Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published	http://dx.doi.org/10.1073/pnas.1424684112
Publisher	National Academy of Sciences (U.S.)
Version	Final published version
Accessed	Fri Oct 12 07:48:18 EDT 2018
Citable Link	http://hdl.handle.net/1721.1/98027
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Detailed Terms	
Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates

Danny Hung-Chieh Choua,b,c,1,2, Matthew J. Webbera,c,1, Benjamin C. Tanga,c,1, Amy B. Lina,c, Lavanya S. Thapaa,c, David Denga,c, Jonathan V. Truonga,c, Abel B. Cortinasb, Robert Langera,b,c,d,e,3, and Daniel G. Andersona,b,c,d,e,3

aDavid H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; cDepartment of Anesthesiology, Boston Children’s Hospital, Boston, MA 02112; dHarvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139; and eInstitute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139

Contributed by Robert Langer, December 29, 2014 (sent for review December 18, 2014)

Since its discovery and isolation, exogenous insulin has dramatically changed the outlook for patients with diabetes. However, even when patients strictly follow an insulin regimen, serious complications can result as patients experience both hyperglycemic and hypoglycemic states. Several chemically or genetically modified insulins have been developed that tune the pharmacokinetics of insulin activity for personalized therapy. Here, we demonstrate a strategy for the chemical modification of insulin intended to promote both long-lasting and glucose-responsive activity through the incorporation of an aliphatic domain to facilitate hydrophobic interactions, as well as a phenylboronic acid for glucose sensing. These synthetic insulin derivatives enable rapid reversal of blood glucose in a diabetic mouse model following glucose challenge, with some derivatives responding to repeated glucose challenges over a 13-h period. The best-performing insulin derivative provides glucose control that is superior to native insulin, with responsiveness to glucose challenge improved over a clinically used long-acting insulin derivative. Moreover, continuous glucose monitoring reveals responsiveness matching that of a healthy pancreas. This synthetic approach to insulin modification could afford both long-term and glucose-mediated insulin activity, thereby reducing the number of administrations and improving the fidelity of glycemic control for insulin therapy. The described work is to our knowledge the first demonstration of a glucose-binding modified insulin molecule with glucose-responsive activity verified in vivo.

Significance

Self-administered insulin is the most important therapeutic to provide control over blood glucose levels for patients with type-1 diabetes. However, standard insulin therapy introduces a number of complications and subsequent issues with control of blood glucose levels. Here, we prepared a derivative of insulin with a molecular switch to provide glucose-mediated activation of the insulin molecule, toward the generation of more autonomous therapy with improved blood glucose control. This modified insulin, when administered in a diabetic mouse model, restores blood glucose levels following a glucose challenge (i.e., a simulated meal) faster than both standard insulin and a clinically used long-acting insulin derivative.

The authors declare no conflict of interest.

1D.H.-C.C., M.J.W., and B.C.T. contributed equally to this work.

2Present address: Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112.

3To whom correspondence may be addressed. Email: rlanger@mit.edu or dgander@mit.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424684112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1424684112

PNAS | February 24, 2015 | vol. 112 | no. 8 | 2401–2406

by the design of long-acting Insulin detemir to afford binding to serum albumin, or other hydrophobic components in serum, for prolonged circulation half-life (13, 14). Meanwhile, incorporation of PBA provides a glucose-sensing element within the conjugate, as PBAs are known to bind reversibly to cis-1,2 or cis-1,3 diols such as glucose, which stabilizes a negative charge on the boronic acid (15). The inclusion of PBA groups within polymers has been previously used for glucose sensing and insulin delivery through modulation of electrostatics upon glucose binding to PBA (16), and PBA has also been evaluated as an element in optical glucose sensors (17). Here, we demonstrate that derivatizing insulin with aliphatic PBA conjugates affords long-lasting and glucose-responsive activity, providing a potentially improved therapeutic strategy for diabetes management.

Results

The desired conjugates, containing both an aliphatic domain and a PBA, were synthesized according to methods outlined in Fig. L1 and Scheme S1. The PBA moieties were coupled to the aliphatic domain by direct amidation of either commercially available PBAs or phenyl bromides followed by a Suzuki coupling reaction. This approach afforded aliphatic groups terminally substituted with four different PBA moieties. The design of these conjugates included fluoro-, nitro-, and sulfo-containing PBAs, intended to provide electron-withdrawing character to these conjugates included fluoro-, nitro-, and sulfo-containing PBAs, intended to provide electron-withdrawing character to these conjugates. This was achieved through amido- (Ins-PBA-A), fluoro- (Ins-PBA-F), nitro- (Ins-PBA-N), or sulfo- (Ins-PBA-S) modified PBA groups. In addition, control long-acting insulin (Ins-LA-C14) was prepared through myristic acid conjugation, producing modified insulin with the same structure as the commercially used long-acting Insulin detemir (13, 14). All modified insulin derivatives were purified using preparative scale HPLC to afford the purified product specifically modified at the B29 lysine (Fig. S1).

To determine whether covalent modification had an effect on secondary structure of insulin, we evaluated all of the modified derivatives using near-UV circular dichroism (CD) (Fig. S2). All insulin derivatives were observed to have CD spectra consistent primarily with α-helical secondary structure. Modified derivatives had a subtle blue-shift in their CD signature, consistent with previous findings for CD spectra of acylated insulin (21), but overall the α-helical character of native insulin was maintained. To ensure there were no deleterious effects of modification on insulin function, a cell-based insulin receptor activation assay was performed (Fig. S3). Modification of insulin with aliphatic PBA conjugates or myristic acid was found to have no significant effect on insulin activity relative to native unmodified insulin.

A mouse model of insulin-deficient diabetes, prepared using streptozotocin (STZ) to induce pancreatic β-cell death (22), was used to evaluate the function of the modified insulin derivatives developed here. All PBA-modified insulins reduced blood glucose levels to a normoglycemic level, <200 mg/dL for a mouse, following a single s.c. administration of 5 IU/kg insulin or mass equivalent of modified insulins (Fig. 2). Four hours following administration, an i.p. glucose tolerance test (IPGTT) was administered. Following a spike in blood glucose, all four PBA-modified insulin derivatives restored blood glucose to a normoglycemic level, whereas native insulin did not have an effect on reducing blood glucose. Of note, Ins-PBA-S, Ins-PBA-F, and Ins-PBA-N derivatives completely reversed blood glucose to prechallenge levels. After a second IPGTT, performed 7 h following initial insulin administration, Ins-PBA-S, Ins-PBA-F, and Ins-PBA-N were again able to restore normoglycemic levels. Ins-PBA-A was not able to restore normoglycemia following the second challenge. A third IPGTT performed at 10 h following insulin administration revealed that Ins-PBA-F and Ins-PBA-N were still able to restore normoglycemia. Ins-PBA-F was especially potent in reversing blood glucose levels to prechallenge levels, and thus, this insulin was identified as a promising candidate for further evaluation.

To establish the glucose dependence of Ins-PBA-F, we performed dosing studies in both STZ-induced diabetic mice and...
healthy mice (Fig. 3). In these studies, our best performing insulin (Ins-PBA-F) was compared with the active ingredient of a clinically used long-acting insulin formulation (Ins-LA-C14, Insulin detemir) in insulin-deficient mice to investigate whether the observed effect was not simply a result of long-lasting activity. Doses equivalent to 1, 3, and 5 IU/kg of native insulin were chosen as a therapeutically relevant dose range. In diabetic mice, following insulin administration, blood glucose levels for all mice dropped. At 3 h following dosing with insulin, an IPGTT was performed. To measure insulin responsiveness, the area under the curve was calculated for each insulin between 3 and 6 h (Fig. 3D). As shown, at both 1 and 3 IU/kg, Ins-PBA-F was significantly \((P < 0.05) \) more responsive to glucose challenge than either Ins-LA-C14 or native insulin. At 5 IU/kg, both Ins-PBA-F and Ins-LA-C14 were significantly \((P < 0.05) \) more responsive than native insulin, but there were no significant difference between the responsiveness of these two groups. Dosing studies were also performed in a healthy normoglycemic mouse. In these studies, the extent to which insulin elicited hypoglycemia was quantified using a hypoglycemia index, a measure of the drop from initial blood glucose reading to the nadir (i.e., lowest observed) value divided by the time over which this drop occurred (Fig. 3H). A similar metric is used clinically in the evaluation of diabetic patients (23). For healthy mice dosed at 1 IU/kg, the hypoglycemia index for Ins-PBA-F was significantly \((P < 0.05) \) less than that for native insulin, whereas the hypoglycemia index for Ins-LA-C14 was not less than that for native insulin. At 3 and 5 IU/kg, Ins-PBA-F resulted in a significant \((P < 0.05) \) reduction in the hypoglycemic index compared with both Ins-LA-C14 and native insulin. Taken together, the results in diabetic and healthy mice indicate higher activity of Ins-PBA-F in response to glucose challenge, with a reduced hypoglycemic index when administered in a normoglycemic state.

To further evaluate the kinetics and responsiveness of PBA-modified insulin analogs in response to IPGTT, continuous glucose monitoring was used to provide 5-min resolution for blood glucose measurements (Fig. S4A). Healthy age-matched mice were used as a positive control for the responsiveness of a fully functioning pancreas. Following administration, both insulin derivatives reversed blood glucose to normoglycemic levels, but the slope of this decrease was significantly faster for Ins-PBA-F than for Ins-LA-C14 (Fig. S4C). An IPGTT was performed 3 h following insulin administration, which prompted a comparable rise in blood glucose levels in all groups. However, when mice were treated with Ins-PBA-F, a rapid reversal was observed following challenge that was similar in slope to the response seen for a healthy mouse with no insulin deficiency (Fig. S4D). In the case of the long-acting variant, Ins-LA-C14, the response following glucose challenge was much slower than both the Ins-PBA-F and healthy control. Although the slopes between different insulins varied considerably, the slopes for each individual treatment after initial administration and following IPGTT were similar. To quantify responsiveness of Ins-PBA-F and Ins-LA-C14 compared with the healthy control, area under the curve was calculated from the beginning of IPGTT at 3 h until the 6-h end point of the study. The responsiveness of Ins-PBA-F was comparable to that for a healthy animal, whereas the Ins-LA-C14 had a much larger area and did not return to baseline over the time frame integrated (Fig. S4B).

It has been reported that PBAs bind more strongly to fructose than to glucose (24). To examine diol-mediated activation of Ins-PBA-F, an IP challenge was performed using fructose instead of glucose. For treatment with Ins-PBA-F, glucose challenge resulted in a spike and reversal of blood glucose levels (Fig. S5A), as previously demonstrated in other experiments. However, when fructose was instead used for challenge, blood glucose levels were only slightly elevated and quickly returned to baseline for the duration of the study. When glucose was used to challenge following Ins-LA-C14 treatment, the behavior was similar to that seen in previous studies. In contrast, treatment with Ins-LA-C14 demonstrated a gradual rise in blood glucose levels following fructose challenge (Fig. S5B), likely due to the conversion of administered fructose into glucose (25).

We hypothesized that the glucose-responsive activity demonstrated by these aliphatic PBA conjugates functioned through glucose-mediated binding to serum proteins, such as serum albumin, as the mechanism for insulin activation. We compared the binding kinetics of Ins-PBA-F, Ins-LA-C14, and native insulin to human serum albumin (HSA) using biolayer interferometry (Fig. S6). The mechanism underlying the long-lasting activity of Ins-LA-C14 (i.e., Insulin detemir) has been reported to be binding to serum albumin (26). The calculated binding constant, fitting to a 1:1 binding model, for Ins-PBA-F to HSA was comparable to that for Ins-LA-C14 (2.81 vs. 2.18 nM, respectively) in the absence of glucose. In the presence of glucose, the binding constant was not significantly changed (3.65 nM for Ins-PBA-F and 2.56 nM for Ins-LA-C14). These data indicate that binding of PBA-modified insulin to HSA is insensitive to the presence of physiologically relevant glucose concentrations in this specific assay and though this mechanism may still hold, an alternate glucose-responsive mechanism could also be responsible for the differential activity observed in vivo.

Discussion
Previous work toward the preparation of self-regulated insulin therapy has explored, for example, the use of glycosylated insulins in combination with glucose-binding lectins such as Con A (27–31). This technology has generally comprised a device, capsule, or pouch containing lectin-bound glycosylated insulin to be released as circulating glucose levels increase. Here, we developed a strategy for the covalent modification of insulin intended to couple an aliphatic domain for long-lasting activity with PBA as a glucose-sensing element to prepare a soluble, circulating, glucose-sensing modified insulin molecule. Although PBAs have been fused to insulin previously as a method for preparing glucose-responsive self-assemblies of insulin (19, 20), our report here illustrates, to our knowledge, the first demonstration of glucose-responsive activity for a PBA-modified insulin in an animal model of diabetes. Through screening of different PBA-containing aliphatic conjugates, Ins-PBA-F was identified as the...
Fig. 3. Dose escalation studies in diabetic (left column) and healthy (right column) mice to evaluate the potency of Ins-PBA-F compared with Ins-LA-C14 and native insulin. Insulins were dosed corresponding to insulin-equivalent doses of 1 IU/kg (34.7 μg/kg, first row), 3 IU/kg (104.1 μg/kg, second row), and 5 IU/kg (173.5 μg/kg, third row) at time 0, and blood glucose was monitored for 6 h. (A–C) Dosing studies in diabetic mice, with insulin administered s.c. at time 0 and an IPGTT performed 3 h following insulin administration. (D) The responsiveness of each insulin was calculated based on the area under the curve from 3 to 6 h, with the baseline set at the 3-h blood glucose reading. (E–G) Dosing studies in healthy mice, with insulin administered s.c. at time 0. (H) Quantification of hypoglycemia index, which was determined from the difference between the initial and nadir blood glucose readings divided by the time at which nadir (i.e., lowest observed value) was reached. For D and H, ANOVA with Bonferroni multiple comparisons post hoc test was performed. *P < 0.05 for Ins-PBA-F compared with both Ins-LA-C14 and native insulin; †P < 0.05 for Ins-PBA-F compared with native insulin; ‡P < 0.05 for Ins-LA-C14 compared with native insulin.
most promising modification for long-lasting, glucose-responsive behavior. To analyze glucose-responsive activity, a dosing study in both diabetic and healthy mice was performed. In diabetic mice, Ins-PBA-F exhibited significantly higher potency and responsiveness compared with native insulin or a control of clinically used long-lasting modified insulin (Ins-LA-C14) across a range of doses. Conversely, in healthy mice with lower basal blood glucose levels, the hypoglycemia index for Ins-PBA-F was significantly reduced. Enhanced potency and responsiveness in a hyperglycemic state coupled with reduced activity in a euglycemic/hyperglycemic state suggests that Ins-PBA-F has glucose-mediated potency. Through continuous glucose monitoring, it was also established that the kinetics of Ins-PBA-F in responding to a glucose challenge were comparable to those for insulin produced from a healthy pancreas. Glucose-mediated binding to serum albumin could not be confirmed as the mechanism of action for the glucose-dependent activity of Ins-PBA-F observed here. Though glucose-responsive binding to hydrophobic domains in proteins such as serum albumin may still be the underlying mechanism, another possible mechanism is that PBA-modified insulin binds reversibly to immobilized diols, such as those on glycoproteins, glycosylated proteins, proteoglycans, or glycosaminoglycans. We note that the diabetic state increases the extent of protein glycosylation (32), increasing the number of potential binding sites available by this mechanism.

Insulin therapy could be improved by greater autonomy, increased fidelity in glycemic control, and reduced hypoglycemia (33). Even with perfect use, traditional insulin therapy fails to match the kinetics of normal insulin signaling. Even small improvements in glycemic control over time have the potential to reduce the frequency of serious complications, including blindness, cardiovascular disease, stroke, nonhealing wounds, and cancer (8). Glucose-responsive insulin, with bioactivity that is regulated by glucose levels in the body, could improve glycemic control. The safety and toxicity for covalent modification of insulin with aliphatic PBA conjugates remains to be established. Insulin therapy necessitates repeated administrations over a lifetime, and risk for both allergic reaction and antibody formation must be minimized before clinical use. Of note, the clinical incidence of adverse reaction to insulin is less than 1% (34), and B29-modified variants such as detemir and degludec have generally demonstrated excellent safety profiles with limited evidence of antibody formation or allergic reaction (34–37).

In summary, to our knowledge, this is the first demonstration of glucose-responsive behavior in vivo with a modified insulin derivative. Covalent modification of insulin with conjugates containing an aliphatic domain and a PBA afforded long-lasting insulin with glucose-mediated activity. The lead candidate demonstrated enhanced responsiveness to glucose challenge in diabetic mice but a reduction in hypoglycemic index in healthy mice. It is possible that these modified insulins could interface with insulin pumps, infusion devices, or controlled release materials to further improve performance.

Methods

Detailed experimental methods can be found in SI Methods. Briefly, small molecule conjugates were synthesized starting from 12-aminoedodecanoic acid and were coupled to insulin using DCC/NHS chemistry under basic conditions. Ins-LA-C14 was prepared using commercially available myristic acid. Insulin derivatives were purified by HPLC to afford the species specifically modified at the B29 lysine. Site-specific conjugation of insulin was confirmed using tandem MS/MS electrospray ionization (ESI) mass spectrometry on DTT/trypsin digests with Mascot proteomic analysis. Circular dichroism was used to verify secondary structure of insulin derivatives, whereas a cell-based protein kinase B (AKT) phosphorylation assay was used to confirm insulin bioactivity. An STZ-induced animal model was used to evaluate insulin derivatives in vivo. Mice were fasted overnight and then injected with insulin s.c. at a range of doses. In cases where glucose challenge was administered, this was done through i.p. injection of a glucose solution. Studies in healthy mice to assess hypoglycemia were dosed identically but were not subjected to a glucose challenge. Continuous glucose monitoring was performed using clinically used s.c. monitoring devices. All animal studies were conducted through protocols approved by the MIT animal care and use committee, following all institutional, state, and federal guidelines for the use of research animals. Binding to human serum albumin was established using biolayer interferometry, with binding constants obtained through fitting the complete data to a 1:1 binding model.

ACKNOWLEDGMENTS.

This work was supported by a grant from the Leon M. and Harry B. Helmsley Charitable Trust (Award 2014PG-T1D002) along with a generous gift from the Tayebati Family Foundation. M.J.W. acknowledges support from the National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases) through Ruth L. Kirschstein National Research Service Award F32DK101335. B.C.T. and D.H.-C.C. acknowledge support from Juvenile Diabetes Research Foundation Postdoctoral Fellowships 3-2011-310 and 3-2013-56, respectively.

28. Liu F, Song SC, Mix D, Baudys M, Kim SW (1997) Glucose-induced release of glyco-
syl(poly(ethylene glycol)) insulin bound to a soluble conjugate of concanavalin A. Bio-
31. Seminoff LA, et al. (1989) A self-regulating insulin delivery system. 2. In vivo char-
33. Shalitin S, Phillip M (2008) Hypoglycemia in type 1 diabetes: A still unresolved prob-
34. Darmon P, Castera V, Koeppel MC, Petitjean C, Dutour A (2005) Type III allergy to
insulin detemir. Diabetes Care 28(12):2980.
35. Heller S, et al.; BEGIN Basal-Bolus Type 1 Trial Investigators (2012) Insulin degludec, an
ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with
mealtimes insulin aspart in type 1 diabetes (BEGIN Basal-Bolus Type 1): A phase 3,
versus insulin glargine for type 2 diabetes mellitus. Cochrane Database Syst Rev (7):
CD006383.
insulin detemir with insulin glargine when administered as add-on to glucose-