Measurements of the Nuclear Modification Factor for Jets in Pb + Pb Collisions at $s_{NN} = 2.76$ TeV with the ATLAS Detector

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published	http://dx.doi.org/10.1103/PhysRevLett.114.072302
Publisher	American Physical Society
Version	Final published version
Accessed	Mon Oct 15 13:11:24 EDT 2018
Citable Link	http://hdl.handle.net/1721.1/97388
Terms of Use	Creative Commons Attribution 3.0 Unported Licence
Detailed Terms	http://creativecommons.org/licenses/by/3.0/
Measurements of the Nuclear Modification Factor for Jets in Pb + Pb Collisions at √sNN = 2.76 TeV with the ATLAS Detector

G. Aad et al. *
(ATLAS Collaboration)

(Received 10 November 2014; published 20 February 2015)

Measurements of inclusive jet production are performed in pp and Pb + Pb collisions at √sNN = 2.76 TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 and 0.14 nb⁻¹, respectively. The jets are identified with the anti-k_{T} algorithm with R = 0.4, and the spectra are measured over the kinematic range of jet transverse momentum 32 < p_T < 500 GeV and absolute rapidity |y| < 2.1 and as a function of collision centrality. The nuclear modification factor R_{AA} is evaluated, and jets are found to be suppressed by approximately a factor of 2 in central collisions compared to pp collisions. The R_{AA} shows a slight increase with p_{T} and no significant variation with rapidity.

DOI: 10.1103/PhysRevLett.114.072302 PACS numbers: 25.75.–q

Relativistic heavy-ion collisions at the LHC produce a medium of strongly interacting nuclear matter composed of deconfined color charges [1–4]. Hard scattering processes occurring in these collisions produce high transverse momentum (p_T) partons that propagate through the medium and lose energy, resulting in the phenomenon of “jet quenching.” The partonic energy loss can be probed through measurements of the suppression of jet production rates. The effects of energy loss have been observed through the suppression of single hadrons [5–11] and jets constructed from charged particles [12]. ATLAS has previously reported measurements with fully reconstructed jets [13] by comparing the jet yields in central collisions, where the colliding nuclei have a large overlap, to the yields in peripheral collisions. Those results indicate that the rate of jets in Pb + Pb collisions is suppressed by a factor of approximately 2 in central collisions relative to peripheral collisions. A more sensitive probe of energy loss is provided by measurements of the suppression relative to pp collisions, where there are no quenching effects.

The magnitude of the suppression is expected to depend on both the p_T dependence of the energy loss as well as the shape of the initial jet production p_T spectrum [1]. This spectrum becomes increasingly steep at larger values of the jet rapidity [14]. Thus, measurements of jet suppression for jets in different intervals of rapidity provide complementary information about the energy loss. Additionally, parton showers initiated by quarks may be quenched differently than gluons [15], and the fraction of quark-initiated jets is expected to increase with rapidity.

Hard scattering rates are enhanced in more central collisions; the larger overlap results in a higher integrated luminosity of partons able to participate in hard scattering processes, and these hard scattering rates are expected to be proportional to the nuclear overlap function T_{AA}. The suppression is quantified by the nuclear modification factor

\[R_{AA} = \frac{1}{N_{jet}} \frac{d^{2}N_{jet}}{dp_{T}dy} \bigg|_{\text{central}} \bigg/ \langle T_{AA} \rangle \frac{d^{2}\sigma_{pp}}{dp_{T}dy} \bigg|_{\text{NN}}. \]

This Letter presents measurements of the inclusive jet R_{AA} in Pb + Pb collisions at a nucleon-nucleon center-of-mass energy of √sNN = 2.76 TeV. It utilizes Pb + Pb data collected during 2011 corresponding to an integrated luminosity of 0.14 nb⁻¹ as well as data from pp collisions recorded during 2013 at the same center-of-mass energy corresponding to 4.0 pb⁻¹. Results are presented for jets reconstructed in the calorimeter with the anti-k_{T} jet-finding algorithm [16] with jet radius parameter R = 0.4. The contribution of the underlying event (UE) to each jet, assumed to be uncorrelated and additive, was subtracted on a per-jet basis.

The measurements presented here were performed with the ATLAS calorimeter, inner detector, trigger, and data acquisition systems [17,18]. The calorimeter system consists of a liquid argon (LAr) electromagnetic calorimeter (|η| < 3.2), a steel-scintillator sampling hadronic calorimeter (|η| < 1.7), a LAr hadronic calorimeter (1.5 < |η| < 3.2), and a forward calorimeter (FCal) (3.2 < |η| < 4.9). Charged-particle tracks were measured over the range |η| < 2.5 using the inner detector [19], which is composed of silicon pixel detectors in the innermost layers, followed by silicon microstrip detectors and a straw-tube transition-radiation tracker (|η| < 2.0), all immersed in a 2 T axial magnetic field. The zero-degree calorimeters

* Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.
(ZDCs) are located symmetrically at $z = \pm 140$ m and cover $|\eta| > 8.3$. A ZDC coincidence trigger was defined by requiring a signal consistent with one or more neutrons in each of the calorimeters.

The pp events used in the analysis were selected using the ATLAS jet trigger [20] with multiple values of the trigger p_T thresholds. During pp data taking, the average number of pp interactions per bunch crossing (pile-up) varied from 0.3 to 0.6. The pp events were required to contain at least one primary vertex, reconstructed from at least two tracks, and jets originating from all such vertices were included in the cross section measurement.

Data from Pb + Pb collisions were recorded using either a minimum-bias trigger or a jet trigger. The minimum-bias trigger, formed from the logical OR of triggers based on a ZDC coincidence or total transverse energy in the event, is fully efficient in the range of centralities presented here. The jet trigger identified jets by applying the anti-k_t algorithm with $R = 0.2$ with a UE subtraction procedure similar to that applied in the off-line analysis. The jet trigger selected events having at least one jet with transverse energy $E_T > 20$ GeV at the electromagnetic scale [21]. Event selection and background rejection criteria were applied [22] yielding 53×10^6 and 14×10^6 events in the minimum-bias and jet-triggered samples, respectively.

The centrality of Pb + Pb collisions was characterized by ΣE_T^{FCal}, the total transverse energy measured in the FCal [22]. The centrality intervals were defined according to successive percentiles of the ΣE_T^{FCal} distribution ordered from the most central (highest ΣE_T^{FCal}) to the most peripheral collisions. A Glauber model analysis of the ΣE_T^{FCal} distribution was used to evaluate the $\langle T_{AA} \rangle$ and the number of nucleons participating in the collision, $\langle N_{\text{part}} \rangle$, in each centrality interval [22–24]. The centrality intervals used in this measurement are indicated in Table I along with the values of $\langle T_{AA} \rangle$ and $\langle N_{\text{part}} \rangle$ for those intervals.

<table>
<thead>
<tr>
<th>Centrality (%)</th>
<th>$\langle T_{AA} \rangle$ (mb$^{-1}$)</th>
<th>$\langle N_{\text{part}} \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10</td>
<td>23.45 ± 0.37</td>
<td>356.2 ± 2.5</td>
</tr>
<tr>
<td>10–20</td>
<td>14.43 ± 0.30</td>
<td>260.7 ± 3.6</td>
</tr>
<tr>
<td>20–30</td>
<td>8.73 ± 0.26</td>
<td>186.4 ± 3.9</td>
</tr>
<tr>
<td>30–40</td>
<td>5.04 ± 0.22</td>
<td>129.3 ± 3.8</td>
</tr>
<tr>
<td>40–50</td>
<td>2.7 ± 0.17</td>
<td>85.6 ± 3.6</td>
</tr>
<tr>
<td>50–60</td>
<td>1.33 ± 0.12</td>
<td>53.0 ± 3.1</td>
</tr>
<tr>
<td>60–70</td>
<td>0.59 ± 0.07</td>
<td>30.1 ± 2.5</td>
</tr>
<tr>
<td>70–80</td>
<td>0.24 ± 0.04</td>
<td>15.1 ± 1.7</td>
</tr>
<tr>
<td>0–1</td>
<td>29.04 ± 0.46</td>
<td>400.1 ± 1.3</td>
</tr>
<tr>
<td>1–5</td>
<td>25.62 ± 0.40</td>
<td>377.6 ± 2.2</td>
</tr>
<tr>
<td>5–10</td>
<td>20.59 ± 0.34</td>
<td>330.3 ± 3.0</td>
</tr>
<tr>
<td>60–80</td>
<td>0.41 ± 0.05</td>
<td>22.6 ± 2.1</td>
</tr>
</tbody>
</table>

The jet reconstruction and UE subtraction procedures described in Ref. [13] were applied to both pp and Pb + Pb data. The anti-k_t algorithm was applied to logical towers with segmentation $\Delta p_T \times \Delta \phi = 0.1 \times 0.1$ formed from energy deposits in the calorimeter. An iterative procedure was used to obtain an event-by-event estimate of the average η-dependent UE energy density while excluding actual jets from that estimate. The jet kinematics were obtained by subtracting the UE energy from the towers within the jet. Following reconstruction, the jet energies were corrected for the calorimeter energy response using the procedure described in Ref. [25].

In addition to the calorimetric jets, “track jets” were reconstructed by applying the anti-k_t algorithm with $R = 0.4$ to charged particles with $p_T > 4$ GeV. In the Pb + Pb analysis, the track jets were used in conjunction with electromagnetic clusters to exclude the contribution to the jet yield from UE fluctuations of soft particles incorrectly interpreted as calorimetric jets [13]. The jets were required to be within $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ of a track jet with $p_T > 7$ GeV or an electromagnetic cluster with $p_T > 8$ GeV.

The performance of the jet reconstruction in Pb + Pb collisions was evaluated using the GEANT4-simulated detector response [26,27] in a Monte Carlo (MC) sample of pp hard scattering events at $\sqrt{s} = 2.76$ TeV. The events were produced with the PYTHIA event generator [28] version 6.423 with parameters chosen according to the so-called AUET2B tune [29] and overlaid with minimum-bias Pb + Pb collisions recorded by ATLAS during the same data-taking period as the data used in the analysis. Thus, the MC sample contains a UE contribution that is identical in all respects to the data. A separate PYTHIA sample was produced for the analysis of the pp data with the detector simulation adjusted to match the conditions during the pp data taking including pile-up. Additional MC samples were used in evaluations of the jet energy scale (JES) uncertainty. The PYQUEN generator [30], which applies medium-induced energy loss to parton showers produced by PYTHIA, was used to generate a sample of jets with fragmentation functions that differ from those in the nominal PYTHIA sample in a fashion consistent with measurements of fragmentation functions in quenched jets [31–33].

The jet spectra, defined to be the average differential yield in a given p_T bin, were constructed from a mixture of minimum-bias (Pb + Pb only) and jet-triggered samples. In each p_T bin, the trigger with the most events and that was more than 99% efficient for that bin was used. The jet spectra were unfolded [13] to account for the p_T bin migration induced by the jet energy resolution (JER) using a method based on the singular value decomposition [34]. The effects of the JER, which receives contributions from both the detector response and UE fluctuations, were evaluated by applying the same procedure to the MC samples as was applied to the data and by matching the
resulting reconstructed jets and “generator jets” that are reconstructed from final-state PYTHIA hadrons. For each pair, the \(p_T \) of the generator and reconstructed jets were used to populate a detector response matrix. Separate response matrices were obtained for each centrality interval.

The response matrix is generally diagonal, indicating that jets are likely to be reconstructed in the same \(p_T \) bin as the generator jets. The average \(p_T \) difference between reconstructed and generator jets is \(\leq 1\% \), independent of centrality. However, the response distributions broaden at low \(p_T \) as the relative JER increases due to the larger UE fluctuations. At \(p_T = 200 \text{ GeV} \), the relative JER is approximately 10\% and is independent of centrality. However, at \(p_T = 40 \text{ GeV} \), it varies from 20\% to 40\% between peripheral and central collisions. The unfolding is most sensitive in this region, and the range of jet \(p_T \) used in the unfolding was chosen separately in each centrality interval to be as low as possible while maintaining stability in the unfolding procedure. The statistical covariance of each unfolded spectrum was evaluated using the pseudoexperiment procedure described in Ref. [13]. Systematic uncertainties in the unfolding procedure were evaluated by varying the choice of regularization parameter used in the unfolding.

The effects of any inefficiency in the jet reconstruction, including inefficiency introduced by the UE jet rejection requirement, were corrected for by a multiplicative correction applied after unfolding. This factor, obtained from the MC sample, is unity for \(p_T > 100 \text{ GeV} \) and reaches a maximum of 1.3 in the most central collisions at the lowest \(p_T \). For values larger than unity, an uncertainty of 0.5\% was assigned to this correction based on the comparison of the jet reconstruction efficiency with respect to track jets between the data and MC sample.

Uncertainties on the JER and JES have been evaluated using data-driven techniques in \(pp \) collisions [21,35]. A systematic uncertainty of 1.5\% on the JES was assigned to account for potential differences, not described by the MC simulations, between the two data-taking periods. This value was obtained by comparing the calorimetric response with respect to the \(p_T \) of matched track jets in \(pp \) and peripheral \(\text{Pb} + \text{Pb} \) collisions.

A centrality-dependent uncertainty on the JES due to differences between \(pp \) and \(\text{Pb} + \text{Pb} \) in the partonic composition of jets and in their fragmentation was estimated with the PYQUREN sample. The jet response in that sample was found to differ by up to 1\% from that in the PYTHIA sample. The magnitude of this variation was checked with a similar study using track jets to compare central and peripheral \(\text{Pb} + \text{Pb} \) data. The uncertainty was taken to be 1\% in the most central collisions with the uncertainty decreasing in more peripheral collisions.

The impacts of the JER and JES uncertainties on the spectra were assessed by constructing new response matrices with a systematically varied relationship between the reconstructed and generator jet kinematics and repeating the unfolding. Correlations in the JES and JER uncertainties across the \(pp \) and \(\text{Pb} + \text{Pb} \) samples were accounted for in the propagation of the uncertainties to the \(R_{AA} \).

Uncertainties on the \(T_{AA} \) and integrated luminosity affect the overall normalization of the yields and thus are independent of jet \(p_T \) and rapidity. The uncertainties on \(\langle T_{AA} \rangle \) vary between 1\% and 10\% in the most central and peripheral collisions, respectively, with the full set of values given in Table I. The uncertainty on the integrated luminosity is estimated to be 3.1\%. It is determined, following the same methodology as that detailed in Ref. [36], from a calibration of the luminosity scale derived from beam-separation scans performed during the 2.76 TeV operation of the LHC in 2013.

The total systematic uncertainty on the \(pp \) cross sections is dominated by the JES uncertainty, which is as large as 15\%. For the \(\text{Pb} + \text{Pb} \) jet yields, this uncertainty is also dominant and in the most central collisions is 22\%. In the \(R_{AA} \), much of this uncertainty cancels. However, the dominant contribution is due to the JES in most centrality and rapidity intervals and is typically 10\%.

Uncertainties due to the unfolding are generally a few percent, but for some \(p_T \) values near the upper and lower limits included in the measurement the contributions from this source are as large as 15\%. The contributions of the JER to the total uncertainty on \(R_{AA} \) are less than 3\% except in the most central collisions at low \(p_T \), where they are as large as 10\%. In the most peripheral bins, the \(\langle T_{AA} \rangle \)
The per-event jet yield in Pb + Pb collisions, multiplied by $1/(T_{AA})$, as a function of p_T (scaled by successive powers of 10^5). The upper panel shows the 0–2.1 rapidity range in different centrality intervals. The lower panel shows the 0%–10% centrality interval in different rapidity ranges. The statistical and systematic uncertainties are indicated by the error bars (too small to be seen on this scale) and shaded bands, respectively. The points and horizontal error bars indicate the p_T bin center and width, respectively. The solid and dashed lines represent the pp jet cross section for the same rapidity interval scaled by the same factor.

uncertainties that affect the overall normalization are the dominant contribution.

The pp differential jet cross sections are shown in Fig. 1 for the following absolute rapidity ranges: 0–0.3, 0.3–0.8, 0.8–1.2, 1.2–2.1, and 0–2.1. These results are consistent with a previous measurement with fewer events [37]. The differential per-event jet yield in Pb + Pb collisions, multiplied by $1/(T_{AA})$, is shown in Fig. 2, in selected rapidity and centrality bins in the lower and upper panels, respectively. The dashed lines represent the pp jet cross sections for that same rapidity bin; the jet suppression is evidenced by the fact that the jet yields fall below these lines.

The jet R_{AA} as a function of p_T is shown in Fig. 3 for different ranges in collision centrality and jet rapidity. The R_{AA} is observed to increase weakly with p_T, except in the most peripheral collisions. In the 0%–10% and $|y| < 2.1$ centrality and rapidity intervals, which have the smallest statistical uncertainty, the R_{AA} is 0.47 at $p_T \sim 55$ GeV and rises to 0.56 at $p_T \sim 350$ GeV. These distributions were fit, accounting for the pointwise correlations in the uncertainties, to the functional form $a \ln(p_T) + b$. The slope parameter was found to be significantly above zero in all but the most peripheral collisions. The magnitude and weak increase of the R_{AA} in central collisions are described quantitatively by recent theoretical calculations [38,39]. The results of this measurement are consistent with

FIG. 2 (color online). The per-event jet yield in Pb + Pb collisions, multiplied by $1/(T_{AA})$, as a function of p_T (scaled by successive powers of 10^5). The upper panel shows the 0–2.1 rapidity range in different centrality intervals. The lower panel shows the 0%–10% centrality interval in different rapidity ranges. The statistical and systematic uncertainties are indicated by the error bars (too small to be seen on this scale) and shaded bands, respectively. The points and horizontal error bars indicate the p_T bin center and width, respectively. The solid and dashed lines represent the pp jet cross section for the same rapidity interval scaled by the same factor.

FIG. 3 (color online). Jet R_{AA} as a function of p_T in different centrality bins with each panel showing a different range in $|y|$. The fractional luminosity and $\langle T_{AA} \rangle$ uncertainties are indicated separately as shaded boxes centered at one. The boxes, bands, and error bars indicate uncorrelated systematic, correlated systematic, and statistical uncertainties, respectively.

FIG. 4 (color online). The R_{AA} for jets with $80 < p_T < 100$ GeV as a function of $|y|$ for different centrality bins (top) and as a function of $\langle N_{part} \rangle$ for the $|y| < 2.1$ range (bottom). The fractional luminosity and $\langle T_{AA} \rangle$ uncertainties are indicated separately as shaded boxes centered at one. The boxes, bands, and error bars indicate uncorrelated systematic, correlated systematic, and statistical uncertainties, respectively.
measurements of the jet central-to-peripheral ratio [13], although in those measurements the uncertainties are too large to infer any significant \(p_T \) dependence.

The rapidity dependence of the \(R_{AA} \) is shown in the top panel of Fig. 4 for jets with \(80 < p_T < 100 \) GeV for three centrality bins. The \(R_{AA} \) shows no significant rapidity dependence over the \(p_T \) and rapidity ranges presented in this measurement. The \((N_{\text{part}}) \) dependence is shown in the bottom panel of Fig. 4 for jets in the same \(p_T \) interval and with \(|y| < 2.1 \). The \(R_{AA} \) decreases smoothly from the most peripheral collisions (smallest \((N_{\text{part}}) \) values) to central collisions, where it reaches a minimal value of approximately 0.4 in the most central 1% of collisions. A similar \((N_{\text{part}}) \) dependence is observed for jets in different ranges of \(p_T \) and rapidity.

In summary, this Letter presents measurements of inclusive jet production in \(pp \) and \(\text{Pb} + \text{Pb} \) collisions over a wide range in \(p_T \), rapidity, and centrality. The jet nuclear modification factor \(R_{AA} \) obtained from these measurements shows a weak rise with \(p_T \), with a slope that varies with collision centrality. No significant slope is observed in the most peripheral collisions. The \(R_{AA} \) decreases gradually with increasing \((N_{\text{part}}) \). At forward rapidity, the increasing steepness of the jet production spectrum is expected to result in more suppression of the jet yields. In this kinematic region, the production is increasingly dominated by quark jets, which may lose less energy than gluon jets [15]. The observed lack of rapidity dependence in the \(R_{AA} \) places constraints on relative energy loss for quark and gluon jets in theoretical descriptions of jet quenching.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, and Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and BNL (USA) and in the Tier-2 facilities worldwide.

[17] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the \(z \) axis along the beam pipe. The \(x \) axis points from the IP to the center of the LHC ring, and the \(y \) axis points upward. Cylindrical coordinates \((r, \phi, \eta) \) are used in the transverse plane, \(\phi \) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \).

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, New York, USA
3 Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4 Department of Physics, Ankara University, Ankara, Turkey
4a Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
4b Turkish Atomic Energy Authority, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7 Department of Physics, University of Arizona, Tucson, Arizona, USA
8 Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 Institute of Physics, University of Belgrade, Belgrade, Serbia
13b Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 Department of Physics, Bogazici University, Istanbul, Turkey
19a Department of Physics Engineering, Gaziantepe University, Gaziantepe, Turkey
19b Department of Physics, Dogus University, Istanbul, Turkey
19c Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20a INFN Sezione di Bologna, Italy
20b Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
20c Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston, Massachusetts, USA
22 Department of Physics, Brandeis University, Waltham, Massachusetts, USA
23 Universidad Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
23a Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
23b Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
24a National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
24b National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Bucharest, Romania
24c University Politehnica Bucharest, Bucharest, Romania
24d West University in Timisoara, Timisoara, Romania
25 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
25a Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
25b Department of Physics, Carleton University, Ottawa, Ontario, Canada
25c CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
32a Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
32b Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33a Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
33b Department of Modern Physics, University of Science and Technology of China, Anhui, China
33c Department of Physics, Nanjing University, Jiangsu, China
33d School of Physics, Shandong University, Shandong, China
33e Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, New York, USA
36 Niels Bohr Institute, University of Copenhagen, København, Denmark
37a INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
37b Dipartimento di Fisica, Università della Calabria, Rende, Italy
38a AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38b Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas, Texas, USA
41 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, North Carolina, USA
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
50a Fermi National Accelerator Laboratory, Batavia, Illinois, USA
50b Dipartimento di Fisica, Università di Genova, Genova, Italy
51a E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
51b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52a II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
52b SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 INFN Sezione di Genova, Italy
54 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
55 Department of Physics, Hampton University, Hampton, Virginia, USA
56 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
57 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
58 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
59 ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
60 Laboratory for Applied Science, Hiroshima Institute of Science, Hiroshima, Japan
61 Department of Physics, Indiana University, Bloomington, Indiana, USA
62 Institut für Astronomie und Astrophysik, Universitat Tübingen, Tübingen, Germany
63 University of Iowa, Iowa City, Iowa, USA
64 Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Department of Physics, Kyushu University, Fukuoka, Japan
70 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 INFN Sezione di Lecce, Italy
73 Dipartimento di Matematica e Física, Università del Salento, Lecce, Italy
74 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
75 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
76 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
77 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
78 Department of Physics and Astronomy, University College London, London, United Kingdom
79 Louisiana Tech University, Ruston, Louisiana, USA
80 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
81 Fysiska institutionen, Lund university, Lund, Sweden
82 Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
83 Institut für Physik, Universität Mainz, Mainz, Germany
176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
177 Department of Physics, Yale University, New Haven, Connecticut, USA
178 Yerevan Physics Institute, Yerevan, Armenia
179 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Deceased.
1 Also at Department of Physics, King’s College London, London, United Kingdom.
2 Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
3 Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
4 Also at TRIUMF, Vancouver, BC, Canada.
5 Also at Department of Physics, California State University, Fresno, CA, USA.
6 Also at Tomsk State University, Tomsk, Russia.
7 Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
8 Also at Università di Napoli Parthenope, Napoli, Italy.
9 Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
10 Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
11 Also at TRIUMF, Vancouver, BC, Canada.
12 Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
13 Also at Università di Napoli Parthenope, Napoli, Italy.
14 Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
15 Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
16 Also at Chinese University of Hong Kong, China.
17 Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
18 Also at Louisiana Tech University, Ruston, LA, USA.
19 Also at Università di Napoli Parthenope, Napoli, Italy.
20 Also at Tomsk State University, Tomsk, Russia.
21 Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
22 Also at Università di Napoli Parthenope, Napoli, Italy.
23 Also at TRIUMF, Vancouver, BC, Canada.
24 Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
25 Also at Università di Napoli Parthenope, Napoli, Italy.
26 Also at IN2P3, Villeurbanne, France.
27 Also at Dickson College, Pennsylvania State University, University Park, PA, USA.
28 Also at Academia Sinica, Institute of Physics, Taipei, Taiwan.
29 Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
30 Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
31 Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
32 Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India.
33 Also at Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy.
34 Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
35 Also at Section de Physique, Université de Genève, Geneva, Switzerland.
36 Also at International School for Advanced Studies (SISSA), Trieste, Italy.
37 Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA.
38 Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
39 Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
40 Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia.
41 Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
42 Also at Department of Physics, Oxford University, Oxford, United Kingdom.
43 Also at Department of Physics, Nanjing University, Jiangsu, China.
44 Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
45 Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.
46 Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.
47 Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.