Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Du, E, Monica Diez-Silva, Gregory J. Kato, Ming Dao, and Subra Suresh. “Kinetics of Sickle Cell Biorheology and Implications for Painful Vasoocclusive Crisis.” Proceedings of the National Academy of Sciences 112, no. 5 (February 3, 2015): 1422–27.</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1424111112</td>
</tr>
<tr>
<td>Publisher</td>
<td>National Academy of Sciences (U.S.)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Nov 05 23:10:09 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/98387</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis

E Du a,1, Monica Diez-Silva a, Gregory J. Kato b, Ming Dao a,2, and Subra Suresh c,d,2

aDepartment of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Medicine, Division of Hematology-Oncology, University of Pittsburgh, Pittsburgh, PA 15261; and Departments of Biomedical Engineering and c, dMaterials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

Contributed by Subra Suresh, December 17, 2014 (sent for review October 27, 2014)

We developed a microfluidics-based model to quantify cell-level processes modulating the pathophysiology of sickle cell disease (SCD). This in vitro model enabled quantitative investigations of the kinetics of cell sickling, unsickling, and cell rheology. We created short-term and long-term hypoxic conditions to simulate normal and retarded transit scenarios in microvasculature. Using blood samples from 25 SCD patients with sickle hemoglobin (HbS) levels varying from 64 to 90.1%, we investigated how cell biophysical alterations during blood flow correlated with hematological parameters, HbS level, and hydroxyurea (HU) therapy. From these measurements, we identified two severe cases of SCD that were also independently validated as severe from a genotype-based disease severity classification. These results point to the potential of this method as a diagnostic indicator of disease severity. In addition, we investigated the role of cell density in the kinetics of cell sickling. We observed an effect of HU therapy mainly in relatively dense cell populations, and that the sickled fraction increased with cell density. These results lend support to the possibility that the microfluidic platform developed here offers a unique and quantitative approach to assess the kinetic, rheological, and hematological factors involved in vasoocclusive events associated with SCD and to develop alternative diagnostic tools for disease severity to supplement other methods. Such insights may also lead to a better understanding of the pathogenic basis and mechanism of drug response in SCD.

sickle cell anemia | vasoocclusion | capillary obstruction ratio | cell deformability | Aes-103

Sickle cell disease (SCD) is characterized by acute and chronic vasoocclusion that can cause pain (1), acute chest syndrome (2), organ damage (3), stroke, and even death (4, 5). The pathogenic basis of “painful crisis” arising from vasoocclusion in SCD is extremely complex (6–8). It is triggered by many factors, including poor deformability of red blood cells (RBCs), adhesion among multiple cell types and blood components (e.g., sickle RBCs, endothelial cells, adherent leukocytes, and possibly platelets), as well as the local microenvironment (e.g., low oxygen concentration and acidosis). Under conditions of low oxygen partial pressure (pO₂), sickle RBCs experience intracellular sickle hemoglobin (HbS) polymerization, thereby reducing cell deformability (9). Such reductions in deformability can severely impact blood flow in narrow vessels, ultimately causing a transient or persistent blockage (10). Competition between the delay time for HbS polymerization and the RBC transit time in microcirculation is likely a key determinant of disease severity (11). Both in vitro (12) and ex vivo (13) models reveal that HbS polymerization and its effect on cellular rigidity play important roles in causing vascular obstruction. For example, HbS polymerization alone could be sufficient to cause complete RBC blockage in vasculature (12). Increases in microvascular transit time, arising from higher rigidity, of sickle RBCs cause peripheral vascular resistance to blood flow (13).

The search for better means to predict painful vasoocclusion crises has focused on a range of hematological and rheological abnormalities. Significant correlations have been shown between pain rates and early death in patients with sickle cell anemia (14) and between early death and several risk factors such as fetal hemoglobin (HbF), hemoglobinopathy, and white cell count (15). However, factors such as patient age, sex, HbF (16), intracellular HbS polymerization (17), or fraction of dense RBCs (18) do not appear to show a sufficiently direct correlation with the frequency and/or severity of pain crises. Although HbF level is generally considered important, its direct connection to disease severity is not fully established (19, 20). Some possible links between the incidence of painful crises and steady-state cell hydration (21) and/or deformability at isotonic osmolarity have been identified (22). Such connections, however, do not account for the observation that cell deformability and the proportion of dense cells vary longitudinally in the same patient during crisis (23). Changes have also been reported in the biorheological characteristics of sickle RBC suspension following deoxygenation (DeOxy) in an in vitro vascular model (24).

An in vitro model with a well-defined vascular structure and a well-controlled hypoxia condition would serve as an ideal tool to investigate many complex pathophysiological processes in vasoocclusion. Recent advances in microfluidics technology have enabled us to design unique in vitro capabilities with biophysically appropriate microenvironments that mimic the geometric features of vascular systems, thereby facilitating quantitative characterization of DeOxy blood flow (12, 24), detection of HbS polymerization in DeOxy liquid drops (25), and investigation of pathologic adhesion in blood rheology (26). Several methods are needed to...
have been developed to mimic oxygen depletion whereby HbS polymerization and subsequent cell sickling can be triggered; they include long-term gas perfusion at low pO2 level (13, 27), DeOxy medium exchange (25, 28), reducing agents (29–31), and laser photodissociation of carbon monoxide (22, 32). Along with complex in vivo models that reflect the dynamic response of cells, an in vitro model would have the potential to predict the conditions that would lead to vasooclusion and to improve the assessment of disease severity by quantifying the individual parameters that modulate vasooclusion.

We designed a microfluidic platform (Fig. 1) that mimics the rheology of microcirculation in vivo. It also characterizes the isolated effects of cell morphologic sickling, unsickling, and altered cell rheology. With this design, we explored in a systematic and controlled manner possible correlations of these effects with hematological parameters (e.g., %HbS), cell density, and hydroxyurea (HU) therapy.

Cell sickling was measured using a double-layer device with a cell channel (5 μm high), a gas channel (100 μm high), and an interchannel polydimethylsiloxane (PDMS) film 150 μm in thickness (Fig. 1A). The O2 concentration was controlled by exchanging gas flow in the channel through the PDMS membrane, which is gas-permeable (33). Although it is known (34) that the morphology of sickled cells depends on the DeOxy rate, we observed heterogeneity in cell morphology at the same DeOxy rate. Sickle RBCs typically form spiky edges and dark coarse texture due to intracellular HbS polymerization, the visual identification of which was enhanced by a band-pass filter (Fig. 1B and Movie S1). We thus define sickled cells as those obviously distorted from their original shape and/or texture under the Oxy state [O2 concentration ~20% (vol/vol)] to the DeOxy state (O2 concentration <5%). This visual determination of cell sickling was further confirmed with an independent single-cell rheology test, where similar trends were observed in cell sickling and single-cell capillary obstruction (Results). The kinetics of cell sickling was quantified by two parameters: the sickled fraction (the fraction of all RBCs in the sample that are sickled) and the delay time of cell sickling (the time elapsed between the initiation of DeOxy and the point when a cell shows optically visible features of morphologic sickling). The delay time of cell unsickling was defined as the time elapsed between the initiation of reoxygenation (ReOxy) and the point when the RBC fully recovered its presickle morphology in a visibly identifiable manner.

Individual-cell rheology was measured using a microfluidic channel that consisted of periodic obstacles forming microgates 4 μm wide, 5 μm deep, and 15 μm long (Fig. 1C). The channel dimensions were chosen to mimic the size of the smallest capillaries in the human body (4–10 μm in diameter) (35). Cell velocity was measured as the average velocity of individual RBCs flowing through periodic gates under a constant differential pressure. The obstruction fraction was determined as the ratio of obstructed RBCs to all RBCs entering into the microgate arrays during the DeOxy period.

Results

Kinetics of Cell Sickling and Unsickling. Kinetics of individual cell sickling and unsickling under transient hypoxia conditions was quantified by the delay time and maximum sickled fraction on 25 SCD patient samples: 7 patients without HU therapy (off-HU) and 18 patients with HU therapy (on-HU) (SI Text, Patient’s HU Status). Short-term and long-term hypoxia conditions were created to simulate normal and retarded transit scenarios in microvasculature (Fig. 2A and B). Representative cell sickling profiles upon changes in O2 concentration are shown (Fig. 2C). Compared with the relatively long sickling process (>100 s for a sickled fraction rising from zero to a saturated, maximum level), the unsickling process after ReOxy was much faster (<20 s for a sickled fraction reducing from the saturated level to zero), disregarding the small discrepancy in the DeOxy and ReOxy rates (<20 s). This observation applied to all patient samples tested.

Results of the kinetics of cell sickling were plotted against the %HbS of individual patients (Fig. 3). The delay time of sickling was greater than 25 s for RBCs (i.e., for reaching 5% sickled fraction) for most of the samples in the study (Fig. 3A). The delay time of sickling for the on-HU group was significantly longer than that for the off-HU group (P < 0.01). Within the on-HU group, the delay times of sickling (for the 5% sickled fraction) varied from 28 to 100 s, suggesting a difference in the efficacy of HU among different patients. Similar trends were observed at a higher sickled fraction (10%; Fig. 3B). Six cases showed significantly longer delay times (>60 s) than the others, suggesting a possible beneficial effect of HU therapy. The two cases with the shortest delay time (less than 25 s) of cell sickling, marked by arrows (Fig. 3C), suggest higher risk for vasooclusion. For the sickled fraction of each sample reaching its saturated level under the long-term DeOxy state, delay time of cell sickling varied widely within the same patient and among different patients. The influence of HU therapy was statistically significant for the sickling process (P < 0.02; Fig. S1A). The distribution of delay times of cell unsickling seemed to be random among different patients, and no significant difference was found between the on-HU and off-HU groups (P = 0.24; Fig. S1B).

Under the short-term DeOxy state, the maximum sickled fraction for all on-HU samples was below 15%, which was significantly lower than that for the off-HU group (P = 0.03; Fig. 3C). Within the off-HU group, the sickled fraction was highly variable among patients, ranging from less than 10% to over 60%. The two outliers with the most severely shortened delay time results showed consistency with the highest sickled fractions (Fig. 3A–C). On the other hand, during the long-term DeOxy

![Fig. 1.](https://example.com/fig1.png) **Microfluidic platform for investigation of biophysical alterations in sickle RBCs under transient hypoxia conditions.** (A) Schematic of microfluidic device with O2 control for studying kinetics of cell sickling and unsickling. (B) Identification of cell sickling events from a microscopic image (arrows indicate sickled RBCs). (C) Schematic of microfluidic device with capillary-inspired structures for single-cell rheology study. Note: Schematics are not drawn to scale, and the dimensions are in microns.
state, the maximum sickled fraction showed a strong positive correlation with the HbS level (Pearson’s correlation coefficient, $R = 0.79$, $P < 0.001$; Fig. 3D). The levels of sickled fractions under short-term and long-term DeOxy states are comparable to previous in vitro sickling studies (36, 37) under extended DeOxy time [from 1 to 5 h of incubation under 4% O_2 (36) or 2 h of incubation under 2% O_2 (37)]. The discrepancy in DeOxy time may be due to the rapid O_2 exchange in the cell suspension using our microfluidic system rather than the static DeOxy incubation system in the earlier studies (36, 37). The result of kinetics of cell sickling correlating with HbF level had a relatively weaker trend in the opposite direction from that with HbS level (e.g., $R = -0.55$, $P = 0.004$ for the sickled fraction under the long-term DeOxy state).

Individual Sickle RBC Rheology. Individual sickle RBC rheology was examined, at a given pressure differential and with a short-term transient hypoxia, as a potential diagnostic indicator of risk for vasoocclusion (Movie S2). Sickle RBCs were deformable during the initial 12 s (O_2 concentration $>5\%$). Here deformability denotes the ability of the cell to successfully traverse the 4-μm-wide microgates. When the O_2 concentration was reduced to less than 5%, the RBCs undergoing sickling were unable to traverse the microgates, thereby causing obstruction to RBC flow. With ReOxy, the obstructed RBCs recovered their shape and deformability, and flow was resumed. The velocity of sickle RBCs was then quantified as the average speed over five microgates for the individual RBCs traveling through the periodic microgates. A representative distribution of cell velocities in response to transient hypoxia is shown (Fig. 4B). The velocity of individual sickle RBCs varied widely in the same patient and among different patients. Significant correlation was found between cell velocity and the mean corpuscular volume (MCV; Pearson’s $R = -0.89$, $P < 0.0001$) (SI Text, Single-Cell Rheology and Fig. S2). The capillary obstruction ratio was defined as the fraction of the total number of cells that were blocked at the microgates during the DeOxy state. The sickle cell capillary obstruction ratio, measured on six on-HU and six off-HU patient samples, increased with HbS concentration (Fig. 4C) similar to that seen with the sickled fraction. In general, the on-HU group exhibited a significantly lower capillary obstruction ratio than the off-HU group ($P = 0.03$). A severe case was identified with the highest capillary obstruction ratio and is marked by an arrow in Fig. 4C.

The Role of Cell Density. Previous studies have demonstrated that sickle RBCs have a broad range of cell density from 1.085 to 1.146 g/mL (38–40). To quantify the effect of cell density on the kinetics of cell sickling and unsickling, we categorized sickle RBCs into four populations with average cell densities of 1.086 ± 0.005 g/mL (density 1), 1.095 ± 0.005 g/mL (density 2), 1.105 ± 0.005 g/mL (density 3), and >1.111 g/mL (density 4) for 20 SCD samples from 6 off-HU patients and 14 on-HU patients. The majority of sickle RBCs fell within density 2 and density 3 (Fig. S3A). We noticed a significant difference in the sickling growth curve among different density populations of individual blood samples under both short-term and long-term DeOxy states (Fig. S3B and C). Results of delay time of cell sickling and sickled fraction were examined along with cell density and the patient’s HU status. Delay time of cell sickling decreased with cell density (Fig. 5A), which can be rationalized by the hydration state of the cells (41, 42). The mean delay time of cell sickling for the on-HU cases was statistically higher than for off-HU cases ($P = 0.02$). A marked extension in the delay time of cell sickling was seen for densities 3 and 4 with HU therapy ($P = 0.01$ and $P = 0.06$, respectively). The overall delay time for unsickling did not vary significantly among densities 1–3 or between on-HU and off-HU groups (Fig. S4A).

The maximum sickled fraction showed a strong correlation with cell density disregarding the patient’s HU status or hypoxia duration (Fig. 5B and Fig. S4B). This observation is consistent with reported correlation between HbS concentration and polymerization kinetics (43, 44). Under short-term hypoxia, HU therapy significantly suppressed sickled fraction, particularly in densities 3 and 4 ($P = 0.01$ and $P = 0.001$, respectively). The
The kinetics of cell sickling was markedly affected by HU therapy, including delay time of cell sickling ($P < 0.01$ for 5% and 10% of sickled fractions; $P < 0.02$ for saturated sickled fraction) and maximum sickled ratio under the short-term hypoxia state ($P = 0.03$). This analysis highlighted the beneficial effects of HU therapy on DeOxy sickle RBCs. These results are consistent with previous clinical reports of disease amelioration through the stimulation of HbF synthesis (48–51). Additionally, we identified outlier patient samples (marked by arrows in Figs. 3 A and C and 4C) that showed the most abnormal results in our assays, including shortest delay time of cell sickling, highest sickled fraction, and highest capillary obstruction ratio, all suggesting high risk for vasocclusion. Hematological measurements indicated these two patient samples to be severe SCD, according to a genotype-based disease severity classification (52). Our analysis also indicated that HbF levels do not completely account for the kinetics of cell sickling, including the maximum sickled fraction ($R = −0.4, P = 0.05$ for short-term hypoxia state; $R = −0.55, P = 0.005$ for long-term hypoxia state) and the delay time of cell sickling ($R = 0.35, P = 0.08$ at a low sickled fraction, 5%). These observations are consistent with studies indicating only partial correlation between HbF fraction and painful crises (16, 20, 22). The large variations in delay time of cell sickling in the on-HU group could correlate with additional outcomes from HU therapy besides HbF induction (53, 54). Therefore, our analysis could offer a unique route to developing a supplementary tool at cellular
level, beyond current hematological assays (55), to evaluate the response to HU and other antisickling drugs for individual SCD patients. An example of this is found with Aes-103 (5-hydroxymethylfurfural), which is currently in phase II clinical trials in SCD patients. The sickled fraction after a long-term hypoxia in sickle RBCs incubated with Aes-103 in vitro showed a strong correlation with the drug concentration (SI Text, Anti-sickling Drug and Fig. S7).

Further analysis of sickling considered hydration state and Hb types. There was no correlation of effective sickled fraction (sickled fraction*) (SI Text, Effective Sickled Fraction and Fig. S8) with MCHC-F ($R = -0.17, P = 0.22$) but strong correlation with MCHC-S ($R = 0.71, P < 0.001$). These observations indicate that clinical hematological information alone cannot be used to evaluate cell sickling events in vitro. Further analysis showed a lack of correlation between the sickled fraction* and MCHC-S/F (by multiplying the MCHC value with the ratio of HbS to HbF), suggesting that MCHC-S is a determinant factor in cell sickling in vitro. These results also imply that when investigating the influence of HbF, the average concentration of HbF in a cell population is less important than the HbF content in individual RBCs (53). This interpretation is supported by an ex vivo study showing incomplete resistance of F cells in hypoxia-induced sickling (56).

The mean velocity of individual sickle RBCs is an integrative measure modulated by cell size, shape, intracellular viscosity, and membrane deformability, and could potentially serve as a direct indicator of the ability of cells to transit in capillaries. The opposing effects of elevated cell size (57) and increased membrane deformability (58) due to HU therapy both influence cell traversal through microgates. Individual-cell velocity was strongly correlated with cell volume ($R = -0.89, P < 0.001$) instead of other hematological measurements, e.g., %HbS, HCT (hematocrit), and MCHC. Cell shape played an important role in transit, especially for the irreversibly sickled cells in the off-HU cases. Additionally, we found that the velocity of deformable cells under the DeOxy state was lower than for cells under the Oxy state, disregarding the influences of HU therapy and transfusion (Fig. S2). This discrepancy may be caused by the increased intracellular viscosity from HbS polymerization and the influence of the degree of oxygenation on HbA (59). The improved rheological properties of sickle RBCs in vivo could therefore stem from the elevated numbers of F cells and the beneficial effects of HbF in cell sickling (57). Similar trends were found in the relationship between sickled fraction and %HbS (Fig. 3C) and between capillary obstruction and %HbS (Fig. 4C), suggesting that morphologic sickling is likely a primary factor in occlusion in capillaries and small vessels.

Density-dependent kinetics of cell sickling provides quantitative measures of selective adhesion and selective trapping of sickle RBCs (60) in shear flow conditions (61, 62) and in vivo conditions (63). Our observations demonstrated that the lightest cells (density 1) had the longest delay time of sickling and the lowest sickled fraction. This ensured high probability in maintaining deformability for maximum contact area for adhesion during microcirculation, agreeing well with the adhesive dynamics of single sickle RBCs (64). The densest cells (density 4) exhibited the shortest delay time for cell sickling, the highest sickled fraction, and the longest delay time for cell unsickling, which may contribute to quick stiffening and ready trapping.

We found that the beneficial effects of HU therapy on sickling kinetics were more evident for the relatively dense populations, in terms of the delay time of cell sickling ($P = 0.01$ and $P = 0.06$ for density 3 and density 4, respectively) and the maximum sickled fraction ($P = 0.01$ and $P = 0.001$ for density 3 and density 4, respectively). These factors could serve as candidate biomarkers to evaluate the efficacy of HU therapy and to guide the development of new therapeutics.

Materials and Methods

Sickle RBC Samples. All studies involving human blood were approved by the institutional review board (IRB) of National Institutes of Health (NIH), Massachusetts General Hospital (MGH), and Massachusetts Institute of Technology (MIT). Blood samples from 16 SCD patients, including 11 patients with HbS-6a (MitHbS-6a), 12 patients without the trait (off-HU), and 2 patients with off-HU but with transfusion (off-HU/T), were collected in EDTA anticoagulant at NIH and MGH (using written consent forms approved by NIH and MGH IRB, respectively) and shipped to MIT on ice and stored at 4 °C. All of the microfluidics tests were conducted within 3 d of blood drawing. For cell sickling/unsickling tests, we used 25 samples (18 on-HU and 7 off-HU). For the single-cell rheology test, we used 15 samples, including 6 on-HU, 7 off-HU, and 2 off-HU/T. For the study of cell density, we used 20 samples, including 14 on-HU and 6 off-HU. Another 13 samples (8 on-HU and 5 off-HU) were used for HPLC characterization. For Aes-103 testing, blood samples from 3 on-HU and 3 off-HU patients were incubated with Aes-103 at different concentrations (0.5, 1, 2, and 5 mM) for 1 h at 37 °C before the in vitro sickling test.

Sickle RBC fractionation according to cell density was performed by means of a stepwise gradient protocol with OptiPrep solution with density adjusted and with Dulbecco’s PBS (HyClone DPBS; Thermo Scientific) based on the specific gravity. The fractionation gradient was built up with four layers of 2.5 ml OptiPrep-DPBS medium of densities 1.081, 1.091, 1.100, and 1.111 g/ml, respectively. A 1-ml blood sample was washed twice with PBS at 821 × g for 5 min at 21 °C and diluted into 70–80% hematocrit. Then, the RBC pellet was fully suspended by gentle vortexing and layered on top of the gradient. Cell fractionation was achieved by 20-min centrifugation at 821 × g. The four fractionated populations trapped between the interfaces of successive layers of gradient medium and in the bottom of the tube were carefully collected with a 1-ml pipette tip and washed with 5 ml PBS buffer twice to remove gradient residue. The four fractions, density 1–4, have mean densities of 1.086 ± 0.005 g/ml, 1.095 ± 0.005 g/ml, 1.105 ± 0.005 g/ml, and >1.111 g/ml, respectively. Fractionated sickle RBCs were then suspended with RPMI-1640 containing 1% (vol/vol) BSA (Sigma-Aldrich) and stored at 4 °C until shortly before use to avoid metabolic depletion. BSA was used to maintain the cellular livability and prevent cell adhesion to the interior surfaces of microfluidic devices.

Microfluidic Platform. Microfluidic devices were designed and fabricated using polydimethylsiloxane casting protocols and bonded to microscope slides. The masters of PDMS channels were fabricated with silicon wafers using standard photolithography techniques and followed with 2-h surface passivation using fluorinated silane vapor [(tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane; T2492-KG; United Chemical Technologies]. O2 concentration in the cell channel was controlled by the gas flow in the gas channel. The transient hypoxia condition was created by switching between two gas mixtures, including a gas mixture of 5% CO2, 20% O2 with N2 balance for an initial oxygenation and reoxygenation and a gas mixture of 5% CO2, 2% O2 with N2 balance for deoxygenation. The fluorescent dye of which is strongly reduced by molecular O2 emission of which is strongly reduced by molecular O2.

Experimental Conditions. Experiments were performed on a Zeiss Axiovert 200 inverted microscope using a halogen source (100 W). Microfluidic devices were enclosed in a heating incubator (ibiidi heating system) with temperature maintained at 37 °C for both cell sickling and rheology measurements. The temperature state of the cell buffer within the microfluidic channel was calibrated with a thermocouple considering the mass exchange (gas and cell buffer) before the experiment. Images of RBCs were enhanced with a 414/434 nm band-pass filter and near-infrared passive reflection using a 20× (0.40 NA) objective. The single-cell rheology was characterized offline using Tris(4,7-diphenyl-1,10-phenanthroline) ruthenium (II) dichloride complex [Ru(dpp)Cl2] (Sigma-Aldrich), the fluorescence of which is strongly reduced by molecular O2 due to dynamic quenching. Because Ru(dpp)Cl2 is water-insoluble, it was dissolved in acetone-RPMI (volume ratio of 1:2) at 0.8 mg/ml and injected into the cell channel. Luminescence was measured at an emission wavelength of 488 nm. Short-term and long-term hypoxia conditions held the durations of the DeOxy state (O2 concentration <5%) at about 25 and 220 s, respectively. The division of 5% was selected because sickle RBCs start to sickle when O2 is lower than this point.
The relative proportions of HbS, HbF, HbA, and HbA2 of density-separated cell populations were obtained via HPLC performed at Brigham and Women’s Hospital.

Statistical Study. All data are expressed as mean ± SD. Statistical analyses were performed with OriginPro 8 (OriginLab). A two-sample t test between measurements of samples from on-HU patients and off-HU patients was used to generate the P values with equal variance not assumed. Correlation analyses between the biophysical measurements and the hematological values were performed using Pearson’s correlation.

ACKNOWLEDGMENTS. The authors thank Dr. John Higgins for providing SCD blood samples and for helpful discussions, and thank Ms. Laurel Medelsohn and Mr. James Nichols at NIH for assistance in procuring sickle cell blood samples. E.D., M.D.S., and M.D. acknowledge support by the NIH (RO1HL1170 and U01HL114476). S.S. acknowledges support from Mellon University.