Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

http://dx.doi.org/10.1073/pnas.1410772111

National Academy of Sciences (U.S.)

Final published version

Thu Jan 24 14:23:59 EST 2019

http://hdl.handle.net/1721.1/97429

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

Jörn Callies,a,1 Raffaele Ferrari,b and Oliver Bühlerc

*Massachusetts Institute of Technology and Woods Hole Oceanographic Institution Joint Program in Oceanography and Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

Edited* by Kerry A. Emanuel, Massachusetts Institute of Technology, Cambridge, MA, and approved October 17, 2014 (received for review June 14, 2014)

Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km.

Significance

High- and low-pressure systems, commonly referred to as synoptic systems, are the most energetic fluctuations of wind and temperature in the midlatitude troposphere. Synoptic systems are a few thousand kilometers in scale and are governed by a balance between the pressure gradient force and the Coriolis force. Observations collected near the tropopause by commercial aircraft indicate a change in dynamics at horizontal scales smaller than about 500 km. Smaller-scale fluctuations are shown to be dominated by inertia–gravity waves, waves that propagate on vertical density gradients but are influenced by Earth’s rotation.

Author contributions: J.C. designed research; J.C., R.F., and O.B. performed research; J.C. analyzed data; and J.C., R.F., and O.B. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor. Freely available online through the PNAS open access option.

1To whom correspondence should be addressed. Email: joernc@mit.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410772111/-/DCSupplemental.
proposed that the mesoscale energy is dominated by inertia–gravity waves (21, 22), which are easily excited by any fast fluctuation of the atmospheric flows (23). In this explanation of the mesoscale part of the spectrum, linear inertia–gravity waves and nonlinear synoptic-scale turbulence coexist with little interaction.

In this paper, we present an analysis of the MOZAIK data that uses a decomposition method recently developed by Bühler et al. (24). This analysis provides compelling evidence that linear inertia–gravity waves indeed dominate the observations in the mesoscale.

Theories for the Synoptic-to-Mesoscale Transition

Dewan (21) first suggested that the mesoscale energy is dominated by a continuum of weakly nonlinear inertia–gravity waves. VanZandt (22) showed that the mesoscale spectra of horizontal wind fluctuations as a function of horizontal wavenumber, vertical wavenumber, and frequency are related through the dispersion and polarization relations of inertia–gravity waves. The dominance of inertia–gravity waves at the mesoscale, however, seemed inconsistent with vertical velocity frequency spectra measured from radar in light-wind conditions (25). More recently, Vincent and Eckerman (26) showed that the signature of inertia–gravity waves is recovered after correcting for Doppler-shift effects in radar observations.

In the last two decades, the interpretation of the synoptic-to-mesoscale transition in terms of inertia–gravity wave dynamics has received little attention. The $k^{-5/3}$ power-law dependence of the mesoscale spectrum has instead been interpreted as evidence that the mesoscale is strongly turbulent. The strong nonlinear interactions characteristic of turbulent flows continuously redistribute energy across wavenumbers and are known to result in power-law energy distributions (4, 7). A number of competing turbulent theories have been proposed.

The earliest turbulent theory argues that the mesoscale spectrum is due to an inverse cascade of energy injected at even smaller scales, for example by convective activity (14, 16, 17). The hypothesis is that nonlinear mesoscale interactions, much like at synoptic scales, transfer energy to larger scales because of the constraints of rotation and stratification. The kinetic energy spectrum in such a quasi-2D inverse cascade scales like $k^{-5/3}$ at wavenumbers smaller than the injection scale (11), in contrast to Charney’s k^{-3} spectrum, which develops at wavenumbers larger than the injection scale. The theory does not predict at which scale the dynamics switch from the synoptic to the mesoscale regime.

The second turbulent theory proposes that the flat mesoscale spectrum is the signature of sharp temperature fronts, which develop when synoptic-scale flows intersect a rigid boundary, like the Earth’s surface, or a strongly stratified layer, like the tropopause (18). Importantly, the winds associated with the temperature fronts are still largely in geostrophic balance. In this view, the $k^{-5/3}$ mesoscale spectrum is a feature of measurements taken at the tropopause level, the cruising altitude of long-range commercial aircraft, but should not appear in the mid troposphere. This prediction cannot be tested with available data.

The third turbulent theory proposes that the $k^{-5/3}$ mesoscale spectrum emerges at the scales where the flows escape the rotational constraint and energy can be transferred to smaller scales (19). Turbulent flows constrained by stratification, but not rotation, are collectively known as “stratified turbulence.” The forward energy cascade is achieved by the overturning of layer-like structures. These flows are not in geostrophic balance, and thus differ from the quasi-2D dynamics of the previous two theories, and they are strongly nonlinear, and thus differ from approximately linear inertia–gravity waves.

Inertia–Gravity Waves and Geostrophic Flow

The understanding that atmospheric winds are composed of slow flows in approximate geostrophic balance and fast inertia–gravity waves has been the foundation for much progress in atmospheric science. The first numerical weather predictions were based on quasi-geostrophic dynamics, an approximation to the more complete primitive equations that filters out inertia–gravity waves (27–29). In the troposphere and lower stratosphere, inertia–gravity waves typically have small amplitudes and therefore interact only weakly with geostrophic flows. Although there is a growing appreciation of rare instances of inertia–gravity waves directly influencing sensitive weather patterns (30), strong interactions between inertia–gravity waves and the geostrophic flow are typically confined to the middle and upper atmosphere, where the wave amplitude becomes large enough to allow for breaking of inertia–gravity waves and the concomitant drag force on the geostrophic flow that is well known to be crucial for the global angular momentum budget of the atmosphere (23).

In the deep ocean, breaking inertia–gravity waves mix heat and carbon. This leading-order effect has led to intensive study of the oceanic inertia–gravity wave field. It is composed of a continuous spectrum of linear waves together with isolated peaks at the inertial and tidal frequencies (31). Similar to the lower atmosphere, these linear waves interact only weakly with the geostrophic flow. Only at small vertical scales of a few tens of meters do the waves break.
Callies and coworkers (24, 32) have recently shown that the energy spectra of oceanic flows are dominated by geostrophic flows at large scales and by inertia–gravity waves at small scales. The transition between the two classes of motion occurs at scales of 10–100 km, depending on the relative strength of the geostrophic eddies and the waves. In what follows, we show that the synoptic-to-mesoscale transition in the atmospheric energy spectrum is likely an equivalent transition from geostrophic to inertia–gravity wave dynamics.

Decomposition

From the MOZAIC aircraft observations of wind near the midlatitude troposphere, we compute power spectra of the longitudinal (along-track) velocity \(u \) and transverse (across-track) velocity \(v \). Geostrophic flows are horizontally nondivergent and therefore only have a rotational component, whereas inertia–gravity waves have both a rotational and divergent component.

If simultaneous wind and temperature observations were available in space and time, one could directly test whether the dispersion and polarization relations of inertia–gravity waves are satisfied by mesoscale motions. One could further separate out inertia–gravity waves and geostrophic flows because inertia–gravity waves are restricted to frequencies between the Coriolis frequency \(f \) (equal to twice the rotation rate of the Earth multiplied by the sine of the latitude) and the buoyancy frequency \(N \) (the frequency at which a vertically displaced parcel of air will oscillate within the stably stratified atmosphere), whereas geostrophic flows evolve on much longer time scales. However, it is extremely difficult to collect simultaneous measurements of mesoscale fluctuations of winds and temperature in space and time.

Bühler et al. (24) have recently shown that the decomposition can be achieved from space-only measurements, provided that concurrent observations of horizontal velocities and temperature are available. Applying this new decomposition to the MOZAIC data produces two powerful arguments in support of the hypothesis that the mesoscale spectrum is dominated by inertia–gravity waves.

First, assuming that the flow is an uncorrelated superposition of a geostrophic flow and inertia–gravity waves, we diagnose the inertia–gravity wave component of the total energy, the sum of the kinetic and potential energies, solely based on the observed horizontal velocities. We then show that the thus predicted inertia–gravity wave energy spectrum closely matches the observed total energy spectrum in the mesoscale range. This indicates that the mesoscale potential energy spectrum, predicted by this procedure, is consistent with linear wave theory.

Second, assuming that the geostrophic component of the flow obeys Charney’s isotropy relation for geostrophic turbulence (9), we decompose the three observed individual spectra of longitudinal (along-track) and transverse (across-track) velocities and temperature brackets an average over flights. From the temperature observations, we compute the potential energy spectrum \(S^\theta(k) = \langle \theta^2(k) \rangle / N^2 \), where \(b = g(\theta - \theta_0) / \theta_0 \) is buoyancy, \(g = 9.81 \text{ m s}^{-2} \) is the gravitational acceleration, \(\theta_0 = 340 \text{ K} \) is the reference potential temperature, and \(N^2 \) is the average vertical gradient of \(\theta \). Potential temperature \(\theta \) is the temperature of an air parcel corrected for dynamically irrelevant compression effects. We use a typical stratification of the lower stratosphere, \(N = 0.02 \text{ s}^{-1} \), estimated from the ERA-Interim reanalysis (33).

Fig. 1A shows that these MOZAIC spectra display the transition from a steep synoptic range to a flat mesoscale range at about 500 km.

If simultaneous wind and temperature observations were available in space and time, one could directly test whether the dispersion and polarization relations of inertia–gravity waves are satisfied by mesoscale motions. One could further separate out inertia–gravity waves and geostrophic flows because inertia–gravity waves are restricted to frequencies between the Coriolis frequency \(f \) (equal to twice the rotation rate of the Earth multiplied by the sine of the latitude) and the buoyancy frequency \(N \) (the frequency at which a vertically displaced parcel of air will oscillate within the stably stratified atmosphere), whereas geostrophic flows evolve on much longer time scales. However, it is extremely difficult to collect simultaneous measurements of mesoscale fluctuations of winds and temperature in space and time.

Bühler et al. (24) have recently shown that the decomposition can be achieved from space-only measurements, provided that concurrent observations of horizontal velocities and temperature are available. Applying this new decomposition to the MOZAIC data produces two powerful arguments in support of the hypothesis that the mesoscale spectrum is dominated by inertia–gravity waves.

First, assuming that the flow is an uncorrelated superposition of a geostrophic flow and inertia–gravity waves, we diagnose the inertia–gravity wave component of the total energy, the sum of the kinetic and potential energies, solely based on the observed horizontal velocities. We then show that the thus predicted inertia–gravity wave energy spectrum closely matches the observed total energy spectrum in the mesoscale range. This indicates that the mesoscale potential energy spectrum, predicted by this procedure, is consistent with linear wave theory.

Second, assuming that the geostrophic component of the flow obeys Charney’s isotropy relation for geostrophic turbulence (9), we decompose the three observed individual spectra of longitudinal (along-track) and transverse (across-track) velocities and temperature brackets an average over flights. From the temperature observations, we compute the potential energy spectrum \(S^\theta(k) = \langle \theta^2(k) \rangle / N^2 \), where \(b = g(\theta - \theta_0) / \theta_0 \) is buoyancy, \(g = 9.81 \text{ m s}^{-2} \) is the gravitational acceleration, \(\theta_0 = 340 \text{ K} \) is the reference potential temperature, and \(N^2 \) is the average vertical gradient of \(\theta \). Potential temperature \(\theta \) is the temperature of an air parcel corrected for dynamically irrelevant compression effects. We use a typical stratification of the lower stratosphere, \(N = 0.02 \text{ s}^{-1} \), estimated from the ERA-Interim reanalysis (33).

Fig. 1A shows that these MOZAIC spectra display the transition from a steep synoptic range to a flat mesoscale range at about 500 km.

The Helmholtz decomposition of the MOZAIC kinetic energy spectrum in Fig. 1B shows that the rotational component dominates in the synoptic range, whereas the divergent component becomes of the same order at the transition to the mesoscale range. In the mesoscale range, the divergent component slightly dominates over the rotational component.

The dominance of the rotational component in the synoptic scales is consistent with Charney’s geostrophic turbulence, because quasi-geostrophic flow is to leading order horizontally nondivergent. The significant divergent component in the mesoscale, however, is inconsistent with the mesoscale theories that rely on a leading-order geostrophic balance, namely the inverse-cascade theory and the frontogenesis theory. Instead, it points to the dominance of ageostrophic dynamics.

Lindborg (35) also found that the rotational and divergent components of the flow are of the same order in the mesoscale range. In his analysis, based on curve fitting and selective Fourier transforming, the rotational component slightly dominates the divergent component in the mesoscale range. He argued that this was inconsistent with inertia–gravity waves, for which he expected the divergent component to be much larger than the rotational component. If the inertia–gravity wave field is dominated by near-inertial waves, however, as suggested by balloon measurements in the lower stratosphere (36), the rotational component is expected to be of the same order as the divergent component. In the following section, we show that the mesoscale signal is indeed consistent with linear inertia–gravity wave dynamics (i.e., with the dispersion and polarization relations of hydrostatic inertia–gravity waves).

Decomposition of the Total Energy Spectrum into Geostrophic and Inertia–Gravity Wave Components. Geostrophic flows are horizontally nondivergent and therefore only have a rotational component, whereas inertia–gravity waves have both a rotational and a divergent component. To perform the decomposition into these two classes of motion, we note that the component of the total energy spectrum \(E(k) = \frac{1}{2} \left[S^\theta(k) + S^\psi(k) + S^S(k) \right] \) that is due to hydrostatic inertia–gravity waves can be diagnosed from \(D^\psi(k) \) alone (Materials and Methods):

\[
S^\psi(k) = \left(\frac{k}{D^\theta(k)} D^\psi(k) \right) - \left(\frac{1}{2} \frac{k^2}{D^D(k)} \right) D^\psi(k).
\]

\[
S^S(k) = \left(\frac{k}{D^D(k)} D^\psi(k) \right) - \left(\frac{1}{2} \frac{k^2}{D^D(k)} \right) D^\psi(k).
\]

The spectral functions \(D^\psi(k) \) and \(D^\theta(k) \) can easily be computed from the observed \(S^\psi(k) \) and \(S^\theta(k) \) by solving the system of ordinary differential Eqs. 1 and 2 (Materials and Methods). Using \(D^\psi(k) \) and \(D^\theta(k) \), the observed kinetic energy spectrum \(K(k) = \frac{1}{2} \left[S^\psi(k) + S^\theta(k) \right] \) can be decomposed into its rotational and divergent components,

\[
K^\psi(k) = \frac{1}{2} \left(1 - \frac{k^2}{D^\theta(k)} \right) D^\psi(k),
\]

\[
K^\theta(k) = \frac{1}{2} \left(1 - \frac{k^2}{D^D(k)} \right) D^\theta(k).
\]

\[
\text{Helmholtz Decomposition}
\]

Fig. 1A shows that in the synoptic range the spectra approximately satisfy Charney’s prediction for geostrophic turbulence:

\[
S^\theta(k) = S^\psi(k) \quad \text{and} \quad S^S(k) = 3S^\psi(k) \quad (9, 12).
\]

At the transition to the mesoscale, all three spectra converge. As shown by Lindborg (34, 35) and in the following, this convergence is evidence that the flow is no more in geostrophic balance at leading order.

Any horizontal flow field can be decomposed into its rotational and divergent components: \(u = -\psi_x + \phi_z \), \(v = \psi_y + \phi_x \), where \(\psi \) is the streamfunction, \(\phi \) is the velocity potential, \(z \) is the along-track coordinate, and \(y \) is the across-track coordinate. If the flow is statistically isotropic horizontally and \(\psi \) and \(\phi \) are uncorrelated (as is the case for a superposition of geostrophic flow and linear inertia–gravity waves), the spectra \(S^\psi(k) \) and \(S^\theta(k) \) can be written in terms of spectral functions associated with \(\psi \) and \(\phi \) (Materials and Methods):

\[
S^\psi(k) = D^\psi(k) - \frac{k^2}{D^D(k)} D^\psi(k),
\]

\[
S^\theta(k) = -\frac{k^2}{D^D(k)} D^\psi(k).
\]
where the subscript w designates the inertia–gravity wave component. This somewhat surprising result follows directly from linear inertia–gravity wave dynamics, if horizontal isotropy and vertical homogeneity are assumed. Provided there is no additional type of motion, the residual of the observed total energy spectrum can be attributed to a geostrophic flow, $E_g(k) = E(k) - E_w(k)$, where the subscript g designates the geostrophic component.

The decomposition into geostrophic flow and inertia–gravity waves of the MOZAIK data are shown in Fig. 1C. The mesoscale range is dominated by inertia–gravity waves, which do not contribute much energy at the synoptic scales. The residual spectrum (i.e., the total spectrum minus the inertia–gravity wave component) dominates at the synoptic scales. This component can be confidently attributed to geostrophic flows, because we have shown that the spectrum in the synoptic range is purely rotational and hence horizontally nondiagonal. At the transition scale, the geostrophic component of the total energy keeps falling off steeply—the transition seems to be due to inertia–gravity waves becoming dominant in the mesoscale range. This is the main result of this paper.

Notice that the geostrophic spectrum keeps falling off steeply past the transition at 500 km but eventually flattens out at smaller scales. This flattening is likely an artifact, because at these scales the geostrophic component makes up a small fraction of the observed signal. It is quite possible that the flattening is due to noise or biases introduced by the interpolation procedure or by truncation errors in the reported wind and temperature data.

Decomposition of Kinetic and Potential Energy Spectra. We have shown that the total energy spectrum can be decomposed into its geostrophic and inertia–gravity wave components. To confirm that the observed spectra are consistent with geostrophic dynamics at synoptic scales and with inertia–gravity wave dynamics at mesoscales, we now decompose into its two components each of the atmospheric spectra, the longitudinal and transverse kinetic energy spectra, $S^k(k)$ and $S^l(k)$, and the potential energy spectrum, $S^p(k)$. This can be done if one makes one further assumption. Following Charney and results from numerical simulations of geostrophic turbulence, the geostrophic streamfunction is assumed to be 3D isotropic, with the vertical coordinate rescaled by f/N (9). This implies $S^k(k) = S^l(k)$, a relation that we noted is satisfied by the observed spectra in the synoptic range (Fig. 1A).

This decomposition—obtained by applying Eqs. 15–17 and 20–22, given in Materials and Methods—confirms the main conclusion that the observed synoptic-scale flow is consistent with geostrophic dynamics and that the observed mesoscale flow is consistent with inertia–gravity wave dynamics. In the synoptic range, the observed spectra match the diagnosed geostrophic components (Fig. 2A). At the transition scale, the diagnosed geostrophic spectra start deviating from the observed spectra and keep falling off steeply. At this scale, the diagnosed inertia–gravity wave spectra become comparable to the observed spectra and start matching them in the mesoscale range (Fig. 2B).

Discussion

Our analysis shows that the aircraft observations are consistent with a geostrophic flow that dominates the synoptic range and with inertia–gravity waves that dominate the mesoscale range. This conclusion is predicated on the assumption that the total observed flow is a superposition of geostrophic flow and inertia–gravity waves and that these two components are uncorrelated and horizontally isotropic.

In accord with Lindborg’s result (34), our analysis conclusively shows that mesoscale flows are not in geostrophic balance, thus falsifying previous suggestions that mesoscale spectra represent geostrophic eddies generated by atmospheric convective events or geographically balanced fronts at the tropopause. Our analysis then further shows that the observed mesoscale spectra $S^k(k)$, $S^l(k)$, and $S^p(k)$ are consistent with the dispersion and polarization relations of linear hydrostatic inertia–gravity waves. Presumably, it would be very surprising if the strongly nonlinear ageostrophic flows characteristic of stratified turbulence were to yield the same relations between these mesoscale spectra as the linear waves.

A similar transition between a dominant geostrophic flow at large scales and dominant inertia–gravity waves at small scales is well established in the oceanic spectra (32), providing further support for our interpretation of the synoptic-to-mesoscale transition. The ocean, like the atmosphere, is a strongly rotating and stratified fluid. The most energetic large-scale fluctuations are generated by baroclinic instabilities in both fluids, whereas smaller-scale inertia–gravity waves are triggered by any fast perturbation. A posteriori, it should not be surprising that both fluids exhibit a transition from geostrophic dynamics at large scales to inertia–gravity wave dynamics at small scales.

That inertia–gravity waves dominate the mesoscale spectrum does not mean that the atmosphere is filled with a nearly uniform and stationary wave field, as seems to be the case in the ocean (31). The atmospheric wave field is likely highly intermittent in both space and time (23). Our result merely suggests that, on average, inertia–gravity waves dominate the mesoscale range. A good understanding of what sets the scale of the average inertial–gravity wave spectrum is lacking. The oceanic inertia–gravity wave spectrum, however, has been shown to be an equilibrium solution of weakly interacting inertia–gravity waves with slopes close to $k^{-5/3}$ (37, 38). Although the residence time of waves in the atmosphere is shorter and shears provided by jet streams stronger, weak turbulence theory may similarly yield insight into the atmospheric inertia–gravity wave field.

The spatial patterns of mesoscale energy are also consistent with the dominance of inertia–gravity waves at the mesoscales. The aircraft spectra in the mesoscale range are up to six times larger in inertia–gravity waves than over smooth oceanic regions (39). The inertia–gravity wave activity is expected to be enhanced over mountains, where lee waves are excited by large- and synoptic-scale flows impinging on topography. Stratified turbulence, however, is fed directly by synoptic-scale energy and therefore is not expected to be enhanced over mountainous regions.

High-resolution numerical models reproduce the synoptic-to-mesoscale transition (40). Model results are consistent with the observation that the synoptic range is dominated by rotational flow, whereas the rotational and divergent components are of the same order in the mesoscale range (41, 42). Models also show a pattern of enhanced mesoscale energies in regions of high topography (42). The simulations further show that the mesoscale spectrum is not the result of stratified turbulence (43), in agreement with our conclusion that they are the signature of inertia–gravity waves.

The emergent picture is relatively simple. Geostrophic synoptic-scale baroclinic disturbances force a forward enstrophy cascade that continues through the synoptic-to-mesoscale transition. The k^{-3} or slightly steeper geostrophic spectrum is masked by inertia–gravity waves at scales smaller than 500 km. This picture does not rule out the possibility that some fraction of the energy in the mesoscale spectra is associated with fronts and stratified turbulence, but these contributions must be small.

The result of this paper may also have some implications for the theoretical predictability of atmospheric flows. Lorenz (6) argued that a turbulent flow with a $k^{-5/3}$ kinetic energy spectrum has a finite predictability time, which is of the order of the eddy turnover time. More and more accurate knowledge of the initial state cannot push forecasts beyond that limit—even if we had a perfect model. In contrast, turbulent flows with a k^{-3} kinetic energy spectrum do not have such a predictability limit and ever more accurate initial conditions can lead to ever longer forecasts.

If the flat mesoscale spectrum were due to a turbulent cascade, that would pose a limit on predictability of synoptic systems (7, 44). Observing and modeling the atmosphere beyond the transition
at 500 km would yield rapidly diminishing returns in predictability. If this part of the spectrum is due to inertia–gravity waves, however, improving observational systems and forecast models may not prove as futile. Inertia–gravity waves do not propagate errors in the same way as the turbulent flows discussed by Lorenz. If the geostrophic component of the mesoscale flow were to be observed, despite the dominance of inertia–gravity waves, the forecast times of synoptic systems could potentially be extended considerably.

It should be noted, however, that other processes not considered in this theoretical argument may affect predictability. Moist convective processes, for example, lead to rapid growth of errors that can leak into the geostrophic flow (45). Currently, the practical predictability of the weather is likely limited by inadequate representation of such processes.

Materials and Methods

Aircraft Data. The spectra shown in Fig. 1A are calculated from wind and temperature measurements obtained by the MOZAIC program, which equipped commercial aircraft with instrumentation to measure trace gases, but also records wind speed and direction from the onboard computer. The data used here were obtained in 2002–2010 and are restricted to the northern hemisphere midlatitudes (30–60° latitude). Great circles are fit to the flight paths and

Fig. 2. Decomposition of observed wavenumber spectra into the geostrophic and inertia–gravity wave components. (A) Diagnosed geostrophic component of the spectra of longitudinal kinetic energy $S_l(k)$, transverse kinetic energy $S_t(k)$, and potential energy $S_p(k)$ (heavy lines) and observed spectra for reference (faint lines). Note that by construction $S_l(k) = S_t(k)$, so that the red and black heavy lines are on top of each other. (B) Diagnosed inertia–gravity wave component of the spectra of longitudinal kinetic energy $S_l(k)$, transverse kinetic energy $S_t(k)$, and potential energy $S_p(k)$ (heavy lines) and observed spectra for reference (faint lines). A blowup of the mesoscale range of this panel can be found in Fig. S1.

Details of Decomposition. We here give more detail on the decomposition techniques used to analyze the aircraft spectra. Bühler et al. (24) give a more comprehensive description of these techniques and illustrate their skill to analyze oceanic spectra.

Let u and v be horizontal velocity components defined in the x-y plane with x aligned with the aircraft track, so u is the longitudinal (along-track) component and v is the transverse (across-track) component. The time t and altitude z are considered fixed during the measurement, so they will be ignored. A general 2D flow has a Helmholz decomposition into rotational and divergent components of the form $u = u_r + \psi_y$ and $v = u_x + \psi_x$. The functions ψ_x and ψ_y are uniquely determined in terms of the velocity field with doubly periodic boundary conditions.

Progress with the statistical theory is possible if $\psi(\chi, y)$ and $\phi(\chi, y)$ are uncorrelated. We can then write the 2D power spectra of u and v as

$$S^u(k, l) = \int P^u(k, l) + k^2 S^\psi(k, l),$$

where k is the across-track wavenumber. Integration over l and some manipulation gives Eqs. 1 and 2 with

$$D^u(k) = \frac{1}{2\pi} \int \int k^2 S^\psi(k, l) \, dk, \, dl,$$

where $S^\psi(k_0)$ and $S^\psi(k_1)$ are the 2D isotropic spectra of ψ and ϕ related to the 2D spectra by $S^\psi(k) = 2\pi k_0 S^\psi(k_1)$, $k_0 = \sqrt{k_1^2 + k_1^2}$ is the magnitude of the horizontal wavenumber vector, and $k_0 \geq 0$ is the along-track wavenumber.

Eqs. 1 and 2 can be solved explicitly, given the boundary conditions $D^u(\omega) = 0$ and $D^v(\omega) = 0$,

$$D^u(\omega) = \int S^u(\omega) \sinh(\pi \omega - \pi) + S^\psi(\omega) \cos(\pi \omega - \pi) \, d\omega,$$

where for convenience the coordinate was transformed to $s = \ln k$. Relation 5 follows from the dispersion and polarization relations of hydrostatic inertia–gravity waves. Combining the vorticity and continuity equations of the linearized primitive equations yields $\nabla \cdot \psi_y = \nabla \cdot \phi_x (20)$, which implies that

$$S^\psi(k, \omega) = \frac{1}{\omega^2} S^\psi(k_0, \omega_k)$$

and thus, with the use of Eqs. 6 and 7,
\[S' \left(k, l, \omega \right) + S'' \left(k, l, \omega \right) = \left(1 + \frac{1}{\omega^2} \right) \left(k^2 + \ell^2 \right) S \left(k, l, \omega \right). \]

This equation is similar to the linear buoyancy equation \(\beta - \frac{N^2}{\omega^2} = 0 \) and the potential energy spectrum \(S^\rho \left(k, \omega \right) = \left| \langle k | \psi \rangle \right|^2 / N^2 \) can also be related to the spectrum of the velocity potential, \[S^p \left(k, \omega \right) = \left(1 + \frac{1}{\omega^2} \right) \left(k^2 + \ell^2 \right) S \left(k, \omega \right), \]

if uncorrelated plane waves or equivalently homogeneity is assumed. A slowly varying background is allowed. Adding Eqs. 13 and 14 then eliminates the dependence on \(\omega \) so that Eq. 5 follows by integrating over \(k \) and \(\omega \).

The decomposition of the three individual spectra can be achieved by decomposing \(D''(k) = D_g(k) + D_o(k) \). The divergent part \(D''(k) \) needs no such decomposition, because the geostrophic component of the flow is divergence-free. Using

\[S'_g(k) = D_g(k), \]
\[S'_o(k) = -\frac{d}{dk} D'_o(k), \]
\[S''_o(k) = D'_o(k), \]

where Charney’s assumption \(S'_g(k) + S'_o(k) \) was applied, we can write the total energy spectrum of the geostrophic component \(E_g(k) = \frac{1}{2} \left(S'_g(k) + S''_o(k) \right) \) as

\[E_g(k) = \left(1 - \frac{k}{2} \frac{d}{dk} \right) D'_o(k). \]

Because \(E_g(k) = E(k) - E_o(k) \) can be diagnosed from the observations and Eq. 5, this can be solved for \(D'_o(k) \):

\[D'_o(k) = \frac{2}{\pi} \int_0^k E_g(\omega) \left(\frac{2}{\pi} \right)^{1/2} \omega^{-1/2} d\omega, \]

where the boundary condition \(D_o(\infty) = 0 \) was used and the coordinate was again transformed to \(s = \ln k \) for convenience. The decomposition is now complete. The wave spectra are

\[S'_g(k) = D'_g(k) - \frac{k}{2} \frac{d}{dk} D'_o(k), \]
\[S'_o(k) = -\frac{d}{dk} D'_o(k) + D'_o(k), \]
\[S''_o(k) = \left(1 - \frac{k}{2} \frac{d}{dk} \right) D'_o(k) + D'_o(k), \]

and Eq. 5 was used to deduce the last equation.

ACKNOWLEDGMENTS. We thank the principal investigators of the MOZAIK project, the European Commission for supporting the MOZAIK project, ETHER (Centre National d’Etudes Spatiales (CNES)–CNRIS/Institut National des Sciences de l’Univers (INSU)) for hosting the database, and the participating airlines for transporting the instrumentation free of charge. J.C. and R.F. thank Glenn Flierl for offering useful feedback during the preparation of the manuscript and acknowledge financial support under Grants ONR-N-00014-09-1-0458 and NSF-CMG-1024198. O.B. gratefully acknowledges financial support under Grants NSF-CMG-1024180, NSF-DMF-1312159, and NSF-DMF-1009213.