Search for Resonances Decaying to Top and Bottom Quarks with the CDF Experiment

Citation

As Published
http://dx.doi.org/10.1103/PhysRevLett.115.061801

Publisher
American Physical Society

Version
Final published version

Accessed
Mon Dec 31 03:18:54 EST 2018

Citable Link
http://hdl.handle.net/1721.1/98009

Terms of Use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Detailed Terms

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for Resonances Decaying to Top and Bottom Quarks with the CDF Experiment

J. A. Appel,15 T. Arisawa,52 A. Artikov,13 J. Asaadi,47 W. Ashmanskas,15 B. Auerbach,2 A. Aurisano,47 F. Azfar,38
W. Badgett,15 T. Bae,25 A. Barbaro-Galtieri,19 V. E. Barnes,45 B. A. Barnett,53 P. Barria,41a,41f P. Bartos,12 M. Bavec,39a
F. Bedeschi,41a S. Behari,15 G. Bellentini,41a,41g J. Bellinger,54 D. Benjamín,14 A. Beretvas,15 A. Bhatti,45 L. Bianchi,15
K. R. Bland,8 B. Blumenfeld,23 A. Bocci,14 A. Bodek,41 D. Bortoletto,43 J. Boudreau,42a A. Boveia,11 L. Brigliadori,36
C. Bromberg,32 E. Brucken,21 J. Budagov,13 H. S. Budd,44 K. Burkett,15 G. Busetto,39a,39b P. Bussey,19 P. Buttì,
A. Buzaatu,10 A. Calamba,10 S. Camarda,4 Campanelli,28 F. Canelli,11d B. Carls,22 D. Carlsheim,41,43 R. Carosi,15
S. Carrillo,16,18 B. Casal,93 M. Casarsa,48a A. Castro,6a,6b P. Catastini,20 D. Cauz,48a,48b,48c V. Cavaliere,22 A. Cerri,26
M. E. Convery,15 J. Conway,7 M. Corbo,15,zz M. Cordelli,17 C. A. Cox,7 D. J. Cox,7 M. Cremonesi,41a D. Cruz,47 J. Cuevas,9,
y
R. Moore,,11ee M. J. Morello,41a,41d A. Mukherjee,15 Th. Muller,24 P. Murat,15 M. Mussini,6a,6b J. Nachtman,15,m Y . Nagai,
D. Waters,28 W. C. Wester III,15 D. Whiteson,40,c A. B. Wicklund,7 S. Wilbur,7 H. H. Williams,40 J. S. Wilson,31 P. Wilson,

7 AUGUST 2015
© 2015 American Physical Society

Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
Argonne National Laboratory, Argonne, Illinois 60439, USA
University of Athens, 157 71 Athens, Greece
Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
Baylor University, Waco, Texas 76798, USA
Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
University of Bologna, I-40127 Bologna, Italy
University of California, Davis, Davis, California 95616, USA
University of California, Los Angeles, Los Angeles, California 90024, USA
Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
University of Geneva, CH-1211 Geneva 4, Switzerland
Glasgow University, Glasgow G12 8QQ, United Kingdom
University of Florida, Gainesville, Florida 32611, USA
Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
University of Geneva, CH-1211 Geneva 4, Switzerland
University of Liverpool, Liverpool L69 7ZE, United Kingdom
Division of High Energy Physics, Department of Physics, University of Helsinki, FIN-00014, Helsinki, Finland;
Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
University of Illinois, Urbana, Illinois 61801, USA
The Johns Hopkins University, Baltimore, Maryland 21218, USA
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
Center for High Energy Physics, Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea; Ewha Womans University, Seoul, 120-750, Korea
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
University of Liverpool, Liverpool L69 7ZB, United Kingdom
University College London, London WC1E 6BT, United Kingdom
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, E-28040 Madrid, Spain
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
University of Michigan, Ann Arbor, Michigan 48109, USA
Michigan State University, East Lansing, Michigan 48824, USA
Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
University of New Mexico, Albuquerque, New Mexico 87131, USA
The Ohio State University, Columbus, Ohio 43210, USA
Okayama University, Okayama 700-8530, Japan
Osaka City University, Osaka 558-8585, Japan
University of Oxford, Oxford OX1 3RH, United Kingdom
Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
University of Padova, I-35131 Padova, Italy
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
University of Pisa, I-56127 Pisa, Italy
University of Siena, I-53100 Siena, Italy
Scuola Normale Superiore, I-56127 Pisa, Italy
INFN Pavia, I-27100 Pavia, Italy
University of Pavia, I-27100 Pavia, Italy
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
We report on a search for charged massive resonances decaying to top (t) and bottom (b) quarks in the full data set of proton-antiproton collisions at a center-of-mass energy of $\sqrt{s} = 1.96$ TeV collected by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.5 fb^{-1}. No significant excess above the standard model background prediction is observed. We set 95% Bayesian credibility mass-dependent upper limits on the heavy charged-particle production cross section times branching ratio to tb. Using a standard model extension with a W' to tb and left-right-symmetric couplings as a benchmark model, we constrain the W' mass and couplings in the $300–900 \text{ GeV}/c^2$ range. The limits presented here are the most stringent for a charged resonance with mass in the range $300–600 \text{ GeV}/c^2$ decaying to top and bottom quarks.

Several modifications of the standard model (SM) of particle physics predict the existence of massive, short-lived states decaying to pairs of SM leptons or quarks. Such a resonance decaying to a top (t) and a bottom (b) quark, tb, appears in models such as left-right-symmetric SM extensions [1], Kaluza-Klein extra dimensions [2,3], technicolor [4,5], or little Higgs scenarios [6] featuring one or more massive charged vector bosons, generically denoted as W'. Searches for W' bosons in the $W' \rightarrow tb$ decay channel are complementary to searches in the leptonic decay channel $W' \rightarrow \ell \nu$, and probe the most general scenario where the couplings of the W' boson to fermions are free parameters.

Recent searches in the $W' \rightarrow tb$ channel have been performed by the CDF [7] and D0 [8] Collaborations in proton-antiproton ($p\bar{p}$) collisions at 1.96 TeV c.m. energy at the Tevatron, and by the ATLAS [9] and CMS [10] Collaborations in proton-proton collisions at 8 TeV c.m. energy at the Large Hadron Collider (LHC). For mass scales approaching and surpassing 1 TeV, the LHC experiments have superior sensitivity over the Tevatron experiments due to the enhancement of the production cross section at the higher center-of-mass energy of the collisions. However, in the mass region well below 1 TeV, the Tevatron experiments have greater sensitivity due to the relative suppression of gluon-initiated backgrounds compared to the quark-initiated signals such as the one under consideration here.

In this Letter, we present a novel search for charged massive resonances decaying to the tb quark pair. The search is performed in events where the top quark decays to a Wb pair and the W boson decays to a charged lepton and a neutrino; the two bottom quarks hadronize and produce two clusters of particles (jets). Since no assumptions on the signal model other than on the natural width are made, this search is sensitive to any narrow resonant state decaying to a tb final state. A simple left-right-symmetric SM extension [11], predicting the existence of W' bosons of unknown mass and universal weak-coupling strength to SM fermions, is used as a benchmark model. The reconstructed width of the signal is dominated by resolution effects; the test signal is therefore applicable for any W'-like particle whose width is small compared to the experimental resolution.

The data were collected at the Tevatron $p\bar{p}$ collider at a center-of-mass energy of 1.96 TeV and were recorded by the CDF II detector [12]. The detector consists of a silicon microstrip vertex detector and a cylindrical drift chamber immersed in a 1.4 T magnetic field for vertex and charged-particle trajectory (track) reconstruction, surrounded by pointing-tower-geometry electromagnetic and hadronic calorimeters for energy measurement, and muon detectors outside the calorimeters [13].

DOI: 10.1103/PhysRevLett.115.061801
PACS numbers: 13.85.Rm, 12.60.Cn, 14.65.Ha, 14.80.Rt
We analyze events accepted by the online event selection (trigger) that requires either the event missing transverse energy E_T to satisfy $E_T > 45$ GeV or, alternatively $E_T > 35$ GeV and the presence of two or more jets, each with transverse energy $E_j > 15$ GeV. The full data set corresponds to an integrated luminosity of 9.5 fb$^{-1}$. Off-line, we select events with $E_T > 50$ GeV, after correcting measured jet energies for instrumental effects [14]. We further require events to have two or three high-E_T jets, where the two jets j_1, j_2 with the largest transverse energies, E_{1T} and E_{2T}, are required to satisfy $E_{1T} > 35$ GeV and $E_{2T} > 25$ GeV; the jet energies are determined from calorimeter deposits and corrected using charged-particle momentum measurements [15]. One leading jet is required to be within the silicon detector acceptance, $|\eta| < 0.8$; the other satisfies $|\eta| < 2.0$. In addition to the large missing transverse energy indicating the presence of a high-p_T neutrino, the presence of a W boson decaying to an $e\nu_e$ or $\mu\nu_\mu$ pair is confirmed by requiring a reconstructed electron or muon. Leptonically decaying τ leptons are collected in the same way. Hadronically decaying τ leptons from the W decay chain are mostly reconstructed as jets in the calorimeter. Three-jet events are thus retained, while events with more than three jets with $E_j > 15$ GeV and $|\eta| < 2.4$ are excluded. The majority of the background at this stage is quantum chromodynamics (QCD) production of multijet events, which yields E_T generated through jet-energy measurements. Neutrinos produced in semileptonic b-hadron decays also contribute to the E_T of these events. In both cases, the \vec{E}_T is typically aligned with the projection on the transverse plane of the second or third jet momentum. Events are rejected by requiring the azimuthal separation $\Delta\phi$ between \vec{E}_T and \vec{E}_{1T} (or \vec{E}_{2T}) to be larger than 0.4. The resulting sample, pretag, contains 391 229 events; about 940 of these would originate from the decay of a 300 GeV/c2 W boson with SM-like couplings.

In order to identify jets originated from the hadronization of a b quark ("b tagged"), we use two different algorithms, each tuned either for making a very pure selection (tight), or for making a somewhat less pure selection that is more efficient (loose). The SECVTX algorithm [16] looks for a vertex displaced from the collisions point produced by the in-flight decay of a b-flavored hadron; for this analysis we choose the tight (T) working point. The JETPROB algorithm [17] determines the probability that the tracks within a jet originate from the primary vertex; we choose for the latter algorithm the loose (L) working point. The efficiency for each b-tagging algorithm is approximately 40%-50%. We require at least one of the first two leading jets in E_T to be tagged by the SECVTX algorithm. Events are further divided among twelve statistically independent subsamples, depending on whether there are no additional b-tagged jets (1T), or an additional jet is tagged by JETPROB but not by SECVTX (TL), or tagged by SECVTX (TT), the number of jets (two-jet or three-jet sample), and the presence or absence of a reconstructed electron or muon. This division increases sensitivity because signal-to-noise ratio and background composition differ across subsamples. The resulting preselection sample contains 25 256 events, to which a W' boson with SM-like couplings and 300 GeV/c2 mass would contribute about 480 events.

The dominant contribution to the preselection sample is due to QCD multijet production. Other processes giving significant contributions are top-antitop quark-pair production ($tt\bar{t}$), electroweak single-top-quark production, dibosons (WW, WZ), and production of jets in association with a boson ($V + jets$, where V stands for a W or a Z boson), including both heavy-flavor jets (from b or c quarks) and jets from light-flavor quarks or gluons that have been erroneously b tagged.

A combination of data and simulations making use of Monte Carlo integration are used to derive the estimates for SM background contributions. The kinematic distributions of events associated with top-quark pair, single-top-quark, $V + jets$, $W + c$, diboson (VV), and associated Higgs and W or Z boson (VH) production are modeled using simulated samples. The ALPGEN generator [18] is used to model $V + jets$ at leading order in the strong-interaction coupling with up to four partons produced at tree level, based on generator-to-reconstructed-jet matching [19,20]. The POWHEG [21] generator is used to model t- and s-channel single-top-quark production, while PYTHIA [22] is used to model top-quark-pair, VV, and VH production. Each event generator uses the CTEQ5L parton distribution functions [23]. Parton showering is simulated using PYTHIA. Event modeling also includes simulation of the detector response using GEANT [24]. The simulated events are reconstructed and analyzed in the same way as the experimental data. Normalizations of the contributions from t- and s-channel single-top-quark, VV, VH, and $tt\bar{t}$ pair production are taken from theoretical cross sections [25-28], while the normalization for $W + c$ production is taken from the measured cross section [29]. For $V + jets$ production, the heavy-flavor contribution is normalized based on the number of b-tagged events observed in an independent data control sample [30]. Contributions of $V + jets$ and VV events containing at least one incorrectly b-tagged light-flavored jet are determined by applying to simulated events a per-event probability, obtained from a generic event sample containing mostly light-flavored jets [31,32]. The efficiency of the trigger-level selection is measured in data and applied to all simulated samples.

Because QCD multijet events with large missing transverse energy are difficult to simulate properly, a suitable model is derived solely from data; we use an independent data sample composed of events with $\Delta\phi(E_T, \vec{E}_{1T}) < 0.4$ and $50 < E_T < 70$ GeV, consisting almost entirely of QCD multijet contributions. First, a b-tagging probability f_i is calculated separately in each b-tagging subsample i.
by taking the ratio between tagged and pretagged events as a function of several jet- and event-related variables [33]. Then, QCD multijet kinematic distributions are determined separately for each region \(i \) by weighting the untagged data in the preselection sample according to the probability \(f_r \).

The signal is modeled using \textsc{pythia} for \(W' \)-boson mass \(M_{W'} \) in the range \(300 \leq M_{W'} \leq 900 \text{ GeV}/c^2 \) in 100 GeV/c^2 increments, where the \(W' \)-boson is assumed to have purely right-handed decays. As the \(W' \)-boson helicity does not affect analysis observables, this model is valid for the requirement on \(NN_{QCD} \), reweighted by the tag-rate weighting the untagged data in the preselection sample.

Two scenarios are considered, depending on whether the leptonic decay mode \(W' \to \ell \nu \) is allowed or forbidden. The latter, for instance, is the case if the hypothetical right-handed neutrino \(\nu_R \) is more massive than the \(W' \) boson. The only effect of the forbidden leptonic decay mode is an increased branching fraction \(B(W' \to t\bar{b}) \).

As an intermediate background-rejection step, an artificial neural network, \(NN_{QCD} \), is employed to separate the dominant QCD multijet background from signal and other backgrounds. \(NN_{QCD} \) is trained using event observables \((E_T, p_T) \) [34], angular observables \(\Delta \phi(T, p_T), \Delta \phi(E_T, E_T^H), \Delta \phi(p_T, E_T^H) \), and other topological information such as sphericity [35]. As the final-state topologies for a \(W' \)-boson decaying to a top-bottom quark pair and \(s \)-channel single-top-quark production are similar, we employ the same \(NN_{QCD} \) function constructed for separate \(W + \text{jets} \) events from backgrounds in the \(s \)-channel single-top-quark observation [36]. No information on the \(W' \)-boson mass is included in the training sample in order to ensure consistent performance in QCD multijet background separation across the whole \(W' \)-boson-mass range under study.

The events must satisfy a minimum \(NN_{QCD} \) requirement to maximize sensitivity to single-top-quark \(s \)-channel production, which is kinematically very similar to \(W \) production at threshold. The surviving events constitute the signal region. To determine the appropriate normalization of QCD events in each analysis subsample, we derive a scale factor in the region composed by the rejected events. Tables I and II show the event yields after the full selection.

We use two additional neural networks, \(NN_{V\text{jets}} \) and \(NN_{t\bar{t}} \), to classify events that satisfy the minimum requirement on the \(NN_{QCD} \) output variable. The first neural network, \(NN_{V\text{jets}} \), is trained to separate the \(W' \)-boson signal from \(V + \text{jets} \) and the remaining QCD backgrounds. In the training, a simulated \(W' \)-boson signal is used, while the background sample consists of pretag data that satisfy the requirement on \(NN_{QCD} \), reweighted by the tag-rate probability. The second neural network, \(NN_{t\bar{t}} \), is trained to separate the \(W' \) boson from \(t\bar{t} \) production using simulated samples.

Table I. Numbers of expected and observed two-jet events with and without identified leptons, combined, in the IT, TL, and TT subsamples. The uncertainties on the expected numbers of events are due to the theoretical and experimental uncertainties on signal and background modeling. Expected numbers of events for a right-handed \(W' \)-boson signal with SM-like couplings and a mass of 300 GeV/c^2 are shown.

<table>
<thead>
<tr>
<th>Category</th>
<th>IT</th>
<th>TL</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)-channel single top</td>
<td>98 \pm 10</td>
<td>36.4 \pm 3.8</td>
<td>46.1 \pm 4.3</td>
</tr>
<tr>
<td>(t)-channel single top</td>
<td>167 \pm 24</td>
<td>7.3 \pm 1.1</td>
<td>7.9 \pm 1.1</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>457 \pm 32</td>
<td>140.9 \pm 11.1</td>
<td>174.7 \pm 11.7</td>
</tr>
<tr>
<td>(VV)</td>
<td>259 \pm 18</td>
<td>28.5 \pm 2.0</td>
<td>27.0 \pm 2.0</td>
</tr>
<tr>
<td>(VH)</td>
<td>14 \pm 1</td>
<td>5.4 \pm 0.5</td>
<td>7.2 \pm 0.5</td>
</tr>
<tr>
<td>(V + \text{jets})</td>
<td>3473 \pm 901</td>
<td>236.4 \pm 61.1</td>
<td>156.7 \pm 38.7</td>
</tr>
<tr>
<td>(QCD)</td>
<td>2766 \pm 103</td>
<td>220.0 \pm 16.8</td>
<td>101.5 \pm 12.2</td>
</tr>
<tr>
<td>Total background</td>
<td>7235 \pm 908</td>
<td>674.3 \pm 64.2</td>
<td>524.5 \pm 43.0</td>
</tr>
<tr>
<td>(W') (300 GeV/c^2)</td>
<td>156 \pm 10</td>
<td>59.9 \pm 4.6</td>
<td>84.6 \pm 7.9</td>
</tr>
<tr>
<td>Observed</td>
<td>7128</td>
<td>680</td>
<td>507</td>
</tr>
</tbody>
</table>

Table II. Same as in Table I but for three-jet events.

<table>
<thead>
<tr>
<th>Category</th>
<th>IT</th>
<th>TL</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)-channel single top</td>
<td>50 \pm 5</td>
<td>13.3 \pm 1.5</td>
<td>16.2 \pm 1.6</td>
</tr>
<tr>
<td>(t)-channel single top</td>
<td>91 \pm 14</td>
<td>5.8 \pm 0.9</td>
<td>6.9 \pm 1.0</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>900 \pm 65</td>
<td>148.2 \pm 11.6</td>
<td>161.6 \pm 10.5</td>
</tr>
<tr>
<td>(VV)</td>
<td>106 \pm 8</td>
<td>9.7 \pm 0.7</td>
<td>7.8 \pm 0.6</td>
</tr>
<tr>
<td>(VH)</td>
<td>6 \pm 1</td>
<td>1.7 \pm 0.2</td>
<td>2.1 \pm 0.2</td>
</tr>
<tr>
<td>(V + \text{jets})</td>
<td>1360 \pm 357</td>
<td>80.6 \pm 21.2</td>
<td>51.6 \pm 13.4</td>
</tr>
<tr>
<td>(QCD)</td>
<td>1261 \pm 64</td>
<td>92.8 \pm 9.4</td>
<td>31.8 \pm 4.6</td>
</tr>
<tr>
<td>Total background</td>
<td>3774 \pm 369</td>
<td>352 \pm 26.3</td>
<td>278 \pm 17.5</td>
</tr>
<tr>
<td>(W') (300 GeV/c^2)</td>
<td>80 \pm 5</td>
<td>23.5 \pm 1.9</td>
<td>28.8 \pm 3.0</td>
</tr>
<tr>
<td>Observed</td>
<td>3613</td>
<td>388</td>
<td>274</td>
</tr>
</tbody>
</table>
events characterized by different b-tagging content, jet multiplicity, and presence of well-identified leptons by multiplying the corresponding likelihoods and simultaneously taking into account the correlated uncertainties.

Systematic uncertainties include both uncertainties on template normalization and uncertainties on the shape of the NNsig distribution. Uncertainties due to the same source are considered 100% correlated. These uncertainties apply to both signal and backgrounds, and include luminosity measurement (6%), b-tagging efficiency (8% to 16%), trigger efficiency (1% to 3%), lepton identification efficiency (2%), parton distribution functions (3%), initial-state and final-state radiation simulation uncertainties (2%) and up to 6% for the jet-energy scale [14]. The uncertainties due to finite simulation sample size, and the uncertainties on the normalization of the production of $t\bar{t}$ (3.5%), t-channel single-top quarks (6.2%), s-channel single-top quarks (5%), dibosons (6%) from the theoretical cross-section calculations [25,26], $W + c$ (23%) from the measured cross section [27,29], and QCD multijet (3% to 100%, calculated from scale factors) are not correlated. The production rates of events with a W or a Z boson plus heavy-flavor jets are associated with a 30% uncertainty.

The procedure is performed for all signal mass hypotheses using the methodology described in Ref. [30], obtaining 95% C.L. upper limits on $\sigma(p\bar{p} \rightarrow W_0) \times B(W_0 \rightarrow t\bar{b})$ as a function of M_{W_0}, assuming no signal present in the data. By comparing the limits on $\sigma(p\bar{p} \rightarrow W'_0) \times B(W'_0 \rightarrow t\bar{b})$ with the theoretical next-to-leading order calculations for the same quantity for a right-handed W_0 boson with SM-like couplings [11], we exclude W_0 bosons for masses less than $860\langle 880 \rangle$ GeV/c2 in cases where $W_0 \rightarrow t\bar{b}$ decay to leptons are allowed (forbidden). The expected and observed upper limits on $\sigma(p\bar{p} \rightarrow W_0) \times B(W_0 \rightarrow t\bar{b})$ divided by theoretical predictions are shown in Fig. 2.

For a simple s-channel-production model with effective coupling g_{W_0}, and assuming that couplings to light and heavy quarks are identical, the cross section is proportional to $g_{W_0}^2$. By relaxing the assumption of universal weak coupling, the limits on the cross section are interpreted as upper limits on g_{W_0} as functions of M_{W_0}. The excluded region of the $g_{W_0}-M_{W_0}$ plane is shown in Fig. 3, with g_{W_0} expressed in units of the SM weak couplings, g_W. For a W_0
consistent with the background-only hypothesis, and upper limits are set on the production cross section times branching ratio at the 95% Bayesian credibility. For a specific benchmark model (left-right-symmetric SM extension), in cases where the $W' \rightarrow tb$ -leptonic-decay mode is allowed (forbidden), we exclude W' bosons with masses lower than 860 (880) GeV/c^2. For masses smaller than approximately 600 GeV/c^2, this search yields the most constraining limits to date on narrow tb-resonance production.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, U.K.; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.

In conclusion, we perform a search for a massive resonance decaying to tb with the full CDF II data set, corresponding to an integrated luminosity of 9.5 fb$^{-1}$. The data are consistent with the background-only hypothesis, and upper limits are set on the production cross section times branching ratio at the 95% Bayesian credibility. For a specific benchmark model (left-right-symmetric SM extension), in cases where the $W' \rightarrow tb$ -leptonic-decay mode is allowed (forbidden), we exclude W' bosons with masses lower than 860 (880) GeV/c^2. For masses smaller than approximately 600 GeV/c^2, this search yields the most constraining limits to date on narrow tb-resonance production.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, U.K.; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.

In conclusion, we perform a search for a massive resonance decaying to tb with the full CDF II data set, corresponding to an integrated luminosity of 9.5 fb$^{-1}$. The data are consistent with the background-only hypothesis, and upper limits are set on the production cross section times branching ratio at the 95% Bayesian credibility. For a specific benchmark model (left-right-symmetric SM extension), in cases where the $W' \rightarrow tb$ -leptonic-decay mode is allowed (forbidden), we exclude W' bosons with masses lower than 860 (880) GeV/c^2. For masses smaller than approximately 600 GeV/c^2, this search yields the most constraining limits to date on narrow tb-resonance production.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, U.K.; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.

115, PRL 86, 11061801-7

FIG. 3 (color online). Observed and expected 95% C.L. upper limits on the coupling strength of a right-handed W' boson compared to the SM W-boson coupling, $g_{W'}/g_W$, as functions of $M_{W'}$, in cases where the leptonic decay mode $W' \rightarrow \ell \nu$ is forbidden. The region above each line is excluded. The CDF limits are compared with limits from the latest W' searches from ATLAS, CMS, and D0 [8–10]. The vertical part in each boundary region of the plot represents the minimum masses for which bounds are quoted.

The event sphericity is defined by $S = \frac{1}{2} \left(\lambda_2 + \lambda_3 \right)$, where the sphericity tensor is $S^{\theta \phi} = \left(\sum_i p_i^\theta p_i^\phi \right) / \left(\sum_i p_i^2 \right)$ and $\lambda_1 > \lambda_2 > \lambda_3$ are its three eigenvalues and satisfy $\lambda_1 + \lambda_2 + \lambda_3 = 1$. The index i refers to each jet in the event.
