Measurement of J/ and (2S) prompt double-differential cross sections in pp collisions at s = 7 TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1103/PhysRevLett.114.191802

Publisher
American Physical Society

Version
Final published version

Accessed
Sun Dec 16 20:06:33 EST 2018

Citable Link
http://hdl.handle.net/1721.1/98502

Terms of Use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Detailed Terms
Measurement of $J/\psi$ and $\psi(2S)$ Prompt Double-Differential Cross Sections in $pp$ Collisions at $\sqrt{s} = 7$ TeV

V. Khachatryan et al.*
(CMS Collaboration)
(Received 13 February 2015; published 14 May 2015)

The double-differential cross sections of promptly produced $J/\psi$ and $\psi(2S)$ mesons are measured in $pp$ collisions at $\sqrt{s} = 7$ TeV, as a function of transverse momentum $p_T$ and absolute rapidity $|y|$. The analysis uses $J/\psi$ and $\psi(2S)$ dimuon samples collected by the CMS experiment, corresponding to integrated luminosities of 4.55 and 4.90 fb$^{-1}$, respectively. The results are based on a two-dimensional analysis of the dimuon invariant mass and decay length, and extend to $p_T = 120$ and 100 GeV for the $J/\psi$ and $\psi(2S)$, respectively, when integrated over the interval $|y| < 1.2$. The ratio of the $\psi(2S)$ to $J/\psi$ cross sections is also reported for $|y| < 1.2$, over the range $10 < p_T < 100$ GeV. These are the highest $p_T$ values for which the cross sections and ratio have been measured.


Studies of heavy-quarkonium production are of central importance for an improved understanding of nonperturbative quantum chromodynamics (QCD) [1]. The nonrelativistic QCD (NRQCD) effective-field-theory framework [2], arguably the best formalism at this time, factorizes high-$p_T$ quarkonium production in short-distance and long-distance scales. First, a heavy quark-antiquark pair, $Q\bar{Q}$, is produced in a Fock state $2S^{+1}_{J_f}L^{[a]}$, with spin $S$, orbital angular momentum $L$, and total angular momentum $J$ that are either identical to (color singlet, $a = 1$) or different from (color octet, $a = 8$) those of the corresponding quarkonium state. The $Q\bar{Q}$ cross sections are determined by short-distance coefficients (SDCs), kinematic-dependent functions calculable perturbatively as expansions in the strong-coupling constant $\alpha_s$. Then this “preresonant” $Q\bar{Q}$ pair binds into the physically observable quarkonium through a nonperturbative evolution that may change $L$ and $S$, with bound-state formation probabilities proportional to long-distance matrix elements (LDMEs). The LDMEs are conjectured to be constant (i.e., independent of the $Q\bar{Q}$ momentum) and universal (i.e., process independent). The color-octet terms are expected to scale with powers of the heavy-quark velocity in the $Q\bar{Q}$ rest frame. In the nonrelativistic limit, an $S$-wave vector quarkonium state should be formed from a $Q\bar{Q}$ pair produced as a color singlet ($^3S^1_1$) or as one of three color octets ($^1S^0_0$, $^3S^1_1$, and $^3P^0_J$).

Three “global fits” to measured quarkonium data [3–5] obtained incompatible octet LDMEs, despite the use of essentially identical theory inputs: next-to-leading-order (NLO) QCD calculations of the singlet and octet SDCs. The disagreement stems from the fact that different sets of measurements were considered. In particular, the results crucially depend on the minimum $p_T$ of the fitted measurements [6], because the octet SDCs have different $p_T$ dependences. Fits including low-$p_T$ cross sections lead to the conclusion that, at high $p_T$, quarkonium production should be dominated by transversely polarized octet terms. This prediction is in stark contradiction with the unpolarized production seen by the CDF [7,8] and CMS [9,10] experiments, an observation known as the “quarkonium polarization puzzle.” As shown in Ref. [6], the puzzle is seemingly solved by restricting the NRQCD global fits to high-$p_T$ quarkonia, indicating that the presently available fixed-order calculations provide SDCs that are unable to reproduce reality at lower $p_T$ values or that NRQCD factorization only holds for $p_T$ values much larger than the quarkonium mass. The polarization measurements add a crucial dimension to the global fits because the various channels have remarkably distinct polarization properties: in the helicity frame, $^3S^1_1$ is longitudinally polarized, $^1S^0_0$ is unpolarized, $^3S^1_1$ is transversely polarized, and $^3P^0_J$ has a polarization that changes significantly with $p_T$. Bottomonium and prompt charmonium polarizations reaching or exceeding $p_T = 50$ GeV were measured by CMS [9,10], using a very robust analysis framework [11,12], on the basis of event samples collected in 2011. Instead, the differential charmonium cross sections published by CMS [13] are based on data collected in 2010 and have a much lower $p_T$ reach. Measurements of prompt charmonium cross sections extending well beyond $p_T = 50$ GeV will trigger improved NRQCD global fits, restricted to a kinematic domain where the factorization formalism is

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
unquestioned, and will provide more accurate and reliable LDMEs.

This Letter presents measurements of the double-differential cross sections of $J/\psi$ and $\psi(2S)$ mesons promptly produced in $p\bar{p}$ collisions at a center-of-mass energy of 7 TeV, based on dimuon event samples collected by CMS in 2011. They complement other prompt charmonium cross sections measured at the LHC, by ATLAS [14,15], LHCb [16,17], and ALICE [18]. The analysis is made in four bins of absolute rapidity ($|y| < 0.3$, $0.3 < |y| < 0.6$, $0.6 < |y| < 0.9$, and $0.9 < |y| < 1.2$) and in the $p_T$ ranges 10–95 GeV for the $J/\psi$ and 10–75 GeV for the $\psi(2S)$. A rapidity-integrated result in the range $|y| < 1.2$ is also provided, extending the $p_T$ reach to 120 GeV for the $J/\psi$ and 100 GeV for the $\psi(2S)$. The corresponding $\psi(2S)$ over $J/\psi$ cross section ratios are also reported. The dimuon invariant mass distribution is used to separate the $J/\psi$ and $\psi(2S)$ signals from other processes, mostly pairs of uncorrelated muons, while the dimuon decay length is used to separate the non-prompt charmonia, coming from decays of $b$ hadrons, from the prompt component. Feed-down from decays of heavier charmonium states, approximately 33% of the prompt $J/\psi$ cross section [19], is not distinguished from the directly produced charmonia.

The CMS apparatus is based on a superconducting solenoid of 6 m internal diameter, providing a 3.8 T field. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. Muons are measured with three kinds of gas-ionization detectors: drift tubes, cathode strip chambers, and resistive-plate chambers. The main subdetectors used in this analysis are the silicon tracker and the CMS detector, which enable the measurement of muon momenta over the pseudorapidity range $|\eta| < 2.4$. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [20].

The events were collected using a two-level trigger system. The first level, made of custom hardware processors, uses data from the muon system to select events with two muon candidates. The high-level trigger, adding information from the silicon tracker, reduces the rate of stored events by requiring an opposite-sign muon pair of invariant mass $2.8 < M < 3.35$ GeV, $p_T > 9.9$ GeV, and $|y| < 1.25$ for the $J/\psi$ trigger, and $3.35 < M < 4.05$ GeV and $p_T > 6.9$ GeV for the $\psi(2S)$ trigger. No $p_T$ requirement is imposed on the single muons at trigger level. Both triggers require a dimuon vertex fit $\chi^2$ probability greater than 0.5% and a distance of closest approach between the two muons less than 5 mm. Events where the muons bend towards each other in the magnetic field are rejected to lower the trigger rate while retaining the highest-quality dimuons. The $J/\psi$ and $\psi(2S)$ analyses are conducted independently, using event samples separated at the trigger level. The $\psi(2S)$ sample corresponds to an integrated luminosity of 4.90 fb$^{-1}$, while the $J/\psi$ sample has a reduced value, 4.55 fb$^{-1}$, because the $p_T$ threshold of the $J/\psi$ trigger was raised to 12.9 GeV in a fraction of the data-taking period; the integrated luminosities have an uncertainty of 2.2% [21].

The muon tracks are required to have hits in at least eleven tracker layers, with at least two in the silicon pixel detector, and to be matched with at least one segment in the muon system. They must have a good track fit quality ($\chi^2$ per degree of freedom smaller than 1.8) and point to the interaction region. The selected muons must also match in pseudorapidity and azimuthal angle with the muon objects responsible for triggering the event. The analysis is restricted to muons produced within a fiducial phase-space window where the muon detection efficiencies are accurately measured: $p_T > 4.5, 3.5$, and 3.0 GeV for the regions $|\eta| < 1.2, 1.2 < |\eta| < 1.4$, and $1.4 < |\eta| < 1.6$, respectively. The combinatorial dimuon background is reduced by requiring a dimuon vertex fit $\chi^2$ probability larger than 1%. After applying the event selection criteria, the combined yields of prompt and nonprompt charmonia in the range $|y| < 1.2$ are 5.45 M for the $J/\psi$ and 266 kHz for the $\psi(2S)$. The prompt charmonia are separated from those resulting from decays of $b$ hadrons through the use of the dimuon pseudo-proper-decay-length [22], $\ell = L_{xy}M/p_T$, where $L_{xy}$ is the transverse decay length in the laboratory frame, measured after removing the two muon tracks from the calculation of the primary vertex position. For events with multiple collision vertices, $L_{xy}$ is calculated with respect to the vertex closest to the direction of the dimuon momentum, extrapolated towards the beam line.

For each $(|y|, p_T)$ bin, the prompt charmonium yields are evaluated through an extended unbinned maximum-likelihood fit to the two-dimensional $(M, \ell)$ event distribution. In the mass dimension, the shape of each signal peak is represented by a Crystal Ball (CB) function [23], with free mean ($\mu_{CB}$) and width ($\sigma_{CB}$) parameters. Given the strong correlation between the two CB tail parameters, $\alpha_{CB}$ and $n_{CB}$, they are fixed to values evaluated from fits to event samples integrated in broader $p_T$ ranges. A single CB function provides a good description of the signal mass peaks, given that the dimuon mass distributions are studied in narrow $(|y|, p_T)$ bins, within which the dimuon invariant mass resolution has a negligible variation. The mass distribution of the underlying continuum background is described by an exponential function. Concerning the pseudo-proper-decay-length variable, the prompt signal component is modeled by a resolution function, which exploits the per-event uncertainty information provided by the vertex reconstruction algorithm, while the nonprompt charmonium term is modeled by an exponential function convolved with the resolution function. The continuum background component is represented by a sum of prompt
and nonprompt empirical forms. The distributions are well described with a relatively small number of free parameters. Figure 1 shows the $J/\psi$ and $\psi(2S)$ dimuon invariant mass and pseudo-proper-decay-length projections for two representative ($|y|, p_T$) bins. The decay length projections are shown for events with dimuon invariant mass within $\pm 3\sigma_{CB}$ of the pole mass. In the highest $p_T$ bins, where the number of dimuons is relatively small, stable results are obtained by fixing $\mu_{CB}$ and the slope of the exponential-like function describing the nonprompt combinatorial background to values extrapolated from the trend found from the lower-$p_T$ bins. The systematic uncertainties in the signal yields are evaluated by repeating the fit with different functional forms, varying the values of the fixed parameters, and allowing for more free parameters in the fit. The fit results are robust with respect to changes in the procedure; the corresponding systematic uncertainties are negligible at low $p_T$ and increase to $\approx 2\%$ for the $J/\psi$ and $\approx 6\%$ for the $\psi(2S)$ in the highest $p_T$ bins.

The single-muon detection efficiencies $\epsilon_{\mu}$ are measured with a “tag-and-probe” (T&P) technique [24], using event samples collected with triggers specifically designed for this purpose, including a sample enriched in dimuons from $J/\psi$ decays where a muon is combined with another track and the pair is required to have an invariant mass within the range 2.8–3.4 GeV. The procedure was validated in the phase-space window of the analysis with detailed Monte Carlo (MC) simulation studies. The measured efficiencies are parametrized as a function of muon $p_T$, in eight bins of muon $|y|$. Their uncertainties, reflecting the statistical precision of the T&P samples and possible imperfections of the parametrization, are $\approx 2\%–3\%$. The efficiency of the dimuon vertex fit $\chi^2$ probability requirement is also measured with the T&P approach, using a sample of events collected with a dedicated (prescaled) trigger. It is around $95\%–97\%$, improving with increasing $p_T$, with a $2\%$ systematic uncertainty. At high $p_T$, when the two muons might be emitted relatively close to each other, the efficiency of the dimuon trigger $\epsilon_{\mu\mu}$ is smaller than the product of the two single-muon efficiencies $\epsilon_{\mu\mu} = \epsilon_{\mu} \epsilon_{\mu} \rho$. The correction factor $\rho$ is evaluated with MC simulations, validated from data collected with single-muon triggers. For $p_T < 35$ GeV, $\rho$ is consistent with being unity, within a systematic uncertainty estimated as

![Graphs showing dimuon invariant mass and pseudo-proper-decay-length projections](image-url)

FIG. 1 (color online). Projections on the dimuon invariant mass (left) and pseudo-proper-decay-length (right) axes, for the $J/\psi$ (top) and $\psi(2S)$ (bottom) events in the kinematic bins given in the plots. The right panels show dimuons of invariant mass within $\pm 3\sigma_{CB}$ of the pole masses. The curves, identified in the legends, represent the result of the fits described in the text. The vertical bars on the data points show the statistical uncertainties.
2%, except in the $0.9 < |y| < 1.2$ bin, where the uncertainty increases to 4.3% for the $J/\psi$ if $p_T < 12$ GeV, and to 2.7% for the $\psi(2S)$ if $p_T < 11$ GeV. For $p_T > 35$ GeV, $\rho$ decreases approximately linearly with $p_T$, reaching 60%–70% for $p_T \sim 85$ GeV, with systematic uncertainties evaluated by comparing the MC simulation results with estimations made using data collected with single-muon triggers: 5% up to $p_T = 50$ (55) GeV for the $J/\psi$ [$\psi(2S)$] and 10% for higher $p_T$. The total dimuon detection efficiency increases from $e_{\mu\mu} \approx 78\%$ at $p_T = 15$ GeV to $\approx 85\%$ at 30 GeV, and then decreases to $\approx 65\%$ at 80 GeV.

To obtain the charmonium cross sections in each $(|y|, p_T)$ bin without any restrictions on the kinematic variables of the two muons, we correct for the corresponding dimuon acceptance, defined as the fraction of dimuon decays having both muons emitted within the single-muon fiducial phase space. These acceptances are calculated using a detailed MC simulation of the CMS experiment. Charmonia are generated using a flat rapidity distribution and $p_T$ distributions based on previous measurements [13]; using flat $p_T$ distributions leads to negligible changes. The particles are decayed by EVTGEN [25] interfaced to PYTHIA 6.4 [26], while PHOTOS [27] is used to simulate final-state radiation. The fractions of $J/\psi$ and $\psi(2S)$ dimuon events in a given $(|y|, p_T)$ bin with both muons surviving the fiducial selections depend on the decay kinematics and, in particular, on the polarization of the mother particle. Acceptances are calculated using polarization scenarios corresponding to different values of the polar anisotropy parameter in the helicity frame, $\lambda^H_2$: 0 (unpolarized), +1 (transverse), and −1 (longitudinal). A fourth scenario, corresponding to $\lambda^H_2 = +0.10$ for the $J/\psi$ and $+0.03$ for the $\psi(2S)$, reflects the results published by CMS [10]. The two other parameters characterizing the dimuon angular distributions [28], $\lambda^H_5$ and $\lambda^H_0$, have been measured to be essentially zero [10] and have a negligible influence on the acceptance. The acceptances are essentially identical for the two charmonia and are almost rapidly independent for $|y| < 1.2$. The two-dimensional acceptance maps are calculated with large MC simulation samples, so that statistical fluctuations are small, and in narrow $|y|$ bins, so that variations within the bins can be neglected. Since the efficiencies and acceptances are evaluated for events where the two muons bend away from each other, a factor of 2 is applied to obtain the final cross sections.

The double-differential cross sections of promptly produced $J/\psi$ and $\psi(2S)$ in the dimuon channel, $Bd^2\sigma/dp_Tdy$, where $B$ is the $J/\psi$ or $\psi(2S)$ dimuon branching fraction, are obtained by dividing the fitted prompt-signal yields, already corrected on an event-by-event basis for efficiencies and acceptance, by the integrated luminosity and the widths of the $p_T$ and $|y|$ bins. The numerical values, including the relative statistical and systematic uncertainties, are reported for both charmonia, five rapidity intervals, and four polarization scenarios in Tables 1–4 of the Supplemental Material [29]. Figure 2 shows the results obtained in the unpolarized scenario. With respect to the $|y| < 0.3$ bin, the cross sections drop by $\approx 5\%$ for $0.6 < |y| < 0.9$ and $\approx 15\%$ for $0.9 < |y| < 1.2$.

Measuring the charmonium production cross sections in the broader rapidity range $|y| < 1.2$ has the advantage that the increased statistical accuracy allows the measurement to be extended to higher-$p_T$ values, where comparisons with theoretical calculations are particularly informative. Figure 3 compares the rapidity-integrated (unpolarized) cross sections, after rescaling with the branching fraction $B$ of the dimuon decay channels [30], with results reported by ATLAS [14,15]. The curve represents a fit of the $J/\psi$ cross section measured in this analysis to a power-law function [31]. The band labeled FKLSW represents the result of a global fit [6] comparing SDCs calculated at NLO [3] with $\psi(2S)$ cross sections and polarizations previously reported by CMS [10,13] and LHCb [17]. According to that fit, $\psi(2S)$ mesons are produced predominantly unpolarized. At high $p_T$, the values reported in this Letter tend to be higher than the band, which is essentially determined from results for $p_T < 30$ GeV.

The ratio of the $\psi(2S)$ to $J/\psi$ differential cross sections is also measured in the $|y| < 1.2$ range, recomputing the $J/\psi$ values in the $p_T$ bins of the $\psi(2S)$ analysis. The measured values are reported in Table 5 of the Supplemental Material [29]. The corrections owing to the integrated luminosity, acceptances, and efficiencies cancel to a large extent in the measurement of the ratio. The total systematic uncertainty, dominated by the $\rho$ correction for $p_T > 30$ GeV and by the acceptance and
efficiency corrections for $p_T < 20$ GeV, does not exceed 3%, except for $p_T > 75$ GeV, where it reaches 5%. Larger event samples are needed to clarify the trend of the ratio for $p_T$ above $\approx 35$ GeV.

In summary, the double-differential cross sections of the $J/\psi$ and $\psi(2S)$ mesons promptly produced in $pp$ collisions at $\sqrt{s} = 7$ TeV have been measured as a function of $p_T$ in four $|y|$ bins, as well as integrated over the $|y| < 1.2$ range, extending up to or beyond $p_T = 100$ GeV. New global fits of cross sections and polarizations, including these high-$p_T$ measurements, will probe the theoretical calculations in a kinematical region where NRQCD factorization is believed to be most reliable. The new data should also provide input to stringent tests of recent theory developments, such as those described in Refs. [32–34].

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSRF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).


V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 M. Friedl,2 R. Frühwirth,2,4 V. M. Ghete,2 C. Hartl,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2,4 W. Kiesenhofer,2 V. Knünz,2 M. Krammer,2,4 I. Krätschmer,2 D. Liko,2 I. Mikulec,2 D. Rabady,2,6 B. Rahbaran,2 H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 W. Treberer-Treberspurg,2 W. Waltenberger,2 C.-E. Wulz,2 V. Mozsoló,3 N. Shumeiko,3 J. Suarez Gonzalez,3 S. Alderweireldt,4 S. Bansal,4 T. Cornelis,4 E. A. De Wolf,4 X. Janssen,4 A. Knutsson,4 J. Lauwers,4 S. Luyckx,4 S. Ochesanu,4 R. Rougny,4 M. Van De Klundert,4 H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4 F. Bleknam,5 S. Blyweert,5 J. D’Hondt,5 N. Daci,5 N. Heracleous,5 J. Keaveney,5 S. Lowe,5 M. Maes,5 A. Olbrechts,5 Q. Python,5 D. Strom,5 S. Tavernier,5 W. Van Doninck,5 P. Van Mulders,5 G. P. Van Onsem,5 I. Villella,5 C. Caillol,6 B. Clerbaux,6 G. De Leendeker,6 D. Dobur,6 L. Favart,6 A. P. R. Gay,6 A. Grebenyuk,6 A. Léonard,6 A. Mohammadi,6 L. Perniè,6 C. Randle-conde,6 T. Reis,6 T. Seva,6 L. Thomas,6 C. Vander Velde,6 P. Vanlaer,6 J. Wang,6 F. Zenoni,6 V. Adler,7 K. Beernaert,7 L. Benucci,7 A. Cimmino,7 S. Costantini,7 S. Cruyces,7 A. Fagot,7 G. Garcia,7 J. McCartin,7 A. A. Ocampo Rios,7 D. Poyraz,7 D. Ryckbosch,7 S. Salva Diblen,7 M. Sigamani,7 N. Strobbe,7 F. Thyssen,7 M. Tytgat,7 E. Yazgan,7 N. Zaganaidis,7 S. Basegmez,7 C. Beluffi,8,9 G. Bruno,8 R. Castello,8 A. Caudron,8 L. Cear,8 G. G. Da Silveira,8 C. Delaere,8 T. du Pree,8 D. Favart,8 L. Forthomme,8 A. Giannmanco,8 J. Hollard,8 A. Jafari,8 P. Jez,8 M. Komm,8 V. Lemaître,8 C. Nuttens,8 D. Pagano,8 L. Perrini,8 A. Pin,8 K. Piotrzkowski,8 A. Popov,8 I. Quertenmont,8 M. Selvaggi,8 M. Vidal Marono,8 J. M. Vizan García,8 N. Beliy,9 T. Caebers,9 E. Daubie,9 G. H. Hammad,9

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OEAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Universidade Estadual Paulista, São Paulo, Brazil
13Universidade Federal do ABC, São Paulo, Brazil
14Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
15University of Sofia, Sofia, Bulgaria
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17Universidad de Los Andes, Bogota, Colombia
18University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
19University of Split, Faculty of Science, Split, Croatia
20Institute Rudjer Boskovic, Zagreb, Croatia
21University of Cyprus, Nicosia, Cyprus
22Charles University, Prague, Czech Republic
23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
PRL 114, 191802 (2015)  

PHYSICAL REVIEW LETTERS  
week ending  
15 MAY 2015  

68\textsuperscript{a}Università del Piemonte Orientale (Novara), Torino, Italy  
68\textsuperscript{a}INFN Sezione di Trieste, Trieste, Italy  
68\textsuperscript{a}Università di Trieste, Trieste, Italy  
70\textsuperscript{a}Kangwon National University, Chunchon, Korea  
71\textsuperscript{a}Kyungpook National University, Daegu, Korea  
72\textsuperscript{a}Chonbuk National University, Jeonju, Korea  
73\textsuperscript{a}Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea  
74\textsuperscript{a}Korea University, Seoul, Korea  
75\textsuperscript{a}Seoul National University, Seoul, Korea  
76\textsuperscript{a}Seoul National University, Seoul, Korea  
77\textsuperscript{a}Sungkyunkwan University, Suwon, Korea  
78\textsuperscript{a}Vilnius University, Vilnius, Lithuania  
79\textsuperscript{a}National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia  
80\textsuperscript{a}Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico  
81\textsuperscript{a}Universidad Iberoamericana, Mexico City, Mexico  
82\textsuperscript{a}Benemerita Universidad Autonoma de Puebla, Puebla, Mexico  
83\textsuperscript{a}Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico  
84\textsuperscript{a}University of Auckland, Auckland, New Zealand  
85\textsuperscript{a}University of Canterbury, Christchurch, New Zealand  
86\textsuperscript{a}National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan  
87\textsuperscript{a}National Centre for Nuclear Research, Swierk, Poland  
88\textsuperscript{a}Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland  
89\textsuperscript{a}Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal  
90\textsuperscript{a}Joint Institute for Nuclear Research, Dubna, Russia  
91\textsuperscript{a}Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia  
92\textsuperscript{a}Institute for Nuclear Research, Moscow, Russia  
93\textsuperscript{a}Institute for Theoretical and Experimental Physics, Moscow, Russia  
94\textsuperscript{a}P.N. Lebedev Physical Institute, Moscow, Russia  
95\textsuperscript{a}Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia  
96\textsuperscript{a}State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia  
97\textsuperscript{a}University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia  
98\textsuperscript{a}Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain  
99\textsuperscript{a}Universidad Autónoma de Madrid, Madrid, Spain  
100\textsuperscript{a}Universidad de Oviedo, Oviedo, Spain  
101\textsuperscript{a}Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain  
102\textsuperscript{a}CERN, European Organization for Nuclear Research, Geneva, Switzerland  
103\textsuperscript{a}Paul Scherrer Institut, Villigen, Switzerland  
104\textsuperscript{a}Institute for Particle Physics, ETH Zurich, Zurich, Switzerland  
105\textsuperscript{a}Universität Zürich, Zurich, Switzerland  
106\textsuperscript{a}National Central University, Chung-Li, Taiwan  
107\textsuperscript{a}National Taiwan University (NTU), Taipei, Taiwan  
108\textsuperscript{a}Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand  
109\textsuperscript{a}Cukurova University, Adana, Turkey  
110\textsuperscript{a}Middle East Technical University, Physics Department, Ankara, Turkey  
111\textsuperscript{a}Bogazici University, Istanbul, Turkey  
112\textsuperscript{a}Istanbul Technical University, Istanbul, Turkey  
113\textsuperscript{a}National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine  
114\textsuperscript{a}University of Bristol, Bristol, United Kingdom  
115\textsuperscript{a}Rutherford Appleton Laboratory, Didcot, United Kingdom  
116\textsuperscript{a}Imperial College, London, United Kingdom  
117\textsuperscript{a}Brunel University, Uxbridge, United Kingdom  
118\textsuperscript{a}Baylor University, Waco, Texas 76798, USA  
119\textsuperscript{a}The University of Alabama, Tuscaloosa, Alabama 35487, USA  
120\textsuperscript{a}Boston University, Boston, Massachusetts 02215, USA  
121\textsuperscript{a}Brown University, Providence, Rhode Island 02912, USA  
122\textsuperscript{a}University of California, Davis, Davis, California 95616, USA  
123\textsuperscript{a}University of California, Los Angeles, California 90095, USA  
124\textsuperscript{a}University of California, Riverside, Riverside, California 92521, USA  
125\textsuperscript{a}University of California, San Diego, La Jolla, California 92039, USA  
126\textsuperscript{a}University of California, Santa Barbara, Santa Barbara, California 93106, USA
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at Eötvös Loránd University, Budapest, Hungary.
Also at University of Debrecen, Debrecen, Hungary.
Also at University of Visva-Bharati, Santiniketan, India.
Also at King Abdulaziz University, Jeddah, Saudi Arabia.
Also at University of Ruhuna, Matara, Sri Lanka.
Also at Isfahan University of Technology, Isfahan, Iran.
Also at University of Tehran, Department of Engineering Science, Tehran, Iran.
Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Also at Università degli Studi di Siena, Siena, Italy.
Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France.
Also at Purdue University, West Lafayette, USA.
Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at California Institute of Technology, Pasadena, USA.
Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
Also at University of Athens, Athens, Greece.
Also at Paul Scherrer Institut, Villigen, Switzerland.
Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
Also at Gaziosmanpasa University, Tokat, Turkey.
Also at Adiyaman University, Adiyaman, Turkey.
Also at Mersin University, Mersin, Turkey.
Also at Cag University, Mersin, Turkey.
Also at Piri Reis University, Istanbul, Turkey.
Also at Anadolu University, Eskisehir, Turkey.
Also at Ozyegin University, Istanbul, Turkey.
Also at Izmir Institute of Technology, Izmir, Turkey.
Also at Necmettin Erbakan University, Konya, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at Marmara University, Istanbul, Turkey.
Also at Kafkas University, Kars, Turkey.
Also at Yildiz Technical University, Istanbul, Turkey.
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Argonne National Laboratory, Argonne, USA.
Also at Erzincan University, Erzincan, Turkey.
Also at Texas A&M University at Qatar, Doha, Qatar.
Also at Kyungpook National University, Daegu, Korea.