Study of W boson production in association with beauty and charm

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Study of W boson production in association with beauty and charm

R. Aaij et al. a
(LHCb Collaboration)
(Received 3 June 2015; published 8 September 2015)

The associated production of a W boson with a jet originating from either a light parton or heavy-flavor quark is studied in the forward region using proton-proton collisions. The analysis uses data corresponding to integrated luminosities of 1.0 and 2.0 fb$^{-1}$ collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, respectively. The W bosons are reconstructed using the $W \rightarrow \mu\nu$ decay and muons with a transverse momentum, p_T, larger than 20 GeV in the pseudorapidity range $2.0 < \eta < 4.5$. The partons are reconstructed as jets with $p_T > 20$ GeV and $2.2 < \eta < 4.2$. The sum of the muon and jet momenta must satisfy $p_T > 20$ GeV. The fraction of $W + j$ events that originate from beauty and charm quarks is measured, along with the charge asymmetries of the $W + b$ and $W + c$ production cross sections. The ratio of the $W + j$ to $Z + j$ jet production cross sections is also measured using the $Z \rightarrow \mu\mu$ decay. All results are in agreement with Standard Model predictions.

DOI: 10.1103/PhysRevD.92.052001
PACS numbers: 14.70.Fm, 13.87.-a

I. INTRODUCTION

Measurements of $W + j$ production in hadron collisions provide important tests of the Standard Model (SM), especially of perturbative quantum chromodynamics (QCD) in the presence of heavy-flavor quarks. Such measurements are also sensitive probes of the parton distribution functions (PDFs) of the proton. The ratio of the $W + j$ to $Z + j$ jet production cross sections is a test of perturbative QCD methods and constrains the light-parton PDFs of the proton.

The jet produced in association with the W boson may originate from a b quark ($W + b$), c quark ($W + c$) or light parton. Several processes contribute to the $W + b$ and $W + c$ final states at next-to-leading order (NLO) in perturbative QCD. The dominant mechanism for $W + c$ production is $gq \rightarrow Wc$, but there are also important contributions from $gs \rightarrow Wcg$, $gq \rightarrow Wcs$, and $q\bar{q} \rightarrow Wc\bar{c}$ [1]. Therefore, measuring the ratio of the $W + c$ to $W + j$ jet production cross sections in the forward region at the LHC provides important constraints on the s quark PDF [2,3] at momentum transfers of $Q \approx 100$ GeV ($c = 1$ throughout this article) and momentum fractions down to $x \approx 10^{-5}$. Previous measurements of the proton s quark PDF were primarily based on deep inelastic scattering experiments with $Q \approx 1$ GeV and x values $O(0.1)$ [4–6]. The $W + c$ cross section has been measured at the Tevatron [7,8] and at the LHC [9,10] in the central region.

In the so-called four-flavor scheme, theoretical calculations are performed considering only the four lightest quarks in the proton [11]. Production of $W + b$ proceeds via $q\bar{q} \rightarrow Wg$ with $g \rightarrow b\bar{b}$ at leading order. If the b quark content of the proton is considered, i.e. the five-flavor scheme, then single-b production via $qb \rightarrow Wbq$ also contributes [12]. The ratio of the $W + b$ to $W + j$ cross sections thus places constraints both on the intrinsic b quark content of the proton and the probability of gluons splitting into $b\bar{b}$ pairs. The $W + b$ cross section has been measured in the central region at the Tevatron [13,14] and at the LHC [15].

LHCb has measured the cross sections for inclusive W and Z production in proton-proton (pp) collisions at center-of-mass energy $\sqrt{s} = 7$ TeV [16–19], providing precision tests of the SM in the forward region. Additionally, measurements of the $Z + j$ and $Z + b$ cross sections have been made [20,21]. In this article, the associated production of a W boson with a jet originating from either a light parton or a heavy-flavor quark is studied using pp collisions at center-of-mass energies of 7 and 8 TeV. The production of the $W + b$ final state via top quark decay is not included in the signal definition in this analysis, but is reported separately in Ref. [22].

A comprehensive approach is taken, where the inclusive $W + j$, $W + b$ and $W + c$ contributions are measured simultaneously, rather than split across multiple measurements as in Refs. [9,10,15,23–26]. The identification of c jets, in conjunction with b jets, is performed using the tagging algorithm described in Ref. [27], which improves upon previous c-tagging methods where muons or exclusive decays were required to identify the jet [9,10]. For each center-of-mass energy, the following production cross section ratios are measured: $\sigma(Wb)/\sigma(Wj)$, $\sigma(Wc)/\sigma(Wj)$, $\sigma(W^+j)/\sigma(Zj)$, $\sigma(W^-j)/\sigma(Zj)$, $A(Wb)$, and $A(Wc)$, where

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

© 2015 CERN, for the LHCb Collaboration
The analysis is performed using the $W \rightarrow \mu \nu$ decay and jets clustered with the anti-k_t algorithm [28] using a distance parameter $R = 0.5$. The following fiducial requirements are applied: both the muon and the jet must have momentum transverse to the beam, $p_{T\mu}$ greater than 20 GeV; the pseudorapidity of the muon must fall within $2.0 < \eta(\mu) < 4.5$; the jet pseudorapidity must satisfy $2.2 < \eta(j) < 4.2$; the muon and jet must be separated by $\Delta R(\mu,j) > 0.5$, where $\Delta R \equiv \sqrt{\Delta \eta^2 + \Delta \phi^2}$ and $\Delta \eta(\Delta \phi)$ is the difference in pseudorapidity (azimuthal angle) between the muon and jet momenta; and the transverse component of the sum of the pseudorapidity of the muon must fall within $\Delta \eta \leq 0.35$, and $\Delta \phi > 20$ GeV; the minimum distance of a track to a radiation (FSR) is generated using PHOTOS [39]. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit [40,41] as described in Ref. [42].

Results are compared with theoretical calculations at NLO using MCFM [43] and the CT10 PDF set [44]. The theoretical uncertainty is a combination of PDF, scale, and strong-coupling (α_s) uncertainties. The PDF and scale uncertainties are evaluated following Refs. [44] and [45], respectively. The α_s uncertainty is evaluated as the envelope obtained using $\alpha_s(M_Z) \in [0.117, 0.118, 0.119]$ in the theory calculations.

III. EVENT SELECTION

The signature for $W + j$ events is an isolated high-p_T muon and a well-separated jet, both produced in the same pp interaction. Muon candidates are identified with tracks that have associated hits in the muon system. The muon candidate must have $p_{T\mu} > 20$ GeV and pseudorapidity within $2.0 < \eta(\mu) < 4.5$. Background muons from $W \rightarrow \tau \rightarrow \mu$ decays or semileptonic decays of heavy-flavor hadrons are suppressed by requiring the muon impact parameter to be less than 0.04 mm [16]. Background from high-momentum kaons and pions that enter the muon system and are misidentified as muons is reduced by requiring that the sum of the energy of the associated electromagnetic and hadronic calorimeter deposits does not exceed 4% of the momentum of the muon candidate.

Jets are clustered using the anti-k_t algorithm with a distance parameter $R = 0.5$, as implemented in FASTJET [46]. Information from all the detector subsystems is used to create charged and neutral particle inputs to the jet-clustering algorithm using a particle flow approach [20]. During 2011 and 2012, LHCb collected data with a mean of pp collisions per beam crossing of about 1.7. To reduce contamination from multiple pp interactions, charged particles reconstructed within the vertex detector may only be clustered into a jet if they are associated with the same pp collision.

Signal events are selected by requiring a muon candidate and at least one jet with $\Delta R(\mu,j) > 0.5$. For each event the
highest-\(p_T\) muon candidate that satisfies the trigger requirements is selected, along with the highest-\(p_T\) jet from the same \(pp\) collision. The high-\(p_T\) muon candidate is not removed from the anti-\(k_T\) inputs and so is clustered into a jet. This jet, referred to as the muon jet and denoted as \(j_\mu\), is used to discriminate between \(W + \) jet and dijet events. The requirement \(p_T(j_\mu + j) > 20\) GeV is made to suppress dijet backgrounds, which are well balanced in \(p_T\), unlike \(W + \) jet events where there is undetected energy from the neutrino. Furthermore, the distribution of the fractional muon candidate \(p_T\) within the muon jet, \(p_T(\mu)/p_T(j_\mu)\), is used to separate vector bosons from jets. For vector-boson production, this ratio deviates from unity only due to muon FSR, activity from the underlying event, or from neutral-particle production in a separate \(pp\) collision, whereas for jet production this ratio is driven to smaller values by the presence of additional radiation produced in association with the muon candidate.

Events with a second, oppositely charged, muon candidate from the same \(pp\) collision are vetoed. However, when the dimuon invariant mass is in the range \(60 < M(\mu^+\mu^-) < 120\) GeV, such events are selected as \(Z + \) jet candidates and the \(p_T(j_\mu + j)\) requirement is not applied. Two \(Z + \) jet data samples are selected at each center-of-mass energy: a data sample where only the \(\mu^-\) is required to satisfy the trigger requirements and one where only the \(\mu^+\) is required to satisfy them. The first sample is used to measure \(\sigma(W^+j)/\sigma(Zj)\), while the second is used for \(\sigma(W^-j)/\sigma(Zj)\). This strategy leads to approximate cancellation of the uncertainty in the trigger efficiency in the measurement of these ratios.

The reconstructed jets must have \(p_T(j) > 20\) GeV and \(2.2 < \eta(j) < 4.2\). The reduced \(\eta(j)\) acceptance ensures nearly uniform jet reconstruction and heavy-flavor tagging efficiencies. The momentum of a reconstructed jet is scaled to obtain an unbiased estimate of the true jet momentum. The scaling factor, typically between 0.9 and 1.1, is determined from simulation and depends on the jet \(p_T\) and \(\eta\), the fraction of the jet transverse momentum measured with the tracking systems, and the number of \(pp\) interactions in the event. No scaling is applied to the momentum of the muon jet. Migration of events in and out of the jet \(p_T\) fiducial region due to the detector response is corrected for by an unfolding technique. Data-driven methods are used to obtain the unfolding matrix, with the resulting corrections to the measurements presented in this article being at the percent level.

The jets are identified, or tagged, as originating from the hadronization of a heavy-flavor quark by the presence of a secondary vertex (SV) with \(\Delta R < 0.5\) between the jet axis and the SV direction of flight, defined by the vector from the \(pp\) interaction point to the SV position. Two boosted decision trees (BDTs) [47,48], BDT(\(bc[uds]g\)) and BDT(\(b[c]\)), trained on the characteristics of the SV and the jet, are used to separate heavy-flavor jets from light-parton jets, and to separate \(b\) jets from \(c\) jets. The two-dimensional distribution of the BDT response observed in data is fitted to obtain the SV-tagged \(b\), \(c\) and light-parton jet yields. The SV-tagger algorithm is detailed in Ref. [27], where the heavy-flavor tagging efficiencies and light-parton mistag probabilities are measured in data.

IV. BACKGROUND DETERMINATION

Contributions from six processes are considered in the \(W + \) jet data sample: \(W + \) jet signal events; \(Z + \) jet events where one muon is not reconstructed; top quark events producing a \(W + \) jet final state; \(Z \rightarrow \tau\tau\) events where one \(\tau\) lepton decays to a muon and the other decays hadronically; QCD dijet events; and vector boson pair production. Simulations based on NLO predictions show that the last contribution is negligible.

The signal yields are obtained for each muon charge and center-of-mass energy independently. The \(p_T(\mu)/p_T(j_\mu)\) distribution is fitted to determine the \(W + \) jet yield of each data sample. To determine the \(W + b\) and \(W + c\) yields, the subset of candidates with an SV-tagged jet is binned according to \(p_T(\mu)/p_T(j_\mu)\). In each \(p_T(\mu)/p_T(j_\mu)\) bin, the two-dimensional SV-tagger BDT-response distributions are fitted to determine the yields of \(b\)-tagged and \(c\)-tagged jets, which are used to form the \(p_T(\mu)/p_T(j_\mu)\) distributions for candidates with \(b\)-tagged and \(c\)-tagged jets. These \(p_T(\mu)/p_T(j_\mu)\) distributions are fitted to determine the SV-tagged \(W + b\) and \(W + c\) yields. Finally, to obtain \(\sigma(Wb)/\sigma(Wj)\) and \(\sigma(Wc)/\sigma(Wj)\), the jet-tagging efficiencies of \(\epsilon_{\text{tag}}(b) \approx 65\%\) and \(\epsilon_{\text{tag}}(c) \approx 25\%\) are accounted for. In all fits performed in this analysis, the templates are histograms with fixed shapes.

The \(p_T(\mu)/p_T(j_\mu)\) distributions are shown in Fig. 1 (in this and subsequent figures the pull represents the difference between the data and the fit, in units of standard deviations). The \(W\) boson yields are determined by performing binned extended-maximum-likelihood fits to these distributions with the following components:

(i) The \(W\) boson template is obtained by correcting the \(p_T(\mu)/p_T(j_\mu)\) distribution observed in \(Z + \) jet events for small differences between \(W\) and \(Z\) decays derived from simulation.

(ii) The template for \(Z\) boson events where one muon is not reconstructed is obtained by correcting, using simulation, the \(p_T(\mu)/p_T(j_\mu)\) distribution observed in fully reconstructed \(Z + \) jet events for small differences expected in partially reconstructed \(Z + \) jet events. The yield is fixed from the fully reconstructed \(Z + \) jet data sample, where simulation is used to obtain the probability that the muon is missed, either because it is out of acceptance or it is not reconstructed.

(iii) The templates for \(b\), \(c\) and light-parton jets are obtained using dijet-enriched data samples. These samples require \(p_T(j_\mu + j) < 10\) GeV and, for the
heavy-flavor samples, either a stringent b-tag or c-tag requirement on the associated jet. The templates are corrected for differences in the $p_T(j_p)$ spectra between the dijet-enriched and signal regions. The contributions of b, c and light-parton jets are each free to vary in the $p_T(\mu)/p_T(j_p)$ fits.

The $p_T(\mu)/p_T(j_p)$ fits determine the $W+$ jet yields, which include contributions from top quark and $Z \rightarrow \tau \tau$ production. The top quark and $Z \rightarrow \tau \tau$ contributions cannot be separated from $W+$jet since their $p_T(\mu)/p_T(j_p)$ distributions are nearly identical to that of $W+$ jet events. The subtraction of these backgrounds is described below.

The yields of events with W bosons associated with b-tagged and c-tagged jets are obtained by fitting the two-dimensional SV-tagger BDT-response distributions for $\sqrt{s} = 7$ and 8 TeV and for each muon charge separately in bins of $p_T(\mu)/p_T(j_p)$. The SV-tagger BDT templates used in this analysis are obtained from the data samples enriched in b and c jets used in Ref. [27]. As a consistency check, the two-dimensional BDT distributions are fitted using templates from simulation; the yields shift only by a few percent. Figure 2 shows the BDT distributions combining all data in the most sensitive region, $W+$ jet events with $p_T(\mu)/p_T(j_p) > 0.9$. This is the region where the muon carries a large fraction of the muon-jet momentum and is, therefore, highly isolated. Figure 3 shows the distributions in a dijet dominated region $[0.5 < p_T(\mu)/p_T(j_p) < 0.6]$. In the dijet region the majority of SV-tagged jets associated with the high-p_T muon candidate are found to be b jets. This is due to the large semileptonic branching fraction of b hadrons. In the $W+$ jet signal region there are significant contributions from both b and c jets.

As a consistency check, the b, c, and light-parton yields are obtained in the $p_T(\mu)/p_T(j_p) > 0.9$ signal region from a fit using only two of the BDT inputs, both of which rely only on basic SV properties, the track multiplicity and the corrected mass, which is defined as

$$M_{\text{cor}} = \sqrt{M^2 + |\vec{p}|^2 \sin^2 \theta + |\vec{p}| \sin \theta}, \quad (2)$$
where M and \vec{p} are the invariant mass and momentum of the particles that form the SV, and θ is the angle between \vec{p} and the flight direction. The corrected mass, which is the minimum mass for a long-lived hadron whose trajectory is consistent with the flight direction, peaks near the D meson mass for c jets and consequently provides excellent discrimination against other jet types. The SV track multiplicity identifies b jets well, since b-hadron decays typically produce many displaced tracks. In Fig. 4, the distributions of M_{cor} and SV track multiplicity for a subsample of SV-tagged events with $\text{BDT}(bc|udsg) > 0.2$ (see Fig. 2) are fitted simultaneously. The templates used in these fits are obtained from data in the same manner as the SV-tagger BDT templates. After correcting for the efficiency of requiring $\text{BDT}(bc|udsg) > 0.2$, the b and c yields determined from the fits to M_{cor} and SV track multiplicity and from the two-dimensional BDT fits are consistent. The mistag probability for $W + \text{light-parton}$ events in this sample is found to be approximately 0.3%, which agrees with the value obtained from simulation.

From the SV-tagger BDT fits, the b and c yields are obtained in bins of \sqrt{s}, muon charge, and $p_T(\mu)/p_T(\mu)$. The $p_T(\mu)/p_T(\mu)$ distributions for muons associated with b-tagged and c-tagged jets are shown in Figs. 5 and 6. These distributions are fitted to determine the $W + b$ and $W + c$ final-state yields as in the inclusive $W + \text{jet}$ sample.
The $Z + b$ and $Z + c$ yields are obtained by fitting the SV-tagger BDT distributions in the fully reconstructed $Z + \text{jet}$ data samples and then correcting for the missed-muon probability. The fits are shown in Figs. 5 and 6 for each muon charge and center-of-mass energy. The yields obtained still include contributions from top quark production and $Z \rightarrow \tau \tau$.

The $Z \rightarrow \tau \tau$ background, where one τ lepton decays into a muon and the other into a hadronic jet, contaminates the $W + c$ sample due to the similarity of the c-hadron and τ lepton masses. The $p_T(SV)/p_T(j)$ distribution, where $p_T(SV)$ is the transverse momentum of the particles that form the SV, is used to discriminate between c and τ jets, since SVs produced from τ decays usually carry a larger fraction of the jet energy than SVs from c-hadron decays. Figure 7 shows fits to the $p_T(SV)/p_T(j)$ distributions observed in data where the b and light-parton yields are fixed using the results of BDT fits performed on the data samples. A requirement of $\text{BDT}(bc|udsg) > 0.2$ is applied to this sample to remove the majority of SV-tagged light-parton jets while retaining 90% of b, c and τ jets. The only free parameter in these fits is the fraction of jets identified as charm in the SV-tagger BDT fits that originate from τ leptons. The $p_T(SV)/p_T(j)$ templates are obtained from simulation. The $Z \rightarrow \tau \tau$ yields are consistent with SM expectations and are about 25 times smaller than the $W + c$.

FIG. 3 (color online). Two-dimensional SV-tag BDT distribution (top left) and fit (top right) for events in the subsample with $0.5 < p_T(\mu)/p_T(j) < 0.6$, projected onto the BDT($bc|udsg$) (bottom left) and BDT($b|c$) (bottom right) axes. Combined data for $\sqrt{s} = 7$ and 8 TeV for both muon charges are shown.
yields. These results are extrapolated to the inclusive sample using simulation.

The top quark background is determined in the dedicated analysis of Ref. [22], where a reduced fiducial region is used to enrich the relative top quark content. The yields and charge asymmetries of the W^+b final state as functions of $p_T(\mu)$ are used to discriminate between W^+b and top quark production. The results obtained in Ref. [22] are

FIG. 4 (color online). Projections of simultaneous fits of M_{cor} (left) and SV (right) track multiplicity for the SV-tagged subsample with $BDT(bc|udsg) > 0.2$ and $p_T(\mu)/p_T(\mu) > 0.9$. The highest M_{cor} bin includes candidates with $M_{cor} > 10$ GeV. Combined data for $\sqrt{s} = 7$ and 8 TeV for both muon charges are shown.

FIG. 5 (color online). Fits to $p_T(\mu)/p_T(\mu)$ distributions for b-tagged data samples for $\sqrt{s} = 7$ and 8 TeV.
consistent with SM expectations and are extrapolated to the fiducial region of this analysis using simulation based on NLO calculations. The extrapolated top quark yields are subtracted from the observed number of $W+b$ candidates to obtain the signal yields. Top quark production is found to be responsible for about $1/3$ of events that contain a W boson and b jet. A summary of all signal yields is given in Table I.

FIG. 6 (color online). Fits to $p_T(\mu)/p_T(j_\mu)$ distributions for c-tagged data samples for $\sqrt{s} = 7$ and 8 TeV.

FIG. 7 (color online). Fits to the $p_T(SV)/p_T(j)$ distributions in 7 TeV (left) and 8 TeV (right) data for candidates with $p_T(\mu)/p_T(j_\mu) > 0.9$ and BDT($bc|udsg) > 0.2$.

R. AAIJ et al. PHYSICAL REVIEW D 92, 052001 (2015)
is used to determine the fraction of events that are rejected. The GEC efficiencies for all final states are found to be consistent within a statistical precision of 1%, which is assigned as a systematic uncertainty. As a further check, the number of jets per event reconstructed in association with W or Z bosons is compared and found to be consistent.

The jet reconstruction efficiencies for heavy-flavor and light-parton jets in simulation are found to be consistent within 2%, which is assigned as a systematic uncertainty for flavor dependencies in the jet-reconstruction efficiency. The jet \(p_T \) detector response is studied with a data sample enriched in \(b \) jets using SV tagging. The \(p_T(SV)/p_T(j) \) distribution observed in data is compared to templates obtained from simulation in bins of jet \(p_T \). The resolution and scale in simulation for each jet \(p_T \) bin are varied to find the best description of the data and to construct a data-driven unfolding matrix. The results obtained using this unfolding matrix are consistent with those obtained using a matrix determined by studies of \(p_T \) balance in \(Z + j \) events [20], where no heavy-flavor tagging is applied. The unfolding corrections are at the percent level and their statistical precision is assigned as the uncertainty.

The heavy-flavor tagging efficiencies are measured from data in Ref. [27], where a 10% uncertainty is assigned for \(b \) and \(c \) jets. The cross-check fits of Sec. IV, using the corrected mass and track multiplicity, remove information associated with jet quantities, such as \(p_T \), from the yield determination and produce yields consistent at the 5% level. This is assigned as the uncertainty for the SV-tagged yield determination.

The W boson template for the \(p_T(\mu)/p_T(\mu_\mu) \) distribution is derived from data, as described in Sec. IV. The fit is repeated using variations of this template, e.g. using a template taken directly from simulation and using separate templates for \(W^+ \) and \(W^- \), to assess a systematic uncertainty. The dijet templates are obtained from data in a dijet-enriched region. The residual, small W boson contamination is subtracted using two methods: the W boson yield expected in the dijet-enriched region is taken from simulation; and the \(p_T(\mu)/p_T(\mu_\mu) \) distribution in the dijet-enriched region is fitted to a parametric function to estimate the W boson yield. The difference in the W boson yields obtained using these two sets of dijet templates is at most 2%. The uncertainty on W/Z ratios due to the W boson and dijet templates is 4%. The uncertainty due to the W boson template cancels to good approximation in the measurements of \(\sigma(Wb)/\sigma(Wj) \) and \(\sigma(Wc)/\sigma(Wj) \); however, the uncertainty due to the dijet templates is larger due to the enhanced dijet background levels. Variations of the dijet templates are considered, with 10% and 5% uncertainties assigned on \(\sigma(Wb)/\sigma(Wj) \) and \(\sigma(Wc)/\sigma(Wj) \).

The systematic uncertainty from top quark production is taken from Ref. [22], while the systematic uncertainty from \(Z \to \tau \tau \) is evaluated by fitting the data using variations of the \(p_T(SV)/p_T(j) \) templates. All other electroweak

TABLE I. Summary of signal yields. The two Zj yields denote the charge of the muon on which the trigger requirement is made. The Zj yields given are the numbers of candidates observed, while the W boson yields are obtained from fits. The yield due to top quark production is subtracted in these results.

<table>
<thead>
<tr>
<th>Mode</th>
<th>(\mu^+)</th>
<th>(\mu^-)</th>
<th>(\mu^+)</th>
<th>(\mu^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zj</td>
<td>2364</td>
<td>2357</td>
<td>6680</td>
<td>6633</td>
</tr>
<tr>
<td>Wj</td>
<td>27400 ± 500</td>
<td>17500 ± 400</td>
<td>70700 ± 1100</td>
<td>44800 ± 800</td>
</tr>
<tr>
<td>Wb-tag</td>
<td>160 ± 31</td>
<td>51 ± 27</td>
<td>400 ± 43</td>
<td>236 ± 45</td>
</tr>
<tr>
<td>Wc-tag</td>
<td>295 ± 36</td>
<td>338 ± 31</td>
<td>795 ± 56</td>
<td>802 ± 55</td>
</tr>
</tbody>
</table>

TABLE II. Systematic uncertainties. Relative uncertainties are given for cross section ratios and absolute uncertainties for charge asymmetries.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\sigma(Wb)/\sigma(Wj))</th>
<th>(\sigma(Wc)/\sigma(Wj))</th>
<th>(\sigma(Wj)/\sigma(Zj))</th>
<th>(A(Wb))</th>
<th>(A(Wc))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon trigger and selection</td>
<td>2%</td>
<td>2%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>GEC</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Jet reconstruction</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Jet (p_T)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>(b, c)-tag efficiency</td>
<td>0% N/A</td>
<td>0% N/A</td>
<td>0% N/A</td>
<td>0% N/A</td>
<td>0% N/A</td>
</tr>
<tr>
<td>SV-tag BDT templates</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>(p_T(\mu)/p_T(\mu_\mu))</td>
<td>0.08</td>
<td>0.03</td>
<td>0.08</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Top quark</td>
<td>13%</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Z (\to \tau \tau)</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Other electroweak</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>W (\to \tau \mu)</td>
<td>13%</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Total</td>
<td>20%</td>
<td>13%</td>
<td>5%</td>
<td>0.09</td>
<td>0.04</td>
</tr>
</tbody>
</table>
backgrounds are found to be negligible from NLO predictions. All $W \rightarrow \mu\nu$ yields have a small contamination from $W \rightarrow \tau \rightarrow \mu$ decays that cancels in all cross section ratios except for the W/Z ratios. A scaling factor of 0.975, obtained from simulation, is applied to the W boson yields. A 1% uncertainty is assigned to the scale factor, which is obtained from the difference between the correction factor from simulation and a data-driven study of this background [16] for inclusive $W \rightarrow \mu\nu$ production.

The trigger, reconstruction and selection requirements are consistent with being charge symmetric [16], which results in negligible uncertainty on $A(Wb)$ and $A(Wc)$. Unfolding of the jet p_T detector response is performed independently for W^+ and W^- bosons, with the statistical uncertainties on the corrections to the charge asymmetries assigned as systematic uncertainties. The uncertainty on the $W + b$ and $W + c$ yields from the BDT fits is included in the charge asymmetry uncertainty due to the fact that the fractional jet content of the SV-tagged samples is charge dependent. The uncertainty on the charge asymmetries due to determination of the W boson yields is evaluated using an alternative method for obtaining the charge asymmetries. The raw charge asymmetry in the b-jet and c-jet yields in the $p_T(\mu)/p_T(j_{b}) > 0.9$ region is obtained from the SV-tagger BDT fits. The $Z + jet$ and dijet backgrounds are charge symmetric at the percent level and contribute at most to 20% of the events in this $p_T(\mu)/p_T(j_{b})$ region. Therefore, $A(Wb)$ and $A(Wc)$ are approximated by scaling the raw asymmetries by the inverse of the W boson purity in the $p_T(\mu)/p_T(j_{b}) > 0.9$ region. A small correction must also be applied to $A(Wb)$ to account for top quark production. The difference between the asymmetries from this method and the nominal method is assigned as a systematic uncertainty from W boson signal determination. The uncertainty on $A(Wb)$ due to top quark production is taken from Ref. [22].

VI. RESULTS

The results for $\sqrt{s} = 7$ and 8 TeV are summarized in Table III. Each result is compared to SM predictions calculated at NLO using MCFM [43] and the CT10 PDF set [44] as described in Sec. II. Production of $W + jet$ events in the forward region requires a large imbalance in x of the initial partons. In the four-flavor scheme at leading order, $W + b$ production proceeds via $q\bar{q} \rightarrow W g(b\bar{b})$, where the charge of the W boson has the same sign as that of the initial parton with larger x. Therefore, $A(Wb) \approx +1/3$ is predicted due to the valence quark content of the proton. The dominant mechanism for $W + c$ production is $gs \rightarrow Wc$, which is charge symmetric assuming symmetric s and \bar{s} quark PDFs. However, the Cabibbo-suppressed contribution from $gd \rightarrow Wc$ leads to a prediction of a small negative value for $A(Wc)$.

The $\sigma(Wb)/\sigma(Wj)$ ratio in conjunction with the $W + b$ charge asymmetry is consistent with MCFM calculations performed in the four-flavor scheme, where $W + b$ production is primarily from gluon splitting. This scheme assumes no intrinsic b quark content in the proton. The data do not support a large contribution from intrinsic b quark content in the proton but the precision is not sufficient to rule out such a contribution at $O(10\%)$. The ratio $[\sigma(Wb) + \sigma(top)]/\sigma(Wj)$ is measured to be $1.17 \pm 0.13(stat) \pm 0.18(syst)%$ at $\sqrt{s} = 7$ TeV and $1.29 \pm 0.08(stat) \pm 0.19(syst)%$ at $\sqrt{s} = 8$ TeV, which agree with the NLO SM predictions of $1.23 \pm 0.24\%$ and $1.38 \pm 0.26\%$, respectively.

The $\sigma(Wc)/\sigma(Wj)$ ratio is much larger than $\sigma(Wb)/\sigma(Wj)$, which is consistent with Wc production from intrinsic s quark content of the proton. The measured charge asymmetry for $W + c$ is about 2σ smaller than the predicted value obtained with CT10, which assumes symmetric s and \bar{s} quark PDFs. This could suggest a larger than expected contribution from scattering off of strange

TABLE III. Summary of the results and SM predictions. For each measurement the first uncertainty is statistical, while the second is systematic. All results are reported within a fiducial region that requires a jet with $p_T > 20$ GeV in the pseudorapidity range $2.2 < \eta < 4.2$, a muon with $p_T > 20$ GeV in the pseudorapidity range $2.0 < \eta < 4.5$, $p_T(\mu + j) > 20$ GeV, and $\Delta R(\mu, j) > 0.5$. For $Z + jet$ events both muons must fulfill the muon requirements and $60 < M(\mu\mu) < 120$ GeV; the $Z + jet$ fiducial region does not require $p_T(\mu + j) > 20$ GeV.

<table>
<thead>
<tr>
<th></th>
<th>Results 7 TeV</th>
<th>Results 8 TeV</th>
<th>SM prediction 7 TeV</th>
<th>SM prediction 8 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(Wb)/\sigma(Wj)$ × 10²</td>
<td>0.66 ± 0.13 ± 0.13</td>
<td>0.78 ± 0.08 ± 0.16</td>
<td>0.74 ± 0.17</td>
<td>0.77 ± 0.18</td>
</tr>
<tr>
<td>$\sigma(Wc)/\sigma(Wj)$ × 10²</td>
<td>5.80 ± 0.44 ± 0.75</td>
<td>5.62 ± 0.28 ± 0.73</td>
<td>5.02 ± 0.80</td>
<td>5.31 ± 0.87</td>
</tr>
<tr>
<td>$A(Wb)$</td>
<td>0.51 ± 0.20 ± 0.09</td>
<td>0.27 ± 0.13 ± 0.09</td>
<td>0.27 ± 0.03</td>
<td>0.28 ± 0.03</td>
</tr>
<tr>
<td>$A(Wc)$</td>
<td>-0.09 ± 0.08 ± 0.04</td>
<td>-0.01 ± 0.05 ± 0.04</td>
<td>-0.15 ± 0.02</td>
<td>-0.14 ± 0.02</td>
</tr>
<tr>
<td>$\sigma(Wb)/\sigma(Wj)$</td>
<td>10.49 ± 0.28 ± 0.53</td>
<td>9.44 ± 0.19 ± 0.47</td>
<td>9.90 ± 0.28</td>
<td>9.48 ± 0.16</td>
</tr>
<tr>
<td>$\sigma(Wc)/\sigma(Wj)$</td>
<td>6.61 ± 0.19 ± 0.33</td>
<td>6.02 ± 0.13 ± 0.30</td>
<td>5.79 ± 0.21</td>
<td>5.52 ± 0.13</td>
</tr>
</tbody>
</table>
quarks or a charge asymmetry between s and \bar{s} quarks in the proton. The ratio $\sigma(W^+ j)/\sigma(Z j)$ is consistent within 1σ with NLO predictions, while the observed $\sigma(W^- j)/\sigma(Z j)$ ratio is higher than the predicted value by about 1.5σ.

ACKNOWLEDGMENTS

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEL (Brazil); MNiSW and NCN (Poland); MEN/IFA (Romania); INFN (Italy); FOM and NWO (The Netherlands); BMBF, DFG, HGF and MPG (Germany); and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and from the national agencies: CAPES, CNPq, FAPERJ the LHCb institutes. We acknowledge support from CERN the LHC. We thank the technical and administrative staff at accelerator departments for the excellent performance of with NLO predictions, while the observed ratio is higher than the predicted value by about 1.5σ.

[5] M. Goncharov et al. (NuTeV Collaboration), Precise measurement of dimuon production cross sections in e_μFe and \bar{e}_μFe deep inelastic scattering at the Fermilab Tevatron, Phys. Rev. D 64, 112006 (2001).

[7] V. M. Abazov et al. (D0 Collaboration), Measurement of the ratio of the $p\bar{p} \rightarrow W^+ e^- j$ jet cross section to the inclusive $p\bar{p} \rightarrow W + j$ cross section, Phys. Lett. B 666, 23 (2008).

[12] J. M. Campbell, F. Caola, F. Febres Cordero, L. Reina, and D. Wackeroth, Next-to-leading order QCD predictions for $W + 1$ jet and $W + 2$ jet production with at least one b jet at the 7 TeV LHC, Phys. Rev. D 86, 034021 (2012).

[14] V. M. Abazov et al. (D0 Collaboration), Measurement of the $p\bar{p} \rightarrow W + b + X$ production cross section at $\sqrt{s} = 1.96 \text{ TeV}$, Phys. Rev. Lett. 118, 131801 (2013).

STUDY OF W BOSON PRODUCTION IN ASSOCIATION... PHYSICAL REVIEW D 92, 052001 (2015)
26 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
27 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
28 National Center for Nuclear Research (NCBJ), Warsaw, Poland
29 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
30 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
31 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
32 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
33 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
34 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
35 Institute for High Energy Physics (IHEP), Protvino, Russia
36 Universitat de Barcelona, Barcelona, Spain
37 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
38 European Organization for Nuclear Research (CERN), Geneva, Switzerland
39 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
40 Physik-Institut, Universität Zürich, Zürich, Switzerland
41 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
42 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
43 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
44 University of Birmingham, Birmingham, United Kingdom
45 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
46 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
47 Department of Physics, University of Warwick, Coventry, United Kingdom
48 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
49 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
50 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
51 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
52 Imperial College London, London, United Kingdom
53 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
54 University of Cincinnati, Cincinnati, Ohio, USA
55 University of Maryland, College Park, Maryland, USA
56 Syracuse University, Syracuse, New York, USA
57 Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil (associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil)
58 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China (associated with Center for High Energy Physics, Tsinghua University, Beijing, China)
59 Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia (associated with Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France)
60 Institut für Physik, Universität Rostock, Rostock, Germany (associated with Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)
61 National Research Centre Kurchatov Institute, Moscow, Russia (associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)
62 Yandex School of Data Analysis, Moscow, Russia (associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)
63 Instituto de Física Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain (associated with Universitat de Barcelona, Barcelona, Spain)
64 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands (associated with Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands)

Also at Università di Firenze, Firenze, Italy.
Also at Università di Ferrara, Ferrara, Italy.
Also at Università della Basilicata, Potenza, Italy.
Also at Università di Modena e Reggio Emilia, Modena, Italy.
Also at Università di Milano Bicocca, Milano, Italy.
Also at LIJAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
Also at Università di Bologna, Bologna, Italy.
Also at Università di Roma Tor Vergata, Roma, Italy.
Also at Università di Genova, Genova, Italy.
Also at Scuola Normale Superiore, Pisa, Italy.
Also at Università di Cagliari, Cagliari, Italy.
Also at Politecnico di Milano, Milano, Italy.
Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
Also at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
Also at Università di Padova, Padova, Italy.
Also at Hanoi University of Science, Hanoi, Viet Nam.
Also at Università di Bari, Bari, Italy.
Also at Università degli Studi di Milano, Milano, Italy.
Also at Università di Roma La Sapienza, Roma, Italy.
Also at Università di Pisa, Pisa, Italy.
Also at Università di Urbino, Urbino, Italy.
Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.