In 1929, Hermann Weyl derived [1] the massless solutions from the Dirac equation – the relativistic wave equation for electrons. Neutrinos were thought, for decades, to be Weyl fermions until the discovery of the neutrino mass. Moreover, it has been suggested that low energy excitations in condensed matter [2–8] can be the solutions to the Weyl Hamiltonian. Recently, photons have also been proposed to emerge as Weyl particles inside photonic crystals [9]. In all cases, two linear dispersion bands in the three-dimensional (3D) momentum space intersect at a single degenerate point – the Weyl point. Remarkably, these Weyl points are monopoles of Berry flux with topological charges defined by the Chern numbers [2, 3]. These topological invariants enable materials containing Weyl points to exhibit a wide variety of novel phenomena including surface Fermi arcs [10], chiral anomaly [11], negative magnetoresistance [12], nonlocal transport [13], quantum anomalous Hall effect [14], unconventional superconductivity [15] and others [16, 17]. Nevertheless, Weyl points are yet to be experimentally observed in nature. In this work, we report on precisely such an observation in an inversion-breaking 3D double-gyroid photonic crystal without breaking time-reversal symmetry.

Weyl points are sources of quantized Berry flux of ±2π in the momentum space. Their charges can be defined by the corresponding Chern numbers of ±1, as shown in Fig. 1. So, Weyl points robustly appear in pairs and can only be removed through pair annihilation. Since the Berry curvature is strictly zero under PT symmetry, — the product of parity (P, inversion) and time-reversal symmetry (T), isolated Weyl points only exist when at least one of P or T is broken. In Ref. [9], frequency-isolated Weyl points were predicted in PT-breaking DG photonic crystals. We chose to break P instead of T, in the experiment, to avoid using magnetic materials and applying static magnetic fields. This also allows our approach to be directly extended to photonic crystals at optical wavelengths. This P-breaking DG is shown in its body-centered-cubic (bcc) unit cell in Fig. 1f. At the presence of T, there must exist even pairs of Weyl points. The two pairs of Weyl points illustrated in the Brillouin zone (BZ), in Fig. 1j, are thus the minimum number of Weyl points possible. The bandstructure plotted in Fig. 1d shows two linear band-touchings along Γ − N and Γ − H. The other two Weyl points have identical dispersions due to T.

We work at the microwave frequencies around 10GHz for the accessible fabrication of 3D photonic crystal. The current additive processes like 3D printing can hardly fulfill the material requirement of low-loss dielectrics with high-dielectric constants. In order to fabricate the two inter-penetrating gyrods with subtractive processes, we open up each gyroid network by three sets of hole-drilling, as illustrated in Fig. 2a in a unit cell of the body-centered-cubic bcc lattice. Similar methods of drilling and angled etching has been used in fabrication of 3D photonic crystals at microwave [18] and near infrared wavelengths [19]. The three cylindrical air holes, of the blue gyroid, along ẑ and 2 3 \over r_a \sqrt{2} go through (0, 0, 0) a, (0, 0, 1 3 a) and (1 3 a, 0, 0) a respectively. All air holes have a diameter of 0.54 a, where a is the cubic lattice constant. Gyroids approximated by this drilling approach have almost identical bandstructures as those defined by the level-set iso-surfaces in Ref. [9].

The second (red) gyroid is the inversion counterpart of the
Gyroid by drilling Layer stacking along [101]

Illustrated in Fig. 3b, the Weyl points in the system locate along \(G - H \) and \(G - N \) directions about half way between the BZ center (\(\Gamma \)) and the zone boundaries. To access them from free space, the incident angle \(\theta \) would have to be large than 60° and the effective cross-section of the sample would to small for enough signal to go through. To overcome this problem, we placed a pair of angled prisms (12.4°) in contact with the opposite surfaces of the sample as shown in Fig. 3a. The prisms are made of the same material as the sample (\(\epsilon \) = 16).

We mapped out all bulk states, projected along [101], by varying \(\theta \) and \(\alpha \) shown in Fig. 3a and b. Six transmission data of representative directions (\(\alpha \)) are plotted in Fig. 3b. The figure insets are projected dispersions of the bulk bandstructures along the [101] direction. The transmission data stops on the right slanted boundary, which corresponds to the maximum rotation angle in \(\theta \). Close to this boundary, the transmission intensity is low due to the smaller effective cross-section of the samples at large angles.

When \(\alpha = 90° \), the beam scan through the upper Weyl point along \(G - H \) represented by a magenta sphere. The data clearly shows a linear point touching at 11.3GHz in frequency and \(\frac{\pi}{u} \) in wavevector. As \(\alpha \) deviated from 90° to 105° and 120°, the point touching opens a gap as expected for a point-degeneracy. The other Weyl point, in cyan, on the right of the \(G - N \) axis was studied by orient \(\alpha \) to be 0°, 15° and 30°. Although the transmission intensity of the upper bulk bands is not prominent, the Weyl point dispersions can still be inferred from the curvatures of the lower bulk bands. In principle, all bulk bands of frequency and momentum matching the incident beam can be coupled and transmitted. However, the coupling and transmission efficiency depend on the details of the Bloch mode polarization, field distribution, group velocities, radiation lifetime and so on. The low transmission amplitude in some parts of the data at high frequency region is due to the mismatch between bulk and the incident waves in free space. The remaining two Weyl points, at the opposite \(\mathbf{k} \) locations, relate to the two measured Weyl points by \(\mathcal{T} \). They have the same
projected band dispersions and same transmission pattern as
the data shown in Fig. [3]. All the transmission data, in Fig.
[3], compares very well with the theoretical bandstructures in
the insets except a few regions with low transmission power.

Our experimental demonstration of Weyl points answers
the long standing search for a natural realization of the Weyl
equations. These photonic Weyl points pave the way to topo-
logical photonics [20–23] in 3D, where 3D Dirac points [24]
and various gapped topological phases [25] can be discovered.
Similar approaches can be readily adopted to observe Weyl
points at optical frequencies using 3D nanofabrication [26–
27]. We also anticipate that the Weyl points should be ob-
servable in other systems [28], notably the topological semi-

FIG. 3. Transmission measurement results. a) Schematic of the microwave transmission setup. b) The bulk states in the sample are exited by the incident wavevector parallel to the sample surface varied by angle θ. c) Transmission data as the sample is rotated along the [101] axis by angle α. Insets are calculated bandstructures projected along [101]; they are scaled to the same range and ratio as the measured data.

ACKNOWLEDGEMENTS

We thank Andrew Gallant and Ernest Johnson at MIT cen-
tral machine shop for machining the gyroid layers. We thank
Yichen Shen, Zhang Bin, Junwei Liu, Bo Zhen and Ashvin
Vishwanath for discussions. J.J. was supported in part by the
U.S.A.R.O. through the ISN, under Contract No. W911NF-
13-D-0001. L.F. was supported by the DOE Office of Basic
Energy Sciences, Division of Materials Sciences and Engi-
neering under Award No. de-sc0010526. L.L. was supported
in part by the MRSEC Program of the NSF under Award No.
DMR-1419807. M.S. and L.L. were supported in part by the
MIT S3TEC EFRC of DOE under Grant No. de-sc0001299.

352 (1929).
[3] Xiangang Wan, Ari M. Turner, Ashvin Vishwanath, and
Sergey Y. Savrasov, “Topological semimetal and fermi-arc sur-
face states in the electronic structure of pyrochlore iridates,”
Fang, “Chern semimetal and the quantized anomalous hall ef-
and A Bansil, “Topological electronic structure and weyl
semimetal in the thlise 2 class of semiconductors,” Physical Re-
view B 86, 115208 (2012).
noncentrosymmetric topological insulators,” Physical Review
B 90, 155316 (2014).
[8] Daniel Bulmash, Chao-Xing Liu, and Xiao-Liang Qi, “Predic-
tion of a weyl semimetal in hg 1- x- y cd x mn y te,” Physical
[9] Ling Lu, Liang Fu, John D Joannopoulos, and Marin Soljačić,
“Weyl points and line nodes in gyroid photonic crystals,” Na-