, provides reduced cell performance and optimum thickness relative to the Gen II material due to diffusion length limitations.

A cost-performance model explores trade-offs between efficiency, wafer thickness, and manufacturing yield for kerfless silicon (Figure 3(b)). Without input from our industrial collaborators, we have estimated an optimum wafer thickness for cost of 50–60 μm for Gen II material. Yields for the separate wafer, cell, and module manufacturing steps are ϕ = 54.47 × 10⁶½ based on free standing wafers during cell processing, and a wafer production throughput multiplier is \(\lambda = 36.38 \times t^{0.917} \), with \(t \) as the

TABLE I. Solar cell simulation input parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front external reflectivity [%]</td>
<td>5.0</td>
<td>58</td>
</tr>
<tr>
<td>Front/rear internal reflectance [%]</td>
<td>92.5/95.0</td>
<td>59 and 60</td>
</tr>
<tr>
<td>Series/shunt resistance [Ω/cm²]</td>
<td>0.3/10000</td>
<td>61–63</td>
</tr>
<tr>
<td>Front/rear contact resistance [Ω/cm²]</td>
<td>0.027/0.027</td>
<td>64 and 65</td>
</tr>
<tr>
<td>Effective front/rear SRV [cm/s]</td>
<td>2000/30</td>
<td>20, 28, 29, 60</td>
</tr>
<tr>
<td>Wafer doping [cm⁻³]</td>
<td>(p), 3 × 10¹⁶</td>
<td></td>
</tr>
<tr>
<td>Peak emitter doping [cm⁻³]</td>
<td>(n), 5 × 10¹⁹</td>
<td>65–67</td>
</tr>
<tr>
<td>Emitter sheet resistance [Ω/sq]</td>
<td>120.2</td>
<td>63, 65, 66</td>
</tr>
</tbody>
</table>
wafer thickness in microns. We observe a cost minimum from the trade-off of efficiency and yield, which both favor thicker wafers, and silicon usage and throughput, which both favor thinner wafers. While precise values will vary depending on process details, this calculation highlights the need for high-yield manufacturing processes, good light trapping, and good surface passivation to minimize thickness and sufficient t_{bulk} to maximize efficiency.

In conclusion, effective minority-carrier lifetimes $>300 \mu s$ at $\Delta n = 10^{15}$ cm$^{-3}$ are demonstrated in epitaxially grown kerfless silicon after gettering. Fe$_i$ concentrations of $(2.5 \pm 0.23) \times 10^{10}$ cm$^{-3}$ are measured with a standard gettering process and $(3.2 \pm 2.2) \times 10^6$ cm$^{-3}$ after a low-temperature anneal in the second generation of material. Our analysis suggests that lifetime in both generations of material is not limited by interstitial iron after gettering. We observed a low area fraction (<5%) of high ($>10^5$ cm$^{-2}$) structural-defect density in both generations of material. We hypothesize that reductions in the concentration of slowly-diffusing metal impurities may enable the approximately two orders of magnitude lifetime improvement observed in Gen II material. Our cost-performance model estimates that the achieved lifetimes could support cell efficiencies >23% and suggests an optimum thickness regime of 50–60 μm for cost. We note that as successive generations of PV silicon materials become “cleaner,” there is a need to develop and employ defect characterization tools that can determine the identities and impacts of low concentrations of performance-limiting impurities.

We thank M. Ann Jensen for valuable feedback on the manuscript and PC1D simulations, R. Chakraborty, A. E. Morishige, S. Castellanos, D. Berney Needleman, M. M. Kivambe, J. T. Sullivan, K. Hartman, V. Steinmann, and F. Frankel (MIT); Z. Shu (University of Delaware); K. V. Ravi (Ravi Consulting); J. S. Swirhun (Sinton Instruments) for lifetime testing support; J. D. Murphy (University of Warwick) for helpful feedback on impurity-boron dissociation; H. Savin (Aalto University) and W. M. M. Kessels (Eindhoven University of Technology) for helpful ALD discussions; D. Macdonald (Australian National University) for insight and providing the [Fe$_i$] calculation spreadsheet; J. E. Cotter (Arizona State University) for feedback on injection-level estimation and implied-V_{OC} reporting; and Gregory Wilson (National Renewable Energy Laboratory) for scientific discussions. This work was supported by the U.S. Department of Energy (DOE) under Contract No. DE-EE0005314, and by the National Science Foundation (NSF) and the DOE under NSF CA No. EEC-1041895. D.M.P. acknowledges the support of the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program; J.H. acknowledges the support of the Alexander von Humboldt foundation through a Feodor Lynen postdoctoral fellowship. This work was performed in part at the Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network, which is supported by the NSF under No. ECS-0335765.

31. Semiconductor equipment and materials international, SEMI AU02-10, 2012.

49. D. Macdonald provided calculation spreadsheet.

