Global analysis of Navier–Stokes and Boussinesq stochastic flows using dynamical orthogonality

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1017/jfm.2013.458</td>
</tr>
<tr>
<td>Publisher</td>
<td>Cambridge University Press</td>
</tr>
<tr>
<td>Version</td>
<td>Original manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Dec 27 06:02:47 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/97590</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
Global Analysis of Navier-Stokes and Boussinesq Stochastic Flows using Dynamical Orthogonality

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Fluid Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>JFM-12-S-0912</td>
</tr>
<tr>
<td>mss type:</td>
<td>Standard</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>22-Sep-2012</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Sapsis, Themistoklis; New York University, Courant Institute of Mathematical Sciences Ueckermann, Mattheus; MIT, Mechanical Engineering Lermusiaux, Pierre; MIT, Mechanical Engineering</td>
</tr>
<tr>
<td>Keyword:</td>
<td>Vortex shedding < Vortex Flows, Nonlinear Dynamical Systems, Low-dimensional models < Nonlinear Dynamical Systems</td>
</tr>
</tbody>
</table>
Global Analysis of Navier-Stokes and Boussinesq Stochastic Flows using Dynamical Orthogonality

By T. P. Sapsis1,2, M. P. Ueckermann2, and P. F. J. Lermusiaux2

1New York University, Courant Institute of Mathematical Sciences
251 Mercer Str., New York, NY 10012
sapsis@cims.nyu.edu

2Massachusetts Institute of Technology, Department of Mechanical Engineering
77 Massachusetts Av., Cambridge, MA 02139
mpuecker@mit.edu (MPU); pierrel@mit.edu (PFJL)

(Received 22 September 2012)

We provide a new framework for the study of fluid flows presenting complex uncertain behavior. Our approach is based on the stochastic reduction and analysis of the governing equations using the dynamically orthogonal field equations. By numerically solving these equations we evolve in a fully coupled way the mean flow and the statistical and spatial characteristics of the stochastic fluctuations. This set of equations is formulated for the general case of stochastic boundary conditions and allows for the application of projection methods that reduce considerably the computational cost. We analyze the transformation of energy from stochastic modes to mean dynamics, and vice-versa, by deriving exact expressions that quantify the interaction among different components of the flow. The developed framework is illustrated through specific flows in unstable regimes. In particular we consider the flow behind a disk and the Rayleigh–Bénard convection for which we construct bifurcation diagrams that describe the variation of the response as well as the energy transfers for different parameters associated with the considered flows and we reveal the low-dimensionality of the underlying stochastic attractor.

1. Introduction

Fluid flows encountered in realistic technological and natural settings are usually characterized by complexity and uncertainty in their form and dynamics. This complexity is expressed by the presence of multiple temporal and spatial scales on a single realization, the existence of multiple attractors (multiple steady states), and often the continuous transition of the system state between these different dynamical regimes. An effective framework for the global analysis of systems presenting such complexity is the probabilistic one, where in the general case, the response is characterized not through a single realization but through a continuously infinite set of possible realizations accompanied with a probability measure that quantifies the likelihood of their occurrence. However, the efficient computation of those statistical responses remains a very challenging problem since flows with the above features are usually connected with non-Gaussian statistics, strongly transient behavior, and spatially inhomogeneous features. Examples occur in

† Corresponding Author: Tel.: +1 (212) 998-3027; Fax: +1 (212) 995-4121
T. P. Sapsis, M. P. Ueckermann, and P. F. J. Lermusiaux

Various approaches have been developed for the characterization, description, and quantification of uncertainty in these complex systems. A large class of those uncertainty quantification (UQ) methods rely on the assumption of ad hoc reduced order dynamics (fixed in time) such as the proper orthogonal decomposition (POD) method - see e.g. Holmes et al. (1996); Berkooz et al. (1993); Sirovich (1987)). Improved variants of POD have also been developed based on linear-operator-theoretic model reduction methods, such as the balanced POD Lall et al. (2002); Ma et al. (2010) and the bilateral coupling between variations in the fluctuation growth rate and the mean flow variations Tadmor et al. (2010, 2011). In all of the above methods however, the static character of the employed modes does not allow for an efficient setup of a low-dimensional but adaptive reduced order model that can reproduce important features of the original system such as strongly non-Gaussian statistics and transient instabilities.

A different approach is based on the closure of the stochastic problem by assuming specific statistical structure for the response. The simplest approach along this line is the Gaussian closure (Epstein (1969)) a UQ scheme whose basic assumption is equivalent with zero nonlinear energy fluxes between dynamical components (see Sapsis & Majda (2012b) for an overview). Along the same spirit are the Polynomial Chaos (PC) method and its variants with the main difference being that the projection is not performed over a Gaussian stochastic basis but rather on non-Gaussian elements that come from a given family of orthogonal polynomials. The PC method has been applied extensively in fluid flows analysis (Chorin (1974); Maitre et al. (2001); Xiu & Karniadakis (2003); Knio & Maitre (2006)) and various of its limitations for intermittent instabilities have been discussed recently in Majda & Branicki (2012).

The purpose of this work is to develop and illustrate a new, efficient, non-Gaussian order-reduction approach for the UQ of complex flows characterized by low-dimensional stochastic attractors. The main tool that we will use will be a novel reduction technique based on the application of the dynamically orthogonal (DO) field equations (Sapsis & Lermusiaux (2009)), a set of closed evolution equations that describe (compute) the time-dependent reduced order space where stochasticity ‘lives’ as well as its spatio-temporal and non-Gaussian statistical characteristics. Using this theory and methodology, for specific initial condition probabilities or family of perturbations, we can provide a precise and global description of all the possible states that a flow can evolve into, as well as their relative probabilities. Additionally we are able to characterize the flow of energy or probability between these states and their role on the chaotic character of the flow realizations that one obtains when the problem is solved deterministically. Of course, our results are linked to uncertainty quantification but the present work is not concerned with the estimation of errors in model equations (Lermusiaux, 2006; Branicki & Majda, 2012) nor in the errors due to numerical discretization (e.g. Roache, 1997).

The structure of the paper is as follows. In Section 2 we present the DO field equations for the general case of a Boussinesq fluid in a three-dimensional domain in the presence of convection and rotation. Special emphasis is given on the treatment of the stochastic pressure that allows for significant reduction of the computational cost. We also discuss the case of stochastic boundary conditions and illustrate how to convert a problem of this kind to an equivalent one having deterministic boundary conditions and the stochastic
part of the boundary conditions acting as interior forcing in the governing differential equations. Section 3 is devoted to the study of energy exchanges, in the form of variance, between the mean flow and the stochastic fluctuations, and among DO modal fluctuations. Specifically we see that the (stochastic) energy transfers occur between the mean flow and the DO modes, but also among pairs and triads of DO modes. Additionally dissipation acts on the mean flow but also locally on each mode. In Section 4, we study some specific cases of 2D flows presenting complex behavior: the flow behind the cylinder and the Rayleigh–Bénard convection. Both of these flows may develop, depending on the flow parameters, numerous instabilities leading to stochastic attractors of equal dimensionality (Sapsis (2012)). The statistical form of the solution of both configurations presents special interest since it leads to finite-dimensional stochastic attractors with strongly non-Gaussian features. We provide bifurcation diagrams illustrating the transition to these dynamical regimes in the parameter space as well as the associated energy transfers between the modes and the mean flow.

2. Dynamically Orthogonal Navier-Stokes and Boussinesq Equations

In this section, we derive the DO equations for general fluid and ocean dynamics, focusing on the Navier-Stokes and Boussinesq equations. Notation and definitions for the DO representation are given in App. A.

2.1. Stochastic Navier-Stokes and Boussinesq Equations

We consider the general case of a weakly compressible Newtonian fluid in a rotating frame of reference and under a Boussinesq approximation, i.e. we neglect the small density variations in the momentum equations and in the first law of thermodynamics, excepted in the buoyancy term and in the linearized equation of state. Rotation is assumed to have only a component in the vertical direction (e.g. for localized ocean motions on the Earth’s surface, this is the beta-plane approximation). After some manipulations (Cushman-Roisin & Beckers (2010)) and allowing for stochastic forcing and stochastic initial and boundary conditions, one obtains the following non-dimensional conservation of momentum, energy and mass for a three dimensional fluid in a domain D in a rotating frame at frequency f,

$$
\frac{\partial \mathbf{u}}{\partial t} = -\nabla p + \frac{1}{\sqrt{\text{Gr}}} \Delta \mathbf{u} - \mathbf{u} \cdot \nabla \mathbf{u} \, f \mathbf{k} \times \mathbf{u} - \mathbf{\rho} \mathbf{k} + \mathbf{\tau} (\mathbf{x}, t) + \mathbf{\tau} (\mathbf{x}, t; \omega) \equiv \mathcal{L}_u [\Phi (\mathbf{x}, t; \omega); \omega] \tag{2.1a}
$$

$$
\frac{\partial \rho}{\partial t} = \frac{1}{\text{Sc} \sqrt{\text{Gr}}} \Delta \rho - \mathbf{u} \cdot \nabla \rho \equiv \mathcal{L}_\rho [\Phi (\mathbf{x}, t; \omega); \omega] \tag{2.1b}
$$

$$
0 = \text{div} \mathbf{u} \tag{2.1c}
$$

where the Langevin notation is used and the events ω have been introduced (see App. A). The non-dimensional random field variables\(^\dagger\) are: $\mathbf{u} = (u (\mathbf{x}, t; \omega), v (\mathbf{x}, t; \omega), w (\mathbf{x}, t; \omega))$ the flow velocity, $\rho (\mathbf{x}, t; \omega)$ the density and $p (\mathbf{x}, t; \omega)$ the pressure. The non-dimensional space and time variables are (\mathbf{x}, t). The Grashof number $\text{Gr} = \frac{g_0 ^2 h^3}{\nu}$ is the ratio of buoyancy forces to viscous forces, the Schmidt number $\text{Sc} = \nu / \kappa$ the ratio of kinematic viscosity ν to molecular diffusivity κ for the density field, with $g' = \frac{g (\rho_{\text{max}} - \rho_{\text{min}})}{\rho_{\text{avg}}}$ being the reduced gravity and h the vertical length-scale. The non-dimensional Coriolis coefficient

\(^\dagger\) The dimensional variables, denoted with a hat, have been non-dimensionalized using:

$$
t = t \sqrt{\frac{\hat{h}}{g'}}; \mathbf{x} = x \hat{h}; \mathbf{u} = u \sqrt{g' \hat{h}}; \hat{\rho} = \hat{\rho}_{\text{min}} + \rho (\hat{\rho}_{\text{max}} - \hat{\rho}_{\text{min}})$$
under the beta plane approximation is
\[f = f_0 + \beta_0 y \] and \(\mathbf{k} \) is the unit vector in the
\(z \)-direction. The state vector is given as \(\Phi = (u, \rho)^T \). At first order, the Boussinesq flow
is incompressible. We note that if the density is constant, \(\sqrt{Gr} \equiv Re \), that is, the square
root of the Grashof number is replaced by the Reynolds number and one recovers the
incompressible form of the Navier-Stokes equations.

Stochastic Equations and Forcing. The solutions to eqs. (2.1) are random solution
variables, driven by the statistics of the initial and boundary conditions as well as by
stochastic forcing in the equations themselves. The latter are here only included in the
momentum equation, in the form of an external stress acting on the fluid: the vector
\(\mathbf{\tau}(x, t) = (\tau_x(x, t), \tau_y(x, t), \tau_z(x, t)) \) is its external mean (deterministic) component
and \(\mathbf{\tilde{\tau}}(x, t; \omega) = (\tilde{\tau}_x(x, t; \omega), \tilde{\tau}_y(x, t; \omega), \tilde{\tau}_z(x, t; \omega)) \) is its zero-mean stochastic component
for which we assume known the complete probabilistic information. To define this
stochastic component, we consider its covariance operator
\[
C_{\tilde{\tau}}(x, y) = E_\omega \left[\tilde{\tau}(x, t; \omega) \tilde{\tau}(y, t; \omega)^T \right].
\]
We then diagonalize the probability measure associated with \(\tilde{\tau}(x, t; \omega) \) by solving the
following 3D-vector eigenvalue problem

\[\int_D C_{\tilde{\tau}}(x, y) \tilde{\tau}_r(y, t) dy = \lambda^2 \tilde{\tau}_r(x, t). \]

This provides the principal directions over which the probability measure is spread in the
variance sense. Retaining only the first \(R \) terms, we obtain the following approximation
of the stochastic field \(\tilde{\tau}(x, t; \omega) \)

\[\tilde{\tau}(x, t; \omega) = \sum_{r=1}^{R} Z_r(t; \omega) \tilde{\tau}_r(x, t) = Z_r(t; \omega) \tilde{\tau}_r(x, t) \]

where \(R \) is defined by the order of truncation of the full series, and \(Z_r(t; \omega) \) are the
stochastic forcing coefficients given by

\[Z_r(t; \omega) = \langle \tilde{\tau}(\cdot, t; \omega), \tilde{\tau}_r(\cdot, t) \rangle. \]

Boundary and Initial Conditions. We assume that the boundary conditions for the
state \(\Phi \) and for the pressure (if needed) are defined by the linear differential operator \(B \)

\[
B_{\Phi} [\Phi(\xi, t; \omega)] = \Phi_{\partial D}(\xi, t), \quad \xi \in \partial D \quad B_0 [p(\xi, t; \omega)] = \tilde{p}_{\partial D}(\xi, t), \quad \xi \in \partial D
\]
The case of stochastic boundary conditions will be discussed later. We also assume that
the initial conditions are stochastic with known statistics given by

\[\Phi(x, t_0; \omega) = \Phi_0(x; \omega), \quad x \in D, \quad \omega \in \Omega. \]

2.2. Dynamically Orthogonal Equations

Using the DO representation (see App. A), i.e. a generalized Karhunen-Loève (KL) expansion,
we now derive an exact set of Dynamically Orthogonal Navier-Stokes and Boussinesq
equations that govern the evolution of the mean, modes and stochastic coefficients. The
only approximation arises from the truncation of the DO representation to \(s(t) \) terms.
Dynamically orthogonal Navier-Stokes equations

We first substitute the DO decomposition into the governing eqs. (2.1) to obtain:

\[
\frac{\partial \tilde{u}}{\partial t} + \frac{dY_i}{dt} u_i + Y_i \frac{\partial u_i}{\partial t} = \mathcal{L}_u (\tilde{u} + Y_i u_i, \tilde{\rho} + Y_i \rho_i, \rho; \omega),
\]

(2.2a)

\[
\frac{\partial \tilde{\rho}}{\partial t} + \frac{dY_i}{dt} \rho_i + Y_i \frac{\partial \rho_i}{\partial t} = \mathcal{L}_\rho (\tilde{u} + Y_i u_i, \tilde{\rho} + Y_i \rho_i; \omega).
\]

(2.2b)

It is from these eqs. (2.2) that we will derive the equations for the mean, modes and their coefficients, using the expectation operator, spatial inner product and DO condition. The spatial inner product for the multivariate state vector field \(\Phi \) is defined by

\[
\langle \Phi_1, \Phi_2 \rangle = \langle u_1, u_2 \rangle + c_p \langle \rho_1, \rho_2 \rangle
\]

\[
= \int_D (u_1 u_2 + v_1 v_2 + w_1 w_2 + c_p \rho_1 \rho_2) \, dx.
\]

where \(c_p \) is a positive coefficient that will be chosen according to the non-dimensional parameters of the problem.

2.2.1. Stochastic Dynamics operator

We first expand the stochastic dynamics operator \(\mathcal{L} \) in eqs. (2.2) to obtain

\[
\mathcal{L}_u [\Phi (x, t; \omega); \omega] = -\nabla p + \frac{1}{\sqrt{Gr}} \Delta \tilde{u} - \tilde{u}, \nabla \tilde{u} - f \hat{k} \times \tilde{u} - \tilde{\rho} \hat{k} + \tilde{\tau} (x, t) \]

(2.3a)

\[
+ Y_i \left[\frac{1}{\sqrt{Gr}} \Delta u_i - u_i, \nabla \tilde{u} - \tilde{u}, \nabla u_i - f \hat{k} \times u_i - \rho_i \hat{k} \right]
\]

\[
- \frac{1}{2} Y_i Y_j [u_i, \nabla u_j + u_j, \nabla u_i] + Z_r (t; \omega) \tilde{\tau}_r (x, t)
\]

\[
\mathcal{L}_\rho [\Phi (x, t; \omega); \omega] = \frac{1}{Sc \sqrt{Gr}} \Delta \tilde{\rho} - \tilde{u}, \nabla \tilde{\rho}
\]

(2.3b)

\[
+ Y_i \left[\frac{1}{Sc \sqrt{Gr}} \Delta \rho_i - u_i, \nabla \tilde{\rho} - \tilde{u}, \nabla \rho_i \right]
\]

\[
- \frac{1}{2} Y_i Y_j [u_i, \nabla \rho_j + u_j, \nabla \rho_i] .
\]

Moreover, by inserting the DO representation in the continuity equation we obtain

\[
\text{div} \, \tilde{u} + Y_i (t; \omega) \text{div} u_i = 0.
\]

Since the last equation should hold for arbitrary \(Y_i (t; \omega) \) we obtain the equivalent form

\[
\text{div} \, \tilde{u} = 0 \quad \text{and} \quad \text{div} u_i = 0, \quad i = 1, \ldots, s.
\]

(2.3c)

(2.3d)

An important property of Navier-Stokes equations which allows for the efficient applicability of the DO method is the polynomial nonlinearities in the evolution operator \(\mathcal{L} \). This form of the operator allows for expressing it into a polynomial series that involves the unknown quantities of the DO representation (eq. A 3). It is then possible to derive closed evolution equations whose right hand sides depend on finite order moments of the stochastic coefficients, the DO modes and the mean field.

Note, that for the case of a non-polynomial or non-smooth operator \(\mathcal{L} \), one would not be able to expand it into a polynomial series. The DO equations would still be applicable, but it would in general not be possible to compute their right hand side efficiently using moments of the coefficients \(Y_i \). In such a case, a change of variable or
other transformations would be needed to remain efficient. If not, one would in general need moments of the full fields $\Phi(x,t;\omega)$, which, even though available, would involve significant computational cost.

2.2.2. Stochastic pressure field

To derive an equation for the pressure we need to understand its role in the stochastic context of the operator \mathcal{L} given above and DO representation (see App. A). Pressure (for a Boussinesq or incompressible flow with a deterministic conservation of mass) is the stochastic quantity which guarantees that for every possible realization ω the evolved field $(u(x,t;\omega), v(x,t;\omega), w(x,t;\omega))$ is divergence-free (take the divergence of the momentum equation 2.3a and use the family of continuity equations to show this). Therefore, the stochastic pressure should be able to balance all the non-divergent contributions from the terms involved in the operator \mathcal{L} (equation (2.3a)). To this end, we choose to represent the stochastic pressure field as

$$p = \bar{p} + Y_i(t;\omega) p_i - Y_i(t;\omega) Y_j(t;\omega) p_{ij} + Z_r(t;\omega) b_r$$ \hfill (2.4)

Based on the above discussion, the mean pressure field components should satisfy the following equation

$$\Delta \bar{p} = \text{div} \left(-\bar{u} \nabla \bar{u} - f \bar{k} \times \bar{u} - \bar{p} \bar{k} + \bar{\tau} (x,t) \right)$$ \hfill (2.5a)

$$B_p[\bar{p}(\xi,t)] = \bar{p}_{\partial D}(\xi,t), \quad \xi \in \partial D.$$ \hfill (2.5b)

The stochastic terms in \mathcal{L} multiplied with $Y_i(t;\omega)$ will be balanced through the following equation

$$\Delta p_i = \text{div} \left(-u_i \nabla \bar{u} - \bar{u} \nabla u_i - f \bar{k} \times u_i - \rho_i \bar{k} \right)$$ \hfill (2.5c)

$$B_p[p_i(\xi,t)] = 0, \quad \xi \in \partial D, \quad i = 1, ..., s.$$ \hfill (2.5d)

Similarly, for the stochastic terms multiplied by $Y_i(t;\omega) Y_j(t;\omega)$ we will have

$$\Delta p_{ij} = \frac{1}{2} \text{div} \left(u_i \nabla u_j + u_j \nabla u_i \right)$$ \hfill (2.5e)

$$B_p[p_{ij}(\xi,t)] = 0, \quad \xi \in \partial D, \quad i, j = 1, ..., s.$$ \hfill (2.5f)

Finally, the forcing terms will be balanced through the family of equations

$$\Delta b_r = \text{div} \bar{\tau}_r(x,t)$$ \hfill (2.5g)

$$B_p[q_r(\xi,t)] = 0, \quad \xi \in \partial D, \quad r = 1, ..., R.$$ \hfill (2.5h)

The above set of equations guarantees that for every realization ω the evolved field $u(x,t;\omega)$ will be incompressible (in the Boussinesq sense).

2.2.3. Evolution of the mean fields $\bar{u}(x,t), \bar{\rho}(x,t)$

Taking the expectation of the governing eqs. (2.2) using the expanded right-hand-sides and continuity eqs. (2.3c-d), we obtain the set of deterministic PDEs for the mean field,

$$\frac{\partial \bar{u}}{\partial t} = -\nabla \bar{p} + \frac{1}{\sqrt{Gr}} \Delta \bar{u} - \bar{u} \nabla \bar{u} - f \bar{k} \times \bar{u} - \bar{p} \bar{k} + \bar{\tau} (x,t) - C_{Y_i(t)Y_j(t)} \left[-\nabla p_{ij} + \frac{1}{2} u_i \nabla u_j + \frac{1}{2} u_j \nabla u_i \right]$$ \hfill (2.6a)

$$\frac{\partial \bar{\rho}}{\partial t} = \frac{1}{\sqrt{Sc} \sqrt{Gr}} \Delta \bar{\rho} - \bar{u} \nabla \bar{\rho} - \frac{1}{2} C_{Y_i(t)Y_j(t)} [u_i \nabla \rho_j + u_j \nabla \rho_i]$$ \hfill (2.6b)

$$0 = \text{div} \bar{u}$$ \hfill (2.6c)
2.2.5. Evolution of the stochastic coefficients

Moreover, we will have the following boundary conditions

\[B_{\Phi} \left[\Phi (\xi, t) \right] = \Phi_{\partial D} (\xi, t), \quad \xi \in \partial D. \]

\[(2.7) \]

2.2.4. Evolution of the stochastic subspace basis \(u_i (x, t) \), \(\rho_i (x, t) \)

If we multiply the governing eqs. (2.2) with the stochastic coefficients \(Y_j \), then apply the expectation operator and use the DO condition as well as the governing equations for the stochastic coefficients, we obtain the equations for the stochastic subspace basis (i.e. DO modes)

\[\frac{\partial u_i}{\partial t} = Q_{u,i} - \left[\{ Q_{u,i}, u_m \} + c_p \{ Q_{\rho,i}, \rho_m \} \right] u_m \]

\[(2.8a) \]

\[\frac{\partial \rho_i}{\partial t} = Q_{\rho,i} - \left[\{ Q_{u,i}, u_m \} + c_p \{ Q_{\rho,i}, \rho_m \} \right] \rho_m \]

\[(2.8b) \]

\[0 = \text{div} u_i, \]

\[(2.8c) \]

where,

\[Q_{u,i} = C_{Y_j(t)Y_j(t)}^{-1} E^\omega \left[\mathcal{L}_u \left[\Phi (x, t; \omega) ; Y_j (t; \omega) \right] \right] \]

\[= - \nabla p_i + \frac{1}{\sqrt{\text{Gr}}} \Delta u_i - u_i. \nabla \tilde{u} - \tilde{u} \nabla u_i - f \times u_i - \rho_i \hat{k} \]

\[- C_{Y_j(t)Y_j(t)}^{-1} M_{Y_j(t)Y_j(t)} \left[- \nabla \rho_m + \frac{1}{2} u_m. \nabla u_m + \frac{1}{2} u_n. \nabla u_m \right] \]

\[+ C_{Y_j(t)Y_j(t)}^{-1} C_{Y_j(t)Z_r(t)} \left[- \nabla b_r + \tilde{\tau}_r (x, t), \right], \]

and

\[Q_{\rho,i} = C_{Y_j(t)Y_j(t)}^{-1} E^\omega \left[\mathcal{L}_\rho \left[\Phi (x, t; \omega) ; Y_j (t; \omega) \right] \right] \]

\[= \frac{1}{\text{Sc} \sqrt{Gr}} \Delta \rho_i - u_i. \nabla \tilde{p} - \tilde{u} \nabla \rho_i - \frac{1}{2} C_{Y_j(t)Y_j(t)}^{-1} M_{Y_j(t)Y_j(t)} \left[u_m. \nabla \rho_m + u_n. \nabla \rho_m \right]. \]

Moreover, we will have the following boundary conditions

\[B_{\Phi} \left[\Phi_i (\xi, t) \right] = 0, \quad \xi \in \partial D. \]

\[(2.9) \]

2.2.5. Evolution of the stochastic coefficients \(Y_i (t; \omega) \)

The set of evolution equations for the stochastic coefficients is obtained by projecting the governing eqs. (2.2) onto each mode \(i \), applying the DO condition and ensure that each coefficient is of zero mean. The result takes the form of coupled SDEs

\[\frac{dY_i}{dt} = A_{im} (t) Y_m + B_{imn} (t) Y_n Y_n + D_1 (t; \omega), \]

\[(2.10) \]

where,

\[A_{im} (t) = \left\langle - \nabla p_m + \frac{1}{\sqrt{\text{Gr}}} \Delta u_m - u_m. \nabla \tilde{u} - \tilde{u} \nabla u_m - f \times u_m - \rho_m \hat{k}, u_i \right\rangle \]

\[+ c_p \left\langle \frac{1}{\text{Sc} \sqrt{\text{Gr}}} \Delta \rho_m - u_m. \nabla \tilde{p} - \tilde{u} \nabla \rho_m , \rho_i \right\rangle , \]

\[B_{imn} (t) = - \left\langle - \nabla p_{mn} + \frac{1}{2} u_m. \nabla u_n + \frac{1}{2} u_n. \nabla u_m , u_i \right\rangle - c_p \frac{1}{2} \left\langle u_m. \nabla \rho_n + u_n. \nabla \rho_m , \rho_i \right\rangle , \]

\[D_1 (t; \omega) = - B_{imn} (t) C_{Y_n(t)Y_n(t)} + \left\langle - \nabla b_r + \tilde{\tau}_r (x, t), u_i \right\rangle Z_r (t; \omega) . \]
Efficient Pseudo-Stochastic Pressures. We now show that for common pressure boundary conditions, the number of unknown stochastic pressures in eq. (2.4) can be reduced to $s + 1$ by defining adequate pseudo-stochastic pressures. Using Sect. 2.2.1, we first note that each velocity DO mode only needs a single scalar field to enforce the continuity constraint. Inspecting eqs. (2.6) and (2.8), we therefore define new pseudo-stochastic pressures, which are a combination of the mean, linear-, and quadratic-modal pressures:

$$
\begin{align*}
\ddot{p} &= \ddot{p} - C_{YiYj} p_{ij}, \\
\ddot{p}_i &= p_i - C_{YiYj}^{-1} M_{Yj} Y_m p_{im} + C_{YiYj}^{-1} C_{YjZr} b_r.
\end{align*}
$$

With this definition, the quadratic modal pressures are eliminated from (2.6) and (2.8). However, substituting the pseudo-pressures into (2.10), we find that the right-hand-side of (2.10) still retains terms of the form, $\langle \nabla p_{im}, u_i \rangle$, which are projections of the quadratic stochastic pressure terms in the subspace. At first, this would indicate that the quadratic modal pressures are still needed, but for commonly used boundary conditions, the projections cancel, i.e. inner products $\langle \nabla p_{im}, u_i \rangle$ are zero. To show this, we use the following form of the Gauss theorem Zorich (2004): for every scalar field α and every divergent-free vector field F, we have

$$
\int_D \nabla \alpha(x) \cdot F(x) \, dx = \int_{\partial D} \alpha(x) F(x) \cdot n(x) \, d\xi.
$$

In particular, we have: $\int_D \nabla p_{im} \cdot u_i \, dD = \int_{\partial D} p_{im} u_i \cdot n \, d\xi$. In many cases of interest, the boundary integral vanishes for classic pressure conditions along the domain boundaries. That is, for Dirichlet conditions on the mean velocity and Neumann conditions on the mean pressure (e.g. for a wall conditions), we have zero conditions on the velocity modes and zero Neumann conditions on the pressure modes. For Dirichlet conditions on the mean pressures and Neumann conditions on the mean velocities (e.g. for an outlet), we have zero conditions on the pressure modes and zero Neumann conditions on the velocity modes. Because of this property, the quadratic stochastic pressure term in (2.10) can be dropped without any penalty. Thus, by defining new pseudo-stochastic pressures, we have shown that we reduce the number of stochastic pressure unknowns from $s^2 + s + 1$ to $s + 1$. We note that if pseudo-pressure is used: i) all quadratic stochastic pressures can be recovered by solving Poisson equations given in Section 2.2.2 and ii) even though it is not necessary to have the three equalities

$$
\langle \nabla p_{im}, u_i \rangle = \langle \nabla p_m, u_i \rangle = \langle \nabla b_r, u_i \rangle = 0,
$$

they will hold for the above classic boundary conditions, in which case the right-hand-sides of the evolution equations for the stochastic coefficients can be obtained using the simpler form

$$
\begin{align*}
A_{im}(t) &= \left\langle \frac{1}{\sqrt{Gr}} \Delta u_m - u_m \cdot \nabla \bar{u} - \bar{u} \cdot \nabla u_m - f \times \dot{\mathbf{k}} \times u_m - \rho_m \mathbf{k}, u_i \right\rangle \\
&\quad + c_p \left\langle \frac{1}{Sc \sqrt{Gr}} \Delta \rho_m - u_m \cdot \nabla \bar{\rho} - \bar{u} \cdot \nabla \rho_m, \rho_i \right\rangle, \\
B_{imn}(t) &= -\frac{1}{2} \left(u_m \cdot \nabla u_n + u_n \cdot \nabla u_m, u_i \right) - c_p \frac{1}{2} \left(u_m \cdot \nabla \rho_n + u_n \cdot \nabla \rho_m, \rho_i \right), \\
D_i(t; \omega) &= -B_{imn}(t) C_{Ym(t)Yn(t)} + \left(\mathbf{r}_p(x, t), u_i \right) Z_r(t; \omega).
\end{align*}
$$

We emphasize that property (2.12) allows to integrate the evolving DO fields without computing the s^2 quadratic pressures at each time step. In particular, it allows efficient
application of projection methods (Guermond et al. (2006)) for the numerical solution of the DO form of stochastic Navier-Stokes and Boussinesq equations (Ueckermann et al. (2012)).

2.3. The case of stochastic boundary conditions

We now consider the problem of stochastic boundary conditions and show how, under certain conditions, it can be transformed into stochastic forcing in the interior, i.e. an additional term in the governing equations. For simplicity we assume that uncertainty is contained in the boundary velocity conditions only although the results can be generalized. We assume that the complete stochastic information for the boundary conditions is known. More specifically we have

\[B_\Phi [\Phi(\xi,t;\omega)] = \Phi_{\partial D}(\xi,t) + \Phi'_{\partial D}(\xi,t;\omega) = \Phi_{\partial D}(\xi,t) + \left(\begin{array}{c} u'_{\partial D}(\xi,t;\omega) \\ 0 \end{array} \right), \quad \xi \in \partial D, \]

where \(\Phi'_{\partial D}(\xi,t;\omega) \) is the zero-mean stochastic part of the boundary conditions. As for the initial conditions, we consider the covariance operator associated with the boundary conditions

\[C_{\partial D \partial D}(\xi_1,\xi_2) = E[u'_{\partial D}(\xi,t;\omega) u'_{\partial D}(\xi,t;\omega)^T]. \]

We formulate the eigenvalue problem to determine the principal directions along which the probability is distributed in the dominant variance sense

\[\int_{\partial D} C_{\partial D \partial D}(\xi_1,\xi_2) u_{\partial D,k}(\xi_2,t) d\xi_2 = \lambda_k u_{\partial D,k}(\xi_1,t). \]

Using this information, we expand the stochastic boundary conditions as follows

\[B_\Phi [\Phi(\xi,t;\omega)] = \Phi_{\partial D}(\xi,t) + \Xi_k(t;\omega) \left(\begin{array}{c} u'_{\partial D,k}(\xi,t) \\ 0 \end{array} \right), \quad \xi \in \partial D, \]

where \(k \) is an index taking values from 1, ..., \(K \), the order of the truncation, and the stochastic coefficients are given by

\[\Xi_k(t;\omega) = \int_{\partial D} u'_{\partial D}(\xi,t;\omega)^T u_{\partial D,k}(\xi,t) d\xi. \]

Assuming specific conditions on the above boundary forcing problem, we now transform it into an equivalent one having deterministic boundary conditions but with additional interior stochastic forcing. The idea is to handle the effect of stochastic boundary conditions through the partition of the solution into a component \(\Phi_h(\mathbf{x},t;\omega) = (\mathbf{u}_h^T, \rho_h)^T \) that will satisfy the deterministic part of the boundary conditions, and a set of incompressible and irrotational components \(\mathbf{u}_{b,k}(\mathbf{x},t) \) that will satisfy the stochastic part of the boundary conditions. Specifically, we assume we can write the solution of the system at any given time fixed \(t \) as

\[\begin{pmatrix} \mathbf{u}(\mathbf{x},t;\omega) \\ \rho(\mathbf{x},t;\omega) \end{pmatrix} = \begin{pmatrix} \mathbf{u}_h(\mathbf{x},t;\omega) \\ \rho_h(\mathbf{x},t;\omega) \end{pmatrix} + \Xi_k(t;\omega) \begin{pmatrix} \mathbf{u}_{b,k}(\mathbf{x},t) \\ 0 \end{pmatrix}. \]

Since the velocity fields \(\mathbf{u}_{b,k}(\mathbf{x},t) \) have been assumed irrotational and incompressible, there is a set of scalar potentials \(\phi_{b,k}(\mathbf{x},t) \) such that

\[\begin{align*}
\mathbf{u}_{b,k}(\mathbf{x},t) &= \nabla \phi_{b,k}(\mathbf{x},t) \\
\Delta \phi_{b,k}(\mathbf{x},t) &= 0.
\end{align*} \]

(2.13)
Moreover, each potential function \(\phi_{b,k}(x,t) \) will satisfy the following boundary conditions

\[
\mathcal{B}_\Phi \left[\begin{pmatrix} \nabla \phi_{b,k}(\xi,t) \\ 0 \end{pmatrix} \right] = \begin{pmatrix} u_{\partial D,k}(\xi,t) \\ 0 \end{pmatrix}, \quad \xi \in \partial D. \tag{2.14}
\]

Note that time in the above elliptic equation act as a parameter; thus there is no need for initial conditions. With the above choice we have a well defined problem for the potentials \(\phi_{b,k}(x,t) \) and additionally our solution satisfies the stochastic part of the boundary conditions. Moreover, we require \(\Phi_h(x,t;\omega) \) to satisfy the deterministic part of the boundary conditions and in this way we obtain the following problem for \(\Phi_h(x,t;\omega) \)

\[
\frac{\partial \Phi_h}{\partial t} = \mathcal{L} \left[\Phi_h(x,t;\omega) + \Xi_k(t;\omega) \begin{pmatrix} \nabla \phi_{b,k}(x,t) \\ 0 \end{pmatrix};\omega \right] - \frac{\partial}{\partial t} \left(\Xi_k(t;\omega) \begin{pmatrix} \nabla \phi_{b,k}(x,t) \\ 0 \end{pmatrix} \right) = 0 = \text{div} \, u_h,
\]

with deterministic boundary conditions

\[
\mathcal{B}_\Phi [\Phi_h(\xi,t;\omega)] = \Phi_{\partial D}(\xi,t), \quad \xi \in \partial D,
\]

and initial conditions

\[
\Phi_h(x,t_0;\omega) = \Phi_0(x;\omega) - \Xi_k(t_0;\omega) \begin{pmatrix} \nabla \phi_{b,k}(x,t_0) \\ 0 \end{pmatrix}, \quad x \in D, \quad \omega \in \Omega.
\]

Therefore, we have transformed the general problem to one with deterministic boundary conditions and interior stochastic forcing. We note that the following assumptions are required for the above to be efficient, including: i) the \(K \) boundary forcing modes need to satisfy sufficient smoothness conditions and, ii) the stochastic solution of the original Navier-Stokes or Boussinesq equations (forced by the stochastic boundary conditions) need to be well approximated by the stochastic solution of the transformed problem which is forced by the truncated interior expansion defined by (2.13)-(2.14).

We note that handling the stochastic boundary conditions through the interior is of special importance for the case of systems where the initial state is deterministic and uncertainty is introduced only through the boundary conditions (i.e. the stochastic subspace is initially an empty set). In this case the DO modes required to describe the current state of the system may be very few compared to those required to satisfy the stochastic boundary conditions. Using the above decomposition we create a new set of modes that depend exclusively on the stochastic characteristics of the boundary conditions and not on the system state. Hence, in this formulation the stochastic boundary conditions can be satisfied a priori (since we have solved for the potentials \(\phi_{b,k}(\xi,t) \)) and we only need to solve for the uncertainty of the solution in the interior of the domain.

3. Stochastic Energy Exchanges

In this section we study energy exchange properties (in the sense of variance) between different DO modes and the mean flow. By construction the DO modes remain always orthogonal and this spatial orthogonality implies orthogonality of their spatial Fourier, Gabor, and Wavelet transforms (Daubechies (1992); Antoine et al. (2004)). Therefore, different DO modes contain different frequency-phase content at the same spatial locations. The scope of this section is to derive closed expressions for the rate of energy or variance transfer from a given mode to the mean flow and to the other DO modes. These energy transfer rates, also known as model energy productions, have been studied previously in the deterministic context (see Rempfer & Fasel (1994) or Noack et al. (2003)).
Here we will use a probabilistic framework to prove that this stochastic energy exchange among different modes and the mean flow occurs in both a linear and a non-linear fashion since the employed decomposition allows us to separate these two mechanisms. The second, non-linear, mechanism is directly connected with the non-Gaussian statistics of the system state and it is also responsible for the triple interaction of DO modes.

To illustrate these properties we consider a system with deterministic Dirichlet boundary conditions and zero stochastic and mean forcing. This setup is sufficient to derive expressions for the stochastic energy transfer rates between different modes and the mean flow. Thus we set

\[\bar{\tau}(x, t) = \bar{\tau}(x, t; \omega) = 0, \quad x \in D, \quad \omega \in \Omega \]

\[B_\Phi[\Phi_i(\xi, t)] = 0, \quad \xi \in \partial D \]

3.1. Stochastic energy exchanges between the principal DO modes and the mean

To study the flow of stochastic energy (variance) among the mean flow and the DO modes we consider the DO eq. (2.10) for the stochastic coefficient \(Y_i(t; \omega) \) since the fields \(\mathbf{u}_i(x, t) \) remain normalized. We assume that at the current time instant the covariance matrix \(\mathbf{C}_{Y_m(t)Y_i(t)} \) has been diagonalized: in this way we have variance on the diagonal components only and the DO modes are time-evolving principal directions of the stochastic subspace (i.e. they take the form of a non-Gaussian KL expansion that has uncorrelated coefficients).

The goal is to study the transfer of energy from the mean flow to each principal mode \(i \). Multiplying (2.10) with \(Y_i \) and applying the mean value operator we obtain

\[
\frac{1}{2} \frac{d}{dt} E^\omega [Y_i^2] = A_{ii}(t) E^\omega [Y_i^2] + B_{imn}(t) E^\omega [Y_i Y_m Y_n]
\]

\[A_{ii}(t) = \left\langle \frac{1}{\sqrt{Gr}} \Delta \mathbf{u}_i - \mathbf{u}_i \cdot \nabla \bar{\mathbf{u}} - \bar{\mathbf{u}} \cdot \nabla \mathbf{u}_i - f\hat{k} \times \mathbf{u}_i - \rho_i \hat{k}, \mathbf{u}_i \right\rangle \]

\[+ c_p \left\langle \frac{1}{2 \sqrt{Gr}} \Delta \rho_i - \mathbf{u}_i \cdot \nabla \rho - \bar{\mathbf{u}} \cdot \nabla \rho, \rho_i \right\rangle, \]

\[B_{imn}(t) = -\frac{1}{2} \left\langle \mathbf{u}_m \cdot \nabla \mathbf{u}_n + \mathbf{u}_n \cdot \nabla \mathbf{u}_m, \mathbf{u}_i \right\rangle - c_p \frac{1}{2} \left\langle \mathbf{u}_m \cdot \nabla \rho_n + \mathbf{u}_n \cdot \nabla \rho_m, \rho_i \right\rangle. \]

We have

\[\left\langle \bar{\mathbf{u}} \cdot \nabla \mathbf{u}_i, \mathbf{u}_i \right\rangle + c_p \left\langle \bar{\mathbf{u}} \cdot \nabla \rho_i, \rho_i \right\rangle = \left\langle \bar{\mathbf{u}} \cdot \nabla \mathbf{E}_i \right\rangle = 0 \quad (3.1) \]

where we defined the field \(\mathbf{E}_i = \frac{1}{2} \left(\mathbf{u}_i^2 + c_p \rho_i^2 \right) \), and the last equation followed from the Gauss theorem

\[\left\langle \bar{\mathbf{u}} \cdot \nabla \mathbf{E}_i \right\rangle = - \left\langle \text{div} \bar{\mathbf{u}}, \mathbf{E}_i \right\rangle + \int_{\partial D} \mathbf{E}_i(\xi, t) \bar{\mathbf{u}}(\xi, t) \cdot \mathbf{n}(\xi) \, d\xi \]

and the chosen deterministic boundary conditions which lead to

\[\int_{\partial D} \mathbf{E}_i(\xi, t) \bar{\mathbf{u}}(\xi, t) \cdot \mathbf{n}(\xi) \, d\xi = 0. \]

Additionally we have

\[\left\langle f \hat{k} \times \mathbf{u}_i, \mathbf{u}_i \right\rangle = 0 \]
and, from the Gauss theorem and chosen boundary conditions,

\[(\Delta u_i, u_i) = -\langle \nabla u_i, \nabla u_i \rangle, \]

\[(\Delta \rho_i, \rho_i) = -\langle \nabla \rho_i, \nabla \rho_i \rangle. \]

Finally, we observe that

\[(u_i, \nabla \bar{u}, u_i) = \int_D u_i^T S_u u_i dx \]

where \(S_u \) is the stress tensor. Overall, we thus obtain

\[\frac{1}{2} \frac{d}{dt} E^w [Y_i^2] = - \left[\frac{1}{\sqrt{\text{Gr}}} \langle \nabla u_i, \nabla u_i \rangle + c_p \frac{\text{Sc} \sqrt{\text{Gr}}}{\rho} \langle \nabla \rho_i, \nabla \rho_i \rangle + \int_D u_i^T S_u u_i dx + \langle \rho \bar{k}, u_i \rangle + c_p \langle u_i, \nabla \bar{\rho}, \rho_i \rangle \right] E^w [Y_i^2] \]

(3.2)

\[- \frac{1}{2} \left[(u_m, \nabla u_n + u_n, \nabla u_m, u_i) + c_p (u_m, \nabla \rho_n + u_n, \nabla \rho_m, \rho_i) \right] E^w [Y_i Y_m Y_n] \]

We first observe that mean stochastic energy transfer between the stochastic mode \(i \) and the mean flow occurs in a linear way although the terms in the original equation which are responsible for this energy transfer are the nonlinear ones (it is the quadratic terms in Navier-Stokes that lead to the terms \(u_i^T S_u u_i \) and \(u_i, \nabla \bar{\rho}, \rho_i \) in equation (3.2)). Hence we have for the dissipation due to fluid viscosity and density diffusion

\[\varepsilon_{\text{diss},i} = -E^w [Y_i^2] \left[\frac{1}{\sqrt{\text{Gr}}} \langle \nabla u_i, \nabla u_i \rangle + c_p \frac{1}{\text{Sc} \sqrt{\text{Gr}}} \langle \nabla \rho_i, \nabla \rho_i \rangle \right] \]

and the rate of energy transferred to or from the mean flow to mode \(i \) in the form of stochastic energy (variance)

\[\varepsilon_{\text{mean} \rightarrow i} = -E^w [Y_i^2] \left[\int_D u_i^T S_u u_i dx + c_p \langle u_i, \nabla \bar{\rho}, \rho_i \rangle \right]. \]

We also have a term associated with the transformation of kinetic to potential energy

\[\varepsilon_{\text{pot} \rightarrow \text{kin},i} = -E^w [Y_i^2] \langle \rho \bar{k}, u_i \rangle \]

For small stochastic energy amplitudes \(E^w [Y_i^2] \) (so that terms of \(\mathcal{O} (Y^3) \) can be omitted) these three terms are those that mainly characterize the total energy variation of the mode \(u_i \), i.e. the total rate of energy change is given by

\[\varepsilon_{\text{linear},i} = \varepsilon_{\text{diss},i} + \varepsilon_{\text{mean} \rightarrow i} + \varepsilon_{\text{pot} \rightarrow \text{kin},i} \]

In conclusion, in the absence of external source of stochasticity (i.e. when stochasticity is introduced only through the initial conditions), uncertainties are always reduced by dissipation and diffusion, but they are either amplified or tapered by the nonlinear stretching of the mean flow as well as the gradient of the mean density field, while exchanges between potential and kinetic forms of stochastic energy occur.

3.2. Stochastic energy exchanges between the principal DO modes

To study amplitude exchanges among various DO modes we consider eq. (3.2) just derived above. By inspection, we observe that the rate of energy transferred to mode \(i \)
from all the DO modes is given by

$$
\varepsilon_{DO-i} = - \frac{1}{2} \left[\left(u_m \cdot \nabla u_n + u_m, \nabla u_m, u_i \right) + c_p \left(u_m \cdot \nabla \rho_n + u_m, \nabla \rho_n, \rho_i \right) \right] E^\omega \left[Y_l Y_m Y_n \right].
$$

Since we had assumed that the modal covariance matrix $C_{Y_m(t) Y_l(t)}$ had been diagonalized, the direct interactions of a pair of modes has been projected out. Such terms would correspond to dyadic exchanges of stochastic energy within the DO subspace, including conserved exchanges and internal growth or decay. Without these dyadic transfers, we consider principal DO modes and stochastic energy transfers among these principal modes depend on the non-Gaussian characteristics of the probability measure (for Gaussian variables we always have $E^\omega \left[Y_l Y_m Y_n \right] = 0$ and the triad term vanishes). Note that the $m = n = i$ term vanishes since, as for (3.1),

$$
\langle u_i, \nabla u_i, u_i \rangle + c_p \langle u_i, \nabla \rho_i, \rho_i \rangle = \langle u_i, \nabla \varepsilon_i \rangle = 0.
$$

Hence, based on the above, we can have two types of interactions for these principal modes. To simplify technical details we consider for now incompressible flows only, i.e. we derive expressions for the rate of energy transfer to a specific principal mode in the absence of density fluctuations. In the first type of principal mode interactions, we have interactions of two modes, say q and i, in a "two-one triad" fashion: i.e. the distinct cases are $(m = q, n = i)$, or $(m = i, n = q)$, or $(n = m = q)$. For that type of "two-one triad" interaction, summing all non-zero contributions, we obtain the rate of energy transferred between mode q and i

$$
\varepsilon_{q-i} = - \langle u_q, \nabla u_i + u_i, \nabla u_q, u_i \rangle E^\omega \left[Y_i^2 Y_q \right] - \frac{1}{2} \langle u_q, \nabla u_q + u_q, \nabla u_q, u_i \rangle E^\omega \left[Y_i^2 Y_i \right]
$$

$$
= - \left[\langle u_q, \nabla u_q, u_i \rangle + \langle u_q, \nabla u_i, u_q \rangle \right] E^\omega \left[Y_i^2 Y_q \right] - \langle u_q, \nabla u_q, u_i \rangle E^\omega \left[Y_i^2 Y_i \right]
$$

$$
= - \left[\langle u_i, \nabla u_q, u_i \rangle + \frac{1}{2} \langle u_q, \nabla u_i, u_i \rangle \right] E^\omega \left[Y_i^2 Y_q \right] + \langle u_q, \nabla u_i, u_q \rangle E^\omega \left[Y_i^2 Y_i \right]
$$

$$
= - E^\omega \left[Y_i^2 Y_q \right] \int_D u_i^T S_{u_i} u_i d\mathbf{x} + E^\omega \left[Y_q^2 Y_i \right] \int_D u_q^T S_{u_q} u_q d\mathbf{x}.
$$

In the above, we have used the assumed zero boundary conditions for the modes and the equality $\langle u_q, \nabla u_q, u_i \rangle = - \langle u_q, \nabla u_i, u_q \rangle$ which follows from direct application of the Gauss theorem. The two terms correspond to stretching of principal mode i projecting onto principal mode q and the contracting of principal mode q projecting onto principal mode i.

The second type of principal mode interactions involves the interaction of modes in triads, where the energy transferred to mode i is due to its triad interaction with another pair of DO modes, e.g. modes p and q. The rate of energy transfer due to this truly triad
interaction has the form

\[\varepsilon_{pq} = -\frac{1}{2} \langle u_p, \nabla u_q + u_q, \nabla u_p, u_i \rangle E^\omega [Y_i Y_p Y_q] \]

\[= -\frac{1}{2} \left[\langle u_q, \nabla u_p, u_i \rangle + \langle u_p, \nabla u_q, u_i \rangle \right] E^\omega [Y_i Y_p Y_q] \]

\[= \frac{1}{2} \left[\langle u_q, \nabla u_i, u_p \rangle + \langle u_p, \nabla u_i, u_q \rangle \right] E^\omega [Y_i Y_p Y_q] \]

\[= \frac{1}{2} \left(\int_D u_q^T S_u u_p dx + \int_D u_p^T S_u u_q dx \right) E^\omega [Y_i Y_p Y_q] \]

\[= \int_D u_q^T S_u u_p dx E^\omega [Y_i Y_p Y_q]. \]

Hence, this term corresponds to the stretching of principal mode direction \(i \) that projects on two other principal modes \(p \) and \(q \).

3.2.1. Global stochastic energy in incompressible Navier-Stokes flows

In the above two subsections we derived expressions characterizing the transfer of mean energy to uncertainty (transfer of energy from the mean to the principal modes) but also the variance exchanges between principal modes. Motivated by these results we define the following form of stochastic energy where energy of the mean and variance of the modes are considered in a unified way. As above, we restrict ourselves to incompressible Navier-Stokes flows and global kinetic energy only,

\[\mathcal{E}_S = \frac{1}{2} E^\omega [\langle u, u \rangle] = \frac{1}{2} E^\omega [\langle \bar{u} + Y_i u_i, \bar{u} + Y_i u_i \rangle] \]

\[= \frac{1}{2} \left(\|\bar{u}\|^2 + \sum_{i=1}^s E^\omega [Y_i^2] \right). \]

where we defined for convenience \(\|\bar{u}\|^2 = \langle \bar{u}, \bar{u} \rangle \). The next step is to study the evolution of the above quantity. We have using the DO equations

\[\frac{d\mathcal{E}_S}{dt} = E^\omega [\langle \bar{u}, u_i \rangle] + E^\omega \left[Y_i \frac{dY_i}{dt} \right] \]

\[= E^\omega [\langle \bar{u}, E^\omega [\mathcal{L}_u] \rangle] + E^\omega [Y_i \langle \mathcal{L}_u - E^\omega [\mathcal{L}_u], u_i \rangle] \]

\[= E^\omega [\langle \bar{u}, E^\omega [\mathcal{L}_u] \rangle] + E^\omega [Y_i \langle \mathcal{L}_u, u_i \rangle] \]

\[= E^\omega [\langle \mathcal{L}_u, \bar{u} \rangle] + E^\omega [\langle \mathcal{L}_u, Y_i u_i \rangle] \]

\[= E^\omega [\langle \mathcal{L}_u, u \rangle] \]

which is as expected (from the deterministic kinetic energy equation).

Case of Zero Mean Flow Boundary Conditions. The above result can be further expanded in the special but common case of i) zero stochastic and mean forcing (as was assumed all along in this section) and ii) zero boundary conditions on the mean velocity along the whole domain boundaries. With these assumptions, the above result is
expanded, using the Gauss theorem,

\[\frac{d\mathcal{E}_S}{dt} = E^\omega [(\mathcal{L}_u, u)] = E^\omega \left[\frac{1}{Re} \Delta u, u \right] \]

\[= -\frac{1}{Re} E^\omega [\nabla u, \nabla u] \]

\[= -\frac{1}{Re} \left(\langle \nabla \bar{u}, \nabla \bar{u} \rangle + E^\omega [Y_i^2] \langle \nabla u_i, \nabla u_i \rangle \right) \]

\[= -\frac{1}{Re} \left(\|\nabla \bar{u}\|^2 + E^\omega [Y_i^2] \|\nabla u_i\|^2 \right). \]

Thus, the stochastic kinetic energy for incompressible Navier-Stokes flows, i) with null boundary conditions on the mean velocity, and ii) without stochastic and mean forcing, is dissipated due to viscosity, in full analogy with the usual notion of energy for deterministic Navier-Stokes. All the other forms of energy transfer from the mean flow to the DO modes and among the DO modes are internal system interactions. Of course, should the mean velocity boundary be non-zero somewhere along the boundaries or should a mean forcing be present in the interior, additional terms (i.e. pressure work, advection of kinetic energy and mean body/forcing work) will be present in this equation.

A summary of all the energy transfers in the incompressible unforced case is given in Figure 1 where the internal interactions among the principal DO modes (green and blue arrows) are shown. The black arrows show the energy exchanges between the mean flow and the principal modes. Finally, the red arrows represent the energy dissipation due to viscosity acting on both the mean flow and the principal modes.
4. Analysis of transient dynamics in fluid flows

We will now illustrate the DO equations on the analysis of laminar flows with a small number of instabilities that lead to low-dimensional attractors of complex form (e.g. multiple steady states or effective dimensionality smaller than the reduced-order phase space dimensionality) and with strongly transient characteristics. Note that in this work the goal is to illustrate the applicability of the DO method in fluid flows with instabilities and emphasize its importance towards the analysis of energy transfers between dynamical components. To this end we will only consider low Re regimes where the number of instabilities is small - a feature that allows to more easily describe non-linear interactions and their role on the global dynamics.

Depending on the specific characteristics of the flow, the dynamics may possess a discrete or continuously infinite set of feasible states. The derived machinery allows for the determination of these states as well as the corresponding probability at which they occur. Additionally, the expressions for the energy rate transfer allows for the understanding of how these states are generated, e.g. where their energy is coming from. In what follows, we will consider two characteristic representatives of laminar flows with multiple states: flows behind a disk as well as Rayleigh-Bénard flows. We will study the evolution of the statistical characteristics of these flow by initializing them with a very small stochastic perturbation with Gaussian statistics and allow the internal instabilities of each flow to grow and give the multiple states that characterize the stochastic attractor at the given level of input energy.

4.1. Flow behind a circular disk

4.1.1. Flow equations and geometry

We consider viscous flows behind a circular disk; the same flows have been considered previously in Venturi et al. (2008) and Sapsis & Lermusiaux (2009) in the stochastic setting. Here we consider again these flows, but we seek to understand the energy transfer properties between the unstable mean and the dynamically evolving modes as well as their nonlinear interactions. As we will see, it is the interplay of linear instabilities and nonlinear energy transfers that allow energy to flow to linearly stable modes giving finite size to the attractor even along the linearly stable directions.

The governing equations for this case take the form

\[
\frac{\partial \mathbf{u}}{\partial t} = -\nabla p + \frac{1}{Re} \Delta \mathbf{u} - \mathbf{u} \cdot \nabla \mathbf{u}
\]

0 = div \mathbf{u}

The geometry of the flow, together with the boundary conditions, is shown in Fig. 2. The diameter of the disk is \(a = 1 \) and it is located in a distance \(d_1 = 4.5 \) from the inlet of the flow. The length and width of the computational domain is \(20 \times 3 \) (non-dimensional) and the spatial resolution used is \(N_x \times N_y = 400 \times 60 \) while the time step used is \(\delta t = 0.004 \). The initial conditions consist of random perturbations with harmonic dependence in space and Gaussian stochastic structure (see Sapsis & Lermusiaux (2009) for details). The DO numerical scheme used is presented in full detail in Ueckermann et al. (2012). The Reynolds number of the flow is defined as \(Re = \frac{Ua}{\nu} \) where \(\nu \) is the kinematic viscosity.

4.1.2. Stochastic response - stable regime and transitions

In the top column of Figure 3, we present the energy of the mean flow, the total variance, as well as the total dissipation rate as functions of time and Re number. It is
clear from the second color plot that between Re = 40 and Re = 50 a bifurcation occurs making the mean flow linearly unstable. The exact value of the transition is known to be Re_c = 43 and can be approximately obtained by the present analysis by integration of the reduced order equations. This transition to instability is expressed through the variance growth of the DO modes that adaptively track and so reveal the unstable directions in phase space (see Figure 5).

More specifically, we can observe from the colorplots that immediately after t = 0 the mean flow energy grows. Then depending on the Re number this energy is either retained to the mean flow (stable regime) or it is transformed to variance of the DO modes (unstable regime). In Figure 4 we present in more detail the mean field and DO modes for a stable Re number (Re = 41). We can observe that the two first modes is an oscillatory pair presenting spatially periodic structure that travels downstream - these two modes are strongly related since their spatial topology is shifted by half temporal period and they essentially express a linearly stable complex mode that corresponds to an eigenvalue with a non-zero imaginary part (Strouhal frequency). The DO scheme predicts that after an initial transient growth, the energy of this spatially periodic perturbation (described by the first two modes) tends to decay since the dissipation dominates the small positive value of energy transfer from the mean (dashed line, second column in Fig. 3). Concerning the statistical structure of the coefficients, we see that for the first two modes it is strongly Gaussian (Fig. 4) - a feature that indicates zero nonlinear energy transfers between modes 1 and 2 - see Figure 1. Even though the third mode has non-Gaussian statistical connection with the first two modes, the energy of the latter is continuously decreasing (due to dissipation and energy flowing towards the mean) therefore not allowing for any important energy transfer to the third DO mode (third column of Fig. 3).

4.1.3. Stochastic response - unstable regime

The situation is reversed in the unstable regime. To analyze this case we consider a sufficiently large Re = 91. We can distinguish three different dynamical regimes. In the first phase of the dynamics (t < 20) the first two DO modes have exactly the same spatial structure as the DO modes of Re = 41, i.e. the spatially periodic structure that comes in pairs of shifted modes. However, in this case we have an exponential growth of their amplitude - during this dynamical regime the statistics of the two modes remain Gaussian and there is no significant energy transfer between those modes and other modes. Right after t = 20 a bifurcation occurs and the second DO mode becomes antisymmetric (Fig 5) while the probability density function of the first two stochastic coefficients collapses into an effectively one-dimensional set. A detailed explanation of this collapse and its connection with the number of positive Lyapunov exponents or instabilities is given in
Figure 3. Top color plots: Energy of mean flow, total variance, and total dissipation rate for the flow behind a disk over different Re numbers. Lower time series plots: Energy of the first three modes together with energy exchange rates between mean and the other modes for two different Re numbers corresponding to stable and unstable dynamics.

Sapsis (2012) where it is rigorously proven that the effective dimensionality of the pdf cannot exceed the number of instabilities or positive Lyapounov exponents. Here, this fact is illustrated since we can directly observe that during the collapse of the $Y_1 - Y_2$ pdf (after $t \sim 20$) there is only the first mode that is linearly unstable - for the second mode both dissipation and energy transfer from the mean are negative. The strongly non-Gaussian shape of the pdf creates nonlinear energy transfer from the first to the second mode as it can be directly indicated from the third column of Fig. 3. Thus, during this transitional phase, we have only one linearly unstable mode, the first one, that absorbs energy from the mean, and due to the non-Gaussian statistics passes some of this energy (the rest is dissipated) to the linearly stable modes. In this way, even though only one mode, is linearly unstable, a series of stable modes have finite amount of energy - a detailed analysis of these energy transfer features and its implications in turbulent systems having a very large number of instabilities is given in Sapsis & Majda (2012b). These modes need to have non-Gaussian joint statistical structure with the linearly unstable modes in order for the nonlinear energy transfers to be activated.

After this transition phase (after $t = 40$), the flow enters a statistically stationary
Figure 4. Mean flow and DO modes in terms of vorticity in the stable regime (Re = 41). The joint statistics are also presented for the first three modes (in the form of two-dimensional marginals for pairs of modes). The Gaussian statistics between the first two modes indicate their negligible energy interaction.

Figure 5. Stochastic response of the flow behind the disk in the unstable regime (Re = 91) for three different time instants. For each time, the mean flow and the DO modes are presented in terms of their vorticity together with the joint statistics of the first four stochastic coefficients.
regime where the first two modes absorb energy from the mean flow in the same manner
than with the initially transient instability (i.e. through a complex pair of periodic
modes). Both of these modes dissipate an important amount of this energy and the rest
is sent to the third mode (note the negative values of mode-to-modes energy transfer in
the third column of Fig. 3). For the latter, we observe that the energy dissipation is
much larger than the energy received from the mean flow. This way, even though there
is only two positive Lyapunov exponents, energy is spread along a much larger number
of modes. Note that the fact that some of the energy is returned back to the mean does
not contradict the common picture in fluid dynamics that energy eventually dissipates
in small scales. The reason that we have energy flowing back to the mean here has to
do with the fact that we are dealing with a low-dimensional attractor where the high
frequency modes still have sufficiently large scales so that their energy is not completely
dissipated and exchanges with the mean still occur.

4.2. Rayleigh–Bénard convection

The second application that we consider is the Oberbeck–Boussinesq approximation to
convection which can lead to multiple steady-state regimes (Gelfgat et al. (1999)) that
are physically realizable (Pallares et al. (1999)). The stochastic bifurcation properties
for this flow have been studied in Venturi et al. (2010); here we are interested to perform
a detailed uncertainty quantification analysis of both the transient and steady state
regimes. We first present the steady state variance of the first and second DO mode
for various Rayleigh and Reynolds numbers. Subsequently, we determine the various
parametric domains that lead to qualitatively different results and present the details of
the statistical responses and the associated stochastic attractors that give rise to multiple
steady state responses.

4.2.1. Flow equations and geometry

We consider the Navier-Stokes equations in the form (2.1) and we apply the rescaling
\[
\begin{align*}
x &\rightarrow (Ra \cdot Pr)^{\frac{1}{6}} x, \\
t &\rightarrow (Ra \cdot Pr)^{\frac{1}{6}} t, \\
\rho &\rightarrow - (Ra \cdot Pr)^{\frac{1}{3}} T, \\
p &\rightarrow (Ra \cdot Pr)^{-\frac{1}{2}} p
\end{align*}
\]
where we use the non-dimensional numbers Ra and Pr (employed in the Oberbeck–
Boussinesq approximation) given by

\[Ra = Gr.Sc \quad \text{and} \quad Pr = Sc\]

and we also use temperature T instead of density used in (2.1). After applying the above
rescaling we obtain the Oberbeck–Boussinesq approximation which will be used for our
analysis

\[
\begin{align*}
\frac{\partial \mathbf{u}}{\partial t} &= -\nabla p + Pr \Delta \mathbf{u} - \mathbf{u} \cdot \nabla \mathbf{u} + Ra \cdot Pr T \mathbf{k} \\
\frac{\partial T}{\partial t} &= \Delta T - \mathbf{u} \cdot \nabla T \\
0 &= \text{div} \mathbf{u}
\end{align*}
\]

We consider non-dimensional numbers with order: Pr ~ 0.1 – 1, Ra ~ 10^4 since for these
values important bifurcations occur (Venturi et al. (2010)). The geometry of the flow is
assumed to be a square domain (Figure 6) with \(d_L = 1\) and with constant temperature
on the top and bottom boundary

\[T = 1 \quad \text{for} \quad y = 0 \]
\[T = 0 \quad \text{for} \quad y = 1 \]

and homogeneous Neumann boundary conditions for the two vertical sides. Additionally, we assume no-slip boundary conditions for the velocity. We discretize the domain with a \(N_x \times N_y = 64 \times 64 \) grid and we use a time step \(\delta t = 0.001 \); the details of the DO numerical scheme are presented in Ueckermann et al. (2012).

To estimate the quantity \(c_p \) for the inner product we estimate the magnitude of the field quantities. From the boundary conditions we will have \(T \sim O(1) \). Moreover, since we are interested to perform UQ in the unstable regime advection will be important and thus we expect a scaling of the form \(\frac{U^2}{P} \sim Ra \cdot Pr \cdot T \). This implies that \(U \sim O(10) - O(100) \).

Based on this scaling of the field quantities we choose \(c_p = 10 \) so that both temperature and velocity play an important role on the evolution of the stochastic subspace. We emphasize that the results that we present in the sequel are robust with respect to the exact value of the parameter \(c_p \) as long as the stochastic dynamics remain consistent with the scaling argument we just presented.

We initiate the mean flow using a superposition of the first two eigenfields of the linearized equation:

\[
\bar{u}_0 = \left(\frac{\partial \psi}{\partial y} - \frac{\partial \psi}{\partial x} \right), \quad \text{with} \quad \psi = 0.3X_1(x)Y_1(y) + 0.2X_2(x)Y_2(y)
\]
\[\bar{T}_0 = 1 - y \]

where the expressions for \(X_i, Y_i \) can be found in Venturi et al. (2010). We also apply a small, two-dimensional, stochastic perturbation in the temperature field with Gaussian statistics having variance \((\sigma_1^2, \sigma_2^2) = (10^{-1}, 10^{-5}) \), and with spatial shape given by

\[
\rho_{1,0} = 2 \cos 8\pi x \cos \pi y \\
\rho_{2,0} = 2 \cos \pi x \cos \pi y
\]

4.2.2. Stochastic response

We integrate the DO equations with two modes long enough so that the system reaches a statistical steady state. The steady state energy of the two modes with respect to the
non-dimensional numbers Ra and Pr is shown in Figure 7. There are two well separated regions corresponding to the stable (zero variance) and unstable behavior. Both modes are active over the same parametric region - this is because, as we will see later, the second mode absorbs its energy directly from the first mode and not from the mean. The strength of the first mode, which corresponds to a single rolling motion of the fluid inside the square domain (see Figure 8), shows a uniform dependence over the Ra number while it increases monotonically with the Pr number until the bifurcation value at which point the energy suddenly vanishes. On the other hand, the second mode (having a double symmetric roll structure) presents a more uniform dependence over the Pr number while its energy increases as the Ra number increases until the stability boundary.

In Figure 8 we present the stochastic response of the flow for a set of parameters lying
in the stable regime \((Ra = 18900 \text{ and } Pr = 1.025)\). In this case the mean has a double roll, symmetric structure while the first mode has an antisymmetric, single roll structure. The second mode consists of four rolls in a symmetric configuration. The non-Gaussian shape of the pdf indicates that there is a nonlinear energy transfer of energy from mode 1 to mode 2. However, the linearly stable character of both modes does not allow for any growth of their energy and the deterministic mean flow dominates.

In the contrary, for a set of parameters lying in the unstable regime \((Ra = 16050 \text{ and } Pr = 0.45)\), a small stochastic perturbation grows rapidly until it reaches the size of the stochastic attractor. In particular, as we can observe in Figure 9, the mean flow retains its double roll, symmetric structure having also two smaller rolls forming in the bottom of the domain. The first mode retains the same topology with the stable regime, while the second mode has now a double roll, symmetric structure. The evolution of the pdf presents also interesting features. In particular, the initially Gaussian shape is rapidly converging into a pdf with effective dimensionality close to one, indicating a reduced-order dynamical system with one stable and one unstable direction (Sapsis (2012)). The strongly non-Gaussian shape also reveals the important energy transfer from mode 1 to mode 2. As time evolves more and more probability concentrates to the lobes of the pdf, gradually giving rise to a bimodal stochastic attractor consisting of two symmetric stages.
with a strong, positive and negative, rolling motion of the fluid and a weaker double-roll motion.

In the above, we have characterized in a stochastic simple flow of low complexity how the transient instability of the first mode gives rise to a stochastic attractor that lives in a two-dimensional space and has, temporarily, a support of effective dimensionality equal to one, before it reaches its final, bimodal, steady state form.

5. Conclusions

We have given a global characterization of the stochastic attractor and analyzed the energy transfer properties in laminar fluid flows with internal instabilities. We have seen that these energy transfer properties are inherently connected with i) the linear instabilities of the mean flow and ii) the shape of the stochastic attractor and in particular with its non-Gaussian properties. In order to perform the above analysis, we have used the DO order-reduction framework, suitably formulated for Navier-Stokes and Boussinesq equations which allows for efficient uncertainty quantification particularly for systems with low-dimensional attractors. The time-dependent character of the DO modes allows for the determination of a very efficient basis that can track the stochastic attractor more effectively especially during transient regimes.

To illustrate the energy transfer properties we selected two laminar flows with a small number of internal instabilities, the flow behind a disk and the Rayleigh–Bénard convection. We first performed a bifurcation analysis to determine how the second-order properties vary with respect to the non-dimensional numbers involved. Subsequently, we focused on the different dynamical regimes and interpreted the stochastic response in terms of the energy transfer properties between the modes and the mean and between the modes themselves.

The present work provides an important paradigm, illustrating the interplay between stochastic properties and global dynamical properties such as energy transfers in fluid flows where order-reduction is feasible; thus it covers a large spectrum of modern fluid dynamics applications and beyond. However, the extension to non-laminar, turbulent flows requires the development of new UQ tools that can handle the essentially irreducible character of the dynamics while they can still be computationally tractable. This way we should be able to handle problems of very high dimensionality (such as turbulence) and be able in this context to quantify the connection between energy transfers and stochastic characteristics; results along this direction will be reported in the near future (Sapsis & Majda (2012b,a)).

Acknowledgments. We are very thankful to the MSEAS group members for helpful discussions. We are grateful to the Office of Naval Research for support under grants N00014-08-1-1097 (ONR6.1), N00014-08-1-0586 (QPE) and N00014-09-1-0676 (Science of Autonomy – A-MISSION).

Appendix A. Dynamically Orthogonal Representation: Notation and Definitions

Let \((\Omega, \mathcal{B}, \mathcal{P})\) be a probability space with \(\Omega\) being the sample space containing the set of elementary events \(\omega \in \Omega\), \(\mathcal{B}\) is the \(\sigma\)–algebra associated with \(\Omega\), and \(\mathcal{P}\) is a probability measure. Let \(x \in \mathcal{D} \subseteq \mathbb{R}^n\) denote the spatial coordinates and \(t \in T\) the time. Then every measurable map of the form \(\Phi(x, t; \omega), \omega \in \Omega\) will define a random field. In applications, the most important cases are where \(n = 2\) or \(3\) spatial dimensions, therefore we will
assume that $x \in D \subseteq \mathbb{R}^n$, $n = 2, 3$. We define the mean value operator as

$$
\bar{\Phi}(x, t) = \mathbb{E}[\Phi(x, t; \omega)] = \int_{\Omega} \Phi(x, t; \omega) d\mathbb{P}(\omega).
$$

A Hilbert space denoted by H, is formed by the set of all continuous, square integrable random fields Rozanov (1996), Sobczyk (1985), i.e.,

$$
\int_D \mathbb{E}[\Phi(x, t; \omega) \Phi(x, t; \omega)^T] d\mathbb{x} < \infty
$$

for all $t \in T$ (where Φ^T denotes the complex conjugate operation) and the bilinear form or covariance operator

$$
C_{\Phi_1 (\cdot, t; \omega) \Phi_2 (\cdot, s; \omega)} (x, y) = \mathbb{E}_{\omega} \left[(\Phi_1(x, t; \omega) - \bar{\Phi}_1(x, t)) (\Phi_2(y, s; \omega) - \bar{\Phi}_2(y, s))^T \right], \quad x, y \in D, \ t, s \in T. \quad (A 1)
$$

For every two random fields $\Phi_1(x, t; \omega), \Phi_2(x, t; \omega) \in H$, we denote the spatial inner product as

$$
\langle \Phi_1(\bullet; t; \omega), \Phi_2(\bullet; t; \omega) \rangle. \quad (A 2)
$$

This notation is also used for sub-fields for the case of vector fields Φ’s (e.g. multivariate state). For multivariate state vectors, a normalized (weighted) form of the inner product is defined, as exemplified in the main text.

In what follows, we will use Einstein’s convention for summation, i.e. $\sum_i a_i b_i$ except if the limits of summation need to be shown. A double index that is not summed-up will be denoted as $a_i b_i$.

A.1. DO representation

Using a generalized form (each term is time-dependent and we do not assume Gaussian statistics) of the Karhunen-Loeve expansion, we have that every random field $\Phi(x, t; \omega) \in H$ can be approximated arbitrarily well, by a finite series of the form

$$
\Phi(x, t; \omega) = \Phi(x, t) + \sum_{i=1}^{s} Y_i(t; \omega) \Phi_i(x, t), \quad \omega \in \Omega, \quad (A 3)
$$

where s is a sufficiently large, non-negative integer and the $Y_i(t; \omega)$ are s scalar random coefficients. We define the stochastic subspace $V_S = \text{span} \{\Phi_i(x, t)\}_{i=1}^{s}$ as the linear space spanned by the s deterministic fields $\Phi_i(x, t)$.

Clearly, representation (A 3) with all quantities $(\Phi(x, t), \{\Phi_i(x, t)\}_{i=1}^{s}, \{Y_j(t; \omega)\}_{j=1}^{s})$ varying is redundant and therefore we cannot derive independent equations from the SPDE describing their evolution. Hence, additional constraints are imposed in order to get a well posed problem for the unknown quantities. As shown in Sapsis & Lemusiaux (2009), an appropriate constraint is the DO condition, the rate of change of the stochastic subspace is orthogonal to itself, expressed as

$$
\frac{dV_S}{dt} \perp V_S \iff \left\langle \frac{\partial \Phi_i(\bullet, t)}{\partial t}, \Phi_j(\bullet, t) \right\rangle = 0, \ i = 1, ..., s, \ j = 1, ..., s. \quad (A 4)
$$

Note that, the DO condition implies the preservation of orthonormality for the basis $\{\Phi_j(x, t)\}_{j=1}^{s}$ itself since

$$
\frac{\partial}{\partial t} \langle \Phi_i(\bullet, t), \Phi_j(\bullet, t) \rangle = \left\langle \frac{\partial \Phi_i(\bullet, t)}{\partial t}, \Phi_j(\bullet, t) \right\rangle + \left\langle \frac{\partial \Phi_j(\bullet, t)}{\partial t}, \Phi_i(\bullet, t) \right\rangle = 0, \ i = 1, ..., s, \ j = 1, ..., s.
$$
Inserting the DO representation (A 3) into the original governing differential equations and using the DO condition (A 4), one can derive a set of independent, explicit equations for all the unknown quantities. Specifically, we reformulate the original SPDE to an \(s \)-dimensional stochastic differential equation for the random coefficients \(Y_i(t, \omega) \) coupled with \(s + 1 \) deterministic PDEs for the fields \(\Phi(x, t) \) and \(\Phi_i(x, t) \).

References

Sapsis, T. P. & Majda, A. J. 2012a Blending modified gaussian closure and non-gaussian reduced subspace methods for turbulent dynamical systems. in preperation.

T. P. Sapsis, M. P. Ueckermann, and P. F. J. Lermusiaux

Figure 9. Stochastic response of the Rayleigh–Bénard convection in the unstable regime ($Ra = 16050$ and $Pr = 0.45$). The mean vorticity and temperature field are presented together with Modes 1 and 2 for two different time instants. The joint probability density function is also presented together with the time series for the energies.