I. INTRODUCTION

A significant fraction ($\approx 25\%$) of the total inelastic proton-proton cross section at high energies can be attributed to diffractive interactions, characterized by the presence of at least one nonexponentially suppressed large rapidity gap (LRG), i.e., a region of pseudorapidity η devoid of particles, where for a particle moving at a polar angle θ with respect to the beam, $\eta = -\ln[\tan(\theta/2)]$. If this η region is adjacent to the diffractively scattered proton, it is called a forward pseudorapidity gap. In hadronic interactions an LRG is presumed to be mediated by a color-singlet exchange carrying the vacuum quantum numbers, commonly referred to as Pomeron exchange. Figure 1 defines the main types of diffractive processes: single dissociation (SD), double dissociation (DD), and central diffraction (CD).

Inclusive diffractive cross sections cannot be calculated within perturbative quantum chromodynamics and are commonly described by models based on Regge theory (see e.g. [1] and references therein). The predictions of these models generally differ when extrapolated from the Tevatron center-of-mass energies of $\sqrt{s} \leq 1.96$ TeV to LHC energies. Therefore, measurements of diffractive cross sections at 7 TeV provide a valuable input for understanding diffraction and improving its theoretical description. They are also crucial for the proper modeling of the full final state of hadronic interactions in event generators, and can help to improve the simulation of the underlying event, as well as of the total inelastic cross section.

The DD cross section has been recently measured at $\sqrt{s} = 7$ TeV by the TOTEM Collaboration [2], for events in which both dissociated-proton masses are below \sim12 GeV. Other measurements of diffractive cross sections at the LHC, with higher dissociation masses, have either a limited precision [3] or no separation between SD and DD events [4]. In this paper, we present the first CMS measurement of inclusive diffractive cross sections at $\sqrt{s} = 7$ TeV. This measurement is based on the presence of a forward LRG, with SD- and DD-dominated event samples separated by using the CASTOR calorimeter [5], covering the very forward region, $-6.6 < \eta < -5.2$. A data sample with a central LRG, in which DD dominates, is also used. In addition, the inclusive differential cross section, $d\sigma/d\Delta\eta^F$, for events with a pseudorapidity gap adjacent to the edge of the detector, is measured over $\Delta\eta^F = 8.4$ units of pseudorapidity, and compared to a similar ATLAS measurement [4]. The results presented here are based on the first CMS data collected at $\sqrt{s} = 7$ TeV during the 2010 LHC commissioning period, when the probability of overlapping pp interactions in the same bunch crossing (pileup), which may spoil the detection of the gap, was low.

The paper is organized into 11 sections and two appendices. The CMS detector is described in Sec. II. Section III presents the Monte Carlo (MC) simulations used

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
in the analysis. The event selection and the diffractive event
topologies used to measure the cross sections are discussed
in Secs. IV and V, respectively. Sections VI, VII, and VIII
present the measurement of the forward-gap and central-
gap differential cross sections, and the integrated cross
sections, respectively. All cross sections are extracted
within the detector acceptance and with minimal model-
dependent systematic uncertainties. The extrapolation of
the measured cross sections to the low-mass regions is
discussed in Sec. IX. Section X presents the measurement
of the pseudorapidity gap cross section and its comparison
to the ATLAS result [4]. The systematic uncertainties for all
the measurements are discussed in Sec. XI. A summary is
given in Sec. XII. Appendices A and B present additional
comparisons between the diffractive MC models used.

II. THE CMS DETECTOR

A detailed description of the CMS detector, together
with a definition of the coordinate system used and the
relevant kinematic variables, can be found in Ref. [6].
The central feature of the apparatus is a superconducting
solenoid of 6 m internal diameter, providing a 3.8 T axial
field. Within the field volume are located a silicon pixel
and strip tracker, a crystal electromagnetic calorimeter,
and a brass/scintillator hadron calorimeter. Muons are
measured in gas-ionization detectors embedded in the
steel flux-return yoke of the magnet. The calorimeter
cells are grouped in projective towers, of granularity
$\Delta \eta \times \Delta \phi = 0.087 \times 0.087$ at central rapidities
and 0.175×0.175 at forward rapidities. In addition to the
barrel and end-cap detectors, CMS has extensive forward
calorimetry. The forward component of the hadron
calorimeter, HF ($2.9 < |\eta| < 5.2$), consists of steel
absorbers with embedded radiation-hard quartz fibers,
providing fast collection of Cherenkov light. The very
forward angles are covered at one end of CMS
($-6.6 < \eta < -5.2$) by the CASTOR calorimeter [5],
made of quartz plates embedded in tungsten absorbers,
segmented in 16 ϕ sectors and 14 z modules.

Two elements of the CMS monitoring system, the beam
scintillator counters (BSC) and the beam pickup timing
experiment (BPTX) devices, are used to trigger the CMS
readout. The two BSC are located at a distance of ± 10.86 m
from the nominal interaction point (IP) and are sensitive in
the $|\eta|$ range 3.23 to 4.65. Each BSC consists of 16
scintillator tiles. The BSC elements have a time resolution
of 3 ns and an average minimum ionizing particle detection
efficiency of 96.3%. The two BPTX devices, located
around the beam pipe at a distance of 175 m from the
IP on either side, are designed to provide precise informa-
tion on the bunch structure and timing of the incoming
beams, with better than 0.2 ns time resolution.

III. MONTE CARLO SIMULATION

Monte Carlo simulations are used to correct the mea-
sured distributions for the geometrical acceptance and
reconstruction efficiency of the CMS detector, as well as
for migrations from true to reconstructed values in the
distributions of kinematic variables. We use PYTHIA 8.165
[7,8] to generate samples of inelastic events. We compare
the detector-level data distributions to the PYTHIA 8 4C [8]
and PYTHIA 8 MBR (minimum bias Rockefeller) [9]
simulations and extract integrated cross sections using
PYTHIA 8 MBR.

Diffractive events in the PYTHIA 8 4C simulation
are generated according to the Schuler-Sjöstrand model
implemented in PYTHIA 6 [7]. The 4C tune [8] includes
a downward scaling of the Schuler-Sjöstrand SD and
DD cross sections at $\sqrt{s} = 7$ TeV by 10% and 12%,
respectively.
The PYTHIA 8 MBR generator predicts the energy dependence of the total, elastic, and inelastic pp cross sections, and fully simulates the main diffractive components of the inelastic cross section: SD, DD and CD. The diffractive-event generation in PYTHIA 8 MBR is based on a phenomenological renormalized-Regge-theory model [10,11], which is unitarized by interpreting the Pomeron flux as the probability for forming a diffractive rapidity gap. The model was originally developed for the CDF experiment at the Tevatron and has been successfully tested with the CDF results on diffraction. The PYTHIA 8 MBR simulation assumes a linear parametrization of the Pomeron trajectory, $\alpha(t) = 1 + \varepsilon + \alpha't$, where t is the square of the four-momentum transfer between the two incident protons. We use $\alpha' = 0.25 \text{ GeV}^{-2}$, and $\varepsilon = 0.08$ [12,13] or $\varepsilon = 0.104$ [14,15], to account for the possible energy dependence of ε in the range of diffractive masses accessible in this analysis. We find that the simulation with $\varepsilon = 0.08$ gives a good description of the data. Scaling the DD cross section downwards by 15%, which preserves the agreement with the CDF data, further improves the description of the DD-dominated data at $\sqrt{s} = 7 \text{ TeV}$. These modifications are incorporated into the simulation used here. The measured cross sections are also compared to the predictions of PYTHIA 6 ZZ^\pm [16] and to MC generators based on Regge-Gribov phenomenology: PHOJET (version 1.12-35) [17,18], QGSJET-II (versions 03 and 04) [19,20], and EPOS LHC [21]; the latter two are commonly used in cosmic-ray physics [22].

At the stable-particle level (where stable particles are those with lifetime $\tau > 10 \text{ mm}$), the kinematic regions covered by the present measurements are defined by the masses M_X and M_Y of the two final-state hadronic systems separated by the largest rapidity gap in the event. For a final-state particle of energy E and longitudinal momentum p_z, rapidity is defined as $y = (1/2) \ln((E + p_z)/(E - p_z))$. At stable-particle level the gap is defined as the largest rapidity separation between stable particles, without any acceptance restriction. The final state is then separated into systems X and Y, which populate the regions on the positive and negative side of the rapidity gap, respectively. The corresponding masses M_X and M_Y are calculated from the full set of four-vectors in the respective group of stable particles. In the following sections, M_X and M_Y are given in units of GeV.

![Detector-level distributions of the energy of PF objects in four pseudorapidity intervals: $|\eta_{PF}| < 1.4$, $1.4 < |\eta_{PF}| < 2.6$, $2.6 < |\eta_{PF}| < 3.2$, and $|\eta_{PF}| > 3.2$, corresponding to the barrel, end-cap, end-cap-forward transition, and forward detector regions (columns), for five particle candidate types: charged hadrons (tracks), photons, neutral hadrons, and two types that yield electromagnetic or hadronic energy deposits in HF (rows). Electron and muon candidates constitute less than 0.1% of the PF objects reconstructed in the $|\eta_{PF}| < 2.6$ region, and are not shown. The data are compared to the predictions of the PYTHIA 8 MBR simulation, normalized to the integrated luminosity of the data sample. The contribution of each of the generated processes is shown separately.](image-url)
We use the pseudorapidity variable to select diffractive events at the detector level. At the stable-particle level, the true rapidity is used. For the pseudorapidity gap cross section, pseudorapidity (not true rapidity) is used at the hadron level to avoid unnecessary large bin migrations between the distributions measured at the detector and stable-particle levels. As the central CMS detector is insensitive to low-mass diffraction, we use the PYTHIA 8 MBR simulation, which describes the data well, to extrapolate the measured cross section into the low-mass region.

The detailed MC simulation of the CMS detector response is based on GEANT4 [23]. Simulated PYTHIA 8 4C and PYTHIA 8 MBR events are processed and reconstructed in the same manner as collision data.

IV. EVENT SELECTION

The present analysis is based on event samples collected during the 2010 commissioning period, when the LHC was operating at low pileup. For the results presented in Secs. V–IX, only data with information from the CASTOR calorimeter are used, which correspond to an integrated luminosity of 16.2 μb⁻¹, and have an average number of inelastic pp collisions per bunch crossing of μ = 0.14. The results based on pseudorapidity-gap events presented in Section X are extracted from a different set of data taking runs with negligible pileup (μ = 0.006) that correspond to an integrated luminosity of 20.3 μb⁻¹. Events were selected online by requiring a signal in both BPTX detectors, in conjunction with a signal in any of the BSC scintillators. These conditions correspond to requiring the presence of two crossing bunches along with activity in the main CMS detector (minimum bias trigger).

Offline selections [24] are applied to remove beam-scrapping, beam-halo, and noise events. In addition, a minimal activity in the main CMS detectors is imposed offline by requiring at least two particle-flow (PF) objects reconstructed within the geometrical acceptance of the BSC detectors (3.23 < |η| < 4.65, with an energy of at least 4 GeV for each PF object). Particle-flow objects [25,26] are particle candidates obtained by optimally combining the information from the tracking system and the calorimeters. In the forward regions (|η| > 2.5), where there is no tracking, PF objects reduce to calorimeter towers. Figure 2 shows the distributions of the energy of the PF objects reconstructed in different detector regions for different particle candidates, compared to the prediction of the PYTHIA 8 MBR simulation, which describes the data well. The requirement on the minimum energy of PF objects was found by studying data collected in dedicated runs with no beam; it depends on the detector region and the particle candidates and varies from zero for tracks to 4 GeV for the HF towers. To assure a reliable Monte Carlo description of the data, the two innermost (most forward) rings of HF are not used in the analysis, thus limiting the central CMS detector coverage to |η| < 4.7. The two outermost (most central) HF rings are also not used for the same reason. No vertex requirement is imposed. This procedure gives high acceptance for diffractive events with the hadronic system outside the tracking acceptance (i.e., with low to moderate diffractive masses, 12 ≲ M_X ≲ 100 GeV). According to the PYTHIA 8 MBR simulation, the selection described above accepts about 90% of the events corresponding to the total inelastic cross section in the region of log_{10}M_X > 1.1 or log_{10}M_Y > 1.1.

V. DIFFRACTIVE EVENT TOPOLOGIES

The events satisfying the selection described in Sec. IV constitute a minimum bias sample dominated by inclusive inelastic events in the region covered by the central CMS detector (|η| ≲ 4.7). They are mostly composed of nondiffractive (ND) events for which final-state particle production occurs in the entire η space available, as shown schematically in Fig. 3(a). In contrast, diffractive events are expected to have an LRG in the final state. Experimentally, the following diffractive topologies are defined, depending on the position of the reconstructed LRG in the central detector:

(i) FG1: a forward pseudorapidity gap at the edge of the detector on the positive η side [Figs. 3(b) and 3(c)]

FIG. 3 (color online). Event topologies in final-state particle η space. Detector level: nondiffractive events (ND), diffractive events with a forward pseudorapidity gap on the positive (FG1) or negative (FG2) η side of the detector, or with a central pseudorapidity gap (CG). Generator level: (a) ND, pp → X, (b) SD1, pp → Xp, (d) SD2, pp → pY, and (c, e, f) DD, pp → XY, events. The empty box represents the central CMS detector (|η| ≲ 4.7), filled full boxes indicate final-state hadronic systems or a proton—the vertical thin bar at the right/left end of sketch (b)/ (d). The dotted empty boxes in (d) and (e) represent the CASTOR calorimeter (−6.6 < η < −5.2).
(ii) FG2: a forward pseudorapidity gap at the edge of the detector on the negative η side [Figs. 3(d) and 3(e)];
(iii) CG: a central pseudorapidity gap in the detector around $\eta = 0$ [Fig. 3(f)].

The experimental topology with a forward pseudorapidity gap on each edge of the detector [CD topology, Fig. 1(d)] is neglected in this analysis because of the limited number of such events. For the FG1 and FG2 topologies the pseudorapidity gap is related to the variables η_{max} and η_{min} (Fig. 3), defined as the highest (lowest) η of the PF object reconstructed in the central detector. Experimentally, the pseudorapidity gap in CG events may be expressed as $\Delta \eta^0 = \eta_{\text{max}}^0 - \eta_{\text{min}}^0$, where η_{max}^0 (η_{min}^0) is the closest-to-zero η value of the PF object reconstructed on the positive (negative) η side of the central detector (Fig. 3).

Figure 4 shows the distributions of η_{max}, η_{min}, and $\Delta \eta^0 = \eta_{\text{max}}^0 - \eta_{\text{min}}^0$ for the minimum bias sample defined in Sec. IV, compared to MC predictions. For the $\Delta \eta^0$ selection, the additional requirement that activity be present on both η sides of the central detector is imposed. The data are dominated by the contribution from ND events, for which rapidity gaps are exponentially suppressed [27]. Diffractive events appear as a flattening of the exponential distributions, and dominate the regions of low η_{max}, high η_{min}, and high $\Delta \eta^0$. The absence of events around $|\eta_{\text{max}}| (|\eta_{\text{min}}|) \approx 3$ in Figs. 4(a) and 4(b) reflects the fact that the two outermost (most central) rings of HF are not used in the analysis; the depletion of events around $|\eta_{\text{max}}| (|\eta_{\text{min}}|) \approx 2.4$ corresponds to the transition region between the tracker and the forward calorimeters, where higher thresholds are applied for the latter. The regions of $3 \leq \Delta \eta^0 \leq 6$ and $\Delta \eta^0 \geq 6$ in Fig. 4(c) correspond to the DD topology for which one or both of the η_{max}^0 and η_{min}^0 edges are in the HF calorimeters. In order to select samples of FG1, FG2, and CG events with a central LRG signature, the requirements $\eta_{\text{max}} < 1$, $\eta_{\text{min}} > -1$, and $\Delta \eta^0 > 3$ are imposed, respectively.

According to the expectations of the PYTHIA 8 MBR simulation, the event samples defined experimentally as FG1 or FG2 [Figs. 4(a) and 4(b)] originate from approximately equal numbers of SD events with $1.1 \lesssim \log_{10} M_Y \lesssim 2.5$ and DD events for which one dissociated-proton mass is in this M_Y range, while the other is small and escapes detection in the central detector, cf. Figs. 3(c) and 3(e). For the FG2 topology, CASTOR ($-6.6 < \eta < -5.2$) is used to separate diffractive events into two samples: $\log_{10} M_Y \lesssim 0.5$ (SD enhanced) and $0.5 \lesssim \log_{10} M_Y \lesssim 1.1$ [DD enhanced, Figs. 3(d) and 3(e)]. The detection of the low-mass dissociated system, Y, is performed by using a CASTOR tag, defined as the presence of a signal above the energy threshold (1.48 GeV) in at least one of the 16 ϕ sectors of the first five CASTOR modules. Since no detector is available for tagging the low-mass dissociated system on the positive η side, the FG1 sample is treated as a control sample in this analysis.

The range of the dissociation mass M_Y for the true SD process in the FG2-type sample after all detector selections is shown as a hatched histogram in Fig. 5 for PYTHIA 8 MBR (left) and PYTHIA 8 4C (right) and corresponds to
1.1 \leq \log_{10} M_X \leq 2.5. Similar distributions are obtained for events in the FG1-type sample, in which the dissociated system originates from the proton on the other side of the detector. The ranges of dissociation masses, M_X and M_Y, for the true DD events in the minimum bias sample after the trigger selection, in the FG2-type sample with a CASTOR tag, and in the CG-type sample after all detector selections, are shown in the efficiency plots of Figs. 6(a), 6(b), and 6(c), respectively. The FG2-type events, with the pseudorapidity gap reconstructed at the edge of the central detector, populate the region of $1.1 \leq \log_{10} M_X \leq 2.5$ and $0.5 \leq \log_{10} M_Y \leq 1.1$ [solid box in Fig. 6(b)]. The selection based on the CG topology requires both diffractive masses to be in the central detector; this leads to different coverage in the (M_X, M_Y) plane. Events populate the region of $\log_{10} M_X \geq 1.1$ and $\log_{10} M_Y \geq 1.1$ [Fig. 6(c)], in addition to $\Delta \eta > 3$, thus providing a complementary measurement of the DD cross section.

VI. FORWARD PSEUDORAPIDITY GAP CROSS SECTIONS FROM THE FG2 EVENT SAMPLE

The forward pseudorapidity gap cross sections are measured as a function of the variable ξ_X, which is related to the mass M_X of the dissociated system by:

$$\xi_X = \frac{M_X^2}{s}. \quad (1)$$

For the FG2 sample, M_X corresponds to the dissociated system that can be detected in the central detector [right-hand side of Figs. 3(d) and 3(e)]. The CASTOR calorimeter allows the detection of the hadronic system Y when it escapes the central detector, and the separation of the FG2 sample into subsamples corresponding to $\log_{10} M_Y < 0.5$.
and $0.5 < \log_{10} M_T < 1.1$, which are dominated by SD and DD events, respectively. For the purely SD events, ξ_X represents the fractional longitudinal momentum loss of the incoming proton.

At detector level, the variable ξ_X is reconstructed as

$$\xi_X^+ = \sum_i \frac{(E_i^+ - p_i^z)}{\sqrt{s}},$$

where i runs over all PF objects measured in the central detector, and E_i^+ and p_i^z are the energy and the longitudinal momentum of the ith PF object, respectively. The energy is related to the particle three-momentum assuming a mass that depends on the PF object type; e.g. for charged hadrons a pion mass is assumed. The signs (\pm) in Eq. (2) indicate whether the dissociated system is on the $\pm z$ side of the detector. For the FG2-type events under study, ξ_X corresponds to ξ_X^+. Since part of the hadronic system X escapes the detector through the forward beam hole, and since low-energy particles remain undetected because of the PF object thresholds, the reconstructed ξ_X^+ values are underestimated. This can be seen in Fig. 7, which shows a scatter plot of reconstructed vs generated values of ξ_X for PYTHIA 8 MBR events in the FG2 sample. As ξ_X decreases, its unmeasured fraction increases (the beam hole size is fixed), resulting in a larger deviation from the $\log_{10} \xi_X^+ = \log_{10} \xi_X$ line. The calibration factor $C(\xi_X^+)$, which brings the reconstructed values of ξ_X^+ [Eq. (2)] to their true values [Eq. (1)] according...
to the formula $\log_{10}^{\text{cal}} = \log_{10}^{\text{dd}} + C(\xi_X)$. is evaluated from the PYTHIA 8 MBR simulation, by studying the $\log_{10}^{\text{dd}} - \log_{10}^{\text{cal}}$ difference in bins of \log_{10}^{cal}. The factor $C(\xi_X)$ decreases from the value of 1.1 at $\log_{10}^{\text{cal}} \approx -6.5$ to 0.2 at $\log_{10}^{\text{cal}} \approx -2.5$, with an uncertainty of 9%, estimated by comparing the PYTHIA 8 MBR and PYTHIA 8 4C simulations.

Table I. The differential forward pseudorapidity gap cross sections $d\sigma/d\log_{10}^{\text{cal}}$ for $0.5 < \log_{10}^{\text{cal}} < 1.1$ and $0.5 < \log_{10}^{\text{cal}} < 1.1$ (DD dominated, with CASTOR tag) and $0.5 < \log_{10}^{\text{cal}} < 1.1$ (DD dominated, without CASTOR tag). The first and the second errors correspond to statistical and systematic uncertainties, respectively.

<table>
<thead>
<tr>
<th>bin</th>
<th>$d\sigma_{\text{no-CASTOR}}/d\log_{10}^{\text{cal}}$ (mb)</th>
<th>$d\sigma_{\text{CASTOR}}/d\log_{10}^{\text{cal}}$ (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-5.5 < \log_{10}^{\text{cal}} < -5.0$</td>
<td>$1.17 \pm 0.02 \pm 0.03$</td>
<td>$0.30 \pm 0.01 \pm 0.05$</td>
</tr>
<tr>
<td>$-5.0 < \log_{10}^{\text{cal}} < -4.5$</td>
<td>$1.16 \pm 0.02 \pm 0.04$</td>
<td>$0.30 \pm 0.01 \pm 0.04$</td>
</tr>
<tr>
<td>$-4.5 < \log_{10}^{\text{cal}} < -4.0$</td>
<td>$0.91 \pm 0.02 \pm 0.03$</td>
<td>$0.26 \pm 0.01 \pm 0.03$</td>
</tr>
<tr>
<td>$-4.0 < \log_{10}^{\text{cal}} < -3.5$</td>
<td>$0.88 \pm 0.02 \pm 0.03$</td>
<td>$0.32 \pm 0.01 \pm 0.03$</td>
</tr>
<tr>
<td>$-3.5 < \log_{10}^{\text{cal}} < -3.0$</td>
<td>$0.98 \pm 0.02 \pm 0.05$</td>
<td>$0.51 \pm 0.01 \pm 0.06$</td>
</tr>
<tr>
<td>$-3.0 < \log_{10}^{\text{cal}} < -2.5$</td>
<td>$0.78 \pm 0.03 \pm 0.11$</td>
<td>$0.67 \pm 0.03 \pm 0.12$</td>
</tr>
</tbody>
</table>

Figure 8 presents the distribution of the calibrated \log_{10}^{cal} for the FG2 sample, compared to the predictions of the PYTHIA 8 MBR (top) and PYTHIA 8 4C (bottom) simulations. Figure 8(a) shows the comparison for the entire FG2 sample. The separation of the SD and DD processes (hatched green and solid yellow histograms, respectively) by means of the CASTOR tag is clearly seen in Figs. 8(b) and 8(c). Overall, the PYTHIA 8 MBR MC describes the data better than PYTHIA 8 4C and is therefore used to extract the diffractive cross sections. Both MC predictions are presented for a Pomeron trajectory with $\epsilon = 0.08$ and describe the region of low ξ_X well. At higher ξ_X values, $\epsilon = 0.104$ would be more appropriate [14], providing a better agreement with the data in that region. Since the M_X dependence of ϵ is currently not available in the MC models used for this analysis, we extract cross sections using $\epsilon = 0.08$ and evaluate a systematic uncertainty related to the possible variation of ϵ, as explained in Sec. IX.

The differential cross sections measured in bins of \log_{10}^{cal}, separately for $0.5 < \log_{10}^{\text{cal}} < 0.5$ (no CASTOR tag) and $0.5 < \log_{10}^{\text{cal}} < 0.5$ (CASTOR tag), are calculated with the formula
\[\frac{d\sigma}{d\log_{10} \xi_x} = \frac{N_{\text{evt}}}{L(\Delta \log_{10} \xi_x)_{\text{bin}}}, \]

where \(N_{\text{evt}} \) is the number of events in the bin, corrected for acceptance and migration effects, \(L \) is the integrated luminosity, and \((\Delta \log_{10} \xi_x)_{\text{bin}} \) is the bin width. The acceptance and migration corrections are evaluated with the iterative Bayesian unfolding technique [28], as implemented in the RooUNFOLD package [29], with four iterations. The number of iterations is optimized following the procedure suggested in Ref. [28], by studying the difference in \(\chi^2 \) (goodness-of-fit) values after consecutive iterations; the final unfolded distribution, folded back to the detector level, is consistent with the observed data. The response matrix is obtained with PYTHIA 8 MBR (\(\varepsilon = 0.08 \)). The results are presented in Table I; they include a small correction for overlapping \(pp \) collisions (~7%), evaluated by comparing MC simulations with and without pileup.

Figures 9(a,c) present the measured cross sections compared to the PYTHIA 8 MBR, PYTHIA 8 4C, and PYTHIA 6 Z2* predictions. The error bars of the data points are dominated by systematic uncertainties, which are discussed in Sec. XI. The predictions of PYTHIA 8 MBR are shown for two values of the \(\varepsilon \) parameter of the Pomeron trajectory. Both values, \(\varepsilon = 0.08 \) and \(\varepsilon = 0.104 \), describe the measured cross section for log\(_{10}\)MY < 0.5. The data for 0.5 < log\(_{10}\)MY < 1.1 favor the smaller value of \(\varepsilon \), specifically in the region of lower \(\xi_x \), corresponding to the topology in which both dissociation masses are low. The prediction of the Schuler-Sjöstrand model, used in the PYTHIA 8 4C simulation, describes well the measured cross section for 0.5 < log\(_{10}\)MY < 1.1, while the PYTHIA 6 Z2* simulation overestimates it. Both predictions are higher than the data for log\(_{10}\)MY < 0.5 at high log\(_{10}\)\(\xi_x \), and the predicted rising behavior of the cross section is not confirmed by the data in the region of the measurement, -5.5 < log\(_{10}\)\(\xi_x \) < -2.5.

Figures 9(b,d) present a comparison of the measured cross sections with the PHOJET, QGSJET-II 03, QGSJET-II 04, and EPOS predictions. None of the models is able to describe the magnitude of the cross section in the region 0.5 < log\(_{10}\)MY < 1.1. For log\(_{10}\)MY < 0.5, the PHOJET and EPOS generators fail to describe the falling behavior of the data, QGSJET-II 03 describes the measured cross section reasonably well, while QGSJET-II 04 underestimates the magnitude of the cross section.

VII. CENTRAL PSEUDORAPIDITY GAP CROSS SECTION FROM THE CG EVENT SAMPLE

The cross section for events with a central pseudorapidity gap is measured as a function of the variable \(\Delta \eta \), defined as \(\Delta \eta = -\log \xi \), where \(\xi = M_C^2 M_Y^2 / (s m_p^2) \), with \(m_p \) the proton mass. For purely DD events, the position of the gap center is related to the dissociation masses by the expression \(\eta_c = \log(M_Y/M_C) \).

As discussed in Sec. V, the central-gap width [Fig. 4(c)] is reconstructed as \(\Delta \eta_0^0 = \eta_{\text{max}}^0 - \eta_{\text{min}}^0 \). The calibration factor \(C \), which corrects \(\Delta \eta_0^0 \) for detector effects according to the formula \(\Delta \eta_{\text{cal}}^0 = \Delta \eta_{\text{rec}}^0 - C \), is extracted from the PYTHIA 8 MBR MC as the difference \(C = \Delta \eta_{\text{rec}}^0 - \Delta \eta_{\text{gen}}^0 \). It amounts to \(C = 2.42 \pm 0.12 \), with the uncertainty estimated from a comparison with PYTHIA 8 4C. Figure 10 presents the distribution of the calibrated \(\Delta \eta_0^0 \) for the CG sample along with simulated distributions from PYTHIA 8 MBR and PYTHIA 8 4C.

The differential cross section, measured in bins of \(\Delta \eta \) for \(\Delta \eta > 3 \), log\(_{10}\)MY > 1.1, and log\(_{10}\)MY > 1.1, is calculated according to the formula

\[\frac{d\sigma}{d\Delta \eta} = \frac{N_{\text{evt}}}{L(\Delta \eta)_{\text{bin}}}, \]

where \(N_{\text{evt}} \) is the number of events in a given bin, corrected for acceptance and migration effects, and also for the
TABLE II. The differential central pseudorapidity gap (DD dominated) cross section \(d\sigma/d\Delta\eta\) for \(\Delta\eta > 3\), \(\log_{10}M_X > 1.1\), and \(\log_{10}M_Y > 1.1\). The first and second errors correspond to statistical and systematic uncertainties, respectively.

<table>
<thead>
<tr>
<th>(\Delta\eta) bin</th>
<th>(d\sigma_{\text{CG}}/d\Delta\eta) (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3.0 < \Delta\eta < 4.5)</td>
<td>(0.25 \pm 0.003^{+0.05}_{-0.04})</td>
</tr>
<tr>
<td>(4.5 < \Delta\eta < 6.0)</td>
<td>(0.11 \pm 0.002^{+0.03}_{-0.02})</td>
</tr>
<tr>
<td>(6.0 < \Delta\eta < 7.5)</td>
<td>(0.032 \pm 0.001 \pm 0.009)</td>
</tr>
</tbody>
</table>

extrapolation from \(\Delta\eta^0 > 3\) (for gaps overlapping \(\eta = 0\)) to \(\Delta\eta > 3\) for all gaps, \(\mathcal{L}\) is the integrated luminosity, and \((\Delta\eta)_{\text{bin}}\) is the bin width. The acceptance and migration corrections are evaluated with the iterative Bayesian unfolding technique [28] with two iterations, optimized as described in Sec. VI. The response matrix is obtained using PYTHIA 8 MBR with \(\varepsilon = 0.08\).

The measured differential cross section is presented in Table II, and compared to predictions of theoretical models in Fig. 11. The results take into account the pileup correction, and the uncertainties are dominantly systematic (see Sec. XI). The prediction of the PYTHIA 8 MBR MC simulation with both \(\varepsilon = 0.08\) and 0.104 describes well the central-gap data. PYTHIA 8 4C underestimates the data in all bins, while PYTHIA 6 2Z2* overestimates the data in the lowest \(\Delta\eta\) bin. The PHOJET, QGSJET-II 03, QGSJET-II 04, and EPOS generators underestimate the magnitude of the measured cross section.

VIII. INTEGRATED CROSS SECTIONS

The forward and central pseudorapidity gap samples are also used to measure the integrated cross sections in the kinematic regions given in Secs. VII and VII. The forward pseudorapidity-gap cross sections, \(\sigma_{\text{no-CASTOR}}\) and \(\sigma_{\text{CASTOR}}\), are measured in the region \(-5.5 < \log_{10}M_X < -2.5\), for events without and with a CASTOR tag, corresponding to \(\log_{10}M_Y < 0.5\), and \(0.5 < \log_{10}M_Y < 1.1\), respectively, while the central pseudorapidity-gap cross section, \(\sigma_{\text{CG}}\), is measured for \(\Delta\eta > 3\), \(\log_{10}M_X > 1.1\), and \(\log_{10}M_Y > 1.1\).

Each cross section is evaluated by means of the formula

\[
\sigma = \frac{N^{\text{evd}}}{A\mathcal{L}},
\]

where \(N^{\text{evd}}\) is the number of events in the kinematic regions given above, \(A\) is the acceptance, defined as the ratio of the number of events reconstructed to the number of events generated in that bin, taking into account the pileup correction, and \(\mathcal{L}\) is the integrated luminosity. The acceptance is evaluated with the PYTHIA 8 MBR MC generator.

Values of \(\sigma_{\text{no-CASTOR}} = 2.99 \pm 0.02(\text{stat})^{+0.32}_{-0.29}(\text{syst})\) mb, \(\sigma_{\text{CASTOR}} = 1.18 \pm 0.02(\text{stat}) \pm 0.13(\text{syst})\) mb, and \(\sigma_{\text{CG}} = 0.58 \pm 0.01(\text{stat})^{+0.13}_{-0.11}(\text{syst})\) mb are obtained. Systematic uncertainties are evaluated as discussed in Sec. XI. As a consistency check of the analysis procedure, we measure the part of the total inelastic cross sections that is visible in the central CMS detector, corresponding to the region \(\log_{10}M_X > 1.1\) or \(\log_{10}M_Y > 1.1\). A value of \(\sigma^{\text{check}}_{\text{vis}} = 61.29 \pm 0.07(\text{stat})\) mb is found, in good agreement with the published CMS result \(\sigma^{\text{check}}_{\text{vis}} = 60.2 \pm 0.2(\text{stat}) \pm 1.1(\text{syst}) \pm 2.4(\text{lumi})\) mb, measured in a slightly different kinematic region (\(M_X\) or \(M_Y\) \(\gtrsim\) 16.7 GeV) [30]. According to PYTHIA 8 MBR, the phase space difference between the two measurements corresponds to \(\sigma^{\text{check}}_{\text{vis}} - \sigma^{\text{check}}_{\text{vis}}(\xi > 5 \times 10^{-6}) = 0.5\) mb.

Table III lists the measured cross sections together with the absolute predictions of the MC simulations. Based on the results presented thus far, the following conclusions can be drawn about the models: PHOJET, QGSJET-II 03, QGSJET-II 04, and EPOS predict too few DD events, which dominate the measured \(\sigma_{\text{CASTOR}}\) and \(\sigma_{\text{CG}}\) cross sections [Figs. 9(d) and 11(b)]; among these four models only QGSJET-II 03 satisfactorily predicts the \(\sigma_{\text{no-CASTOR}}\) cross section [Fig. 9(b)]; PYTHIA 8 4C,
PYTHIA 6 Z2*, PHOJET, and EPOS do not predict correctly the ξ_X dependence for the SD process, which dominates the measured forward pseudorapidity gap cross section for $\log_{10} M_Y < 0.5$ [Fig. 9(a), 9(b)]; and PYTHIA 8 MBR describes the data within uncertainties in all the measured regions.

TABLE III. Measured $\sigma_{\text{no-CASTOR}}$, σ_{CASTOR}, and σ_{CG} cross sections, compared to predictions of MC models. The first and the second errors in the data correspond to statistical and systematic uncertainties, respectively.

<table>
<thead>
<tr>
<th></th>
<th>$\sigma_{\text{no-CASTOR}}$ (mb)</th>
<th>σ_{CASTOR} (mb)</th>
<th>σ_{CG} (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SD dominated</td>
<td>DD dominated</td>
<td>DD dominated</td>
</tr>
<tr>
<td>PYTHIA 8 MBR</td>
<td>2.99 ± 0.02±0.32−0.29</td>
<td>1.18 ± 0.02 ± 0.13</td>
<td>0.58 ± 0.01±0.13−0.11</td>
</tr>
<tr>
<td>PYTHIA 8 4C</td>
<td>3.05</td>
<td>1.24</td>
<td>0.54</td>
</tr>
<tr>
<td>PYTHIA 6 Z2*</td>
<td>3.31</td>
<td>1.10</td>
<td>0.40</td>
</tr>
<tr>
<td>PHOJET</td>
<td>3.86</td>
<td>1.52</td>
<td>0.78</td>
</tr>
<tr>
<td>QGSJET-II 03</td>
<td>3.06</td>
<td>0.63</td>
<td>0.32</td>
</tr>
<tr>
<td>QGSJET-II 04</td>
<td>2.63</td>
<td>0.48</td>
<td>0.22</td>
</tr>
<tr>
<td>EPOS</td>
<td>1.70</td>
<td>0.78</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>2.99</td>
<td>0.85</td>
<td>0.31</td>
</tr>
</tbody>
</table>

To provide the DD cross section in the widest kinematic region spanned by the data, we also evaluate the visible DD cross section, σ^DDvis, defined as $\sigma^\text{DDvis} = 2 \sigma^\text{DDvis}_{\text{CASTOR}} + \sigma^\text{DDvis}_{\text{CG}}$, where the factor of 2 assumes the same dependence of the DD cross section on M_X and M_Y [boxed regions in Fig. 6(b)]. This leads to $\sigma^\text{DDvis} = 2.69 ± 0.04(\text{stat})^{+0.29}_{−0.36}(\text{syst})$, in the kinematic region delimited by the solid and dashed (red) lines in Figs. 6(b) and 6(c). This result is used below to extrapolate the DD cross section to the region $\Delta \eta > 3$ [to the left of the dashed (blue) line in Fig. 6(c)].

A. Extrapolation of the visible SD and DD cross sections

The measurements based on the central CMS detector are insensitive to the low-mass part of diffractive dissociation. Therefore, in order to compare the measured σ^SDvis cross section with results of other experiments and theoretical models that present integrated cross sections for $\xi < 0.05$, an extrapolation from $-5.5 < \log_{10} \xi_X < -2.5$ ($\xi_X = M_X^2/s$) to $\xi < 0.05$ is required. Similarly, the σ^DDvis cross section must be extrapolated to $\Delta \eta > 3$ (Fig. 6). The extrapolation factors, calculated by using each of the MC simulations introduced in Sec. III, are presented in Appendix A. Not all of the simulations are able to describe the measured cross sections (see Sec. VIII), nor do they include realistic hadronization models (see Appendix B). Following the discussion in Sec. VIII and Appendix B, the extrapolation factors are determined with PYTHIA 8 MBR (with $\varepsilon = 0.08$), which describes well all aspects of our data. The multiplicative factor needed to extrapolate the measured SD cross section to $\xi < 0.05$ is $f_{\text{SD MBR}}^{\text{extr}} = 2.18_{−13}^{+13}$, and that for the extrapolation of the DD cross section to $\Delta \eta > 3$ is $f_{\text{DD MBR}}^{\text{extr}} = 1.92_{−0.31}^{+0.31}$ (Tables VI and VII in Appendix A). The extrapolation uncertainties are estimated by changing the parameters α' and ε of the Pomeron trajectory from their nominal values ($\alpha' = 0.25$ GeV$^{-2}$, $\varepsilon = 0.08$) to those presented in Tables VI and VII (one parameter changed at a time), and adding in quadrature the corresponding deviations with respect to the central result.
separately for the positive and negative deviations. The extrapolated SD and DD cross sections thus obtained are \(\sigma_{SD} = 8.84 \pm 0.08 \text{(stat)} +1.39 \text{(syst)} +1.17 \text{(extrap \text{ mb})} \) and \(\sigma_{DD} = 5.17 \pm 0.08 \text{(stat)} +0.57 \text{(syst)} +1.62 \text{(extrap \text{ mb})} \), respectively.

Figure 12(a) presents the extrapolated SD cross section compared to the ALICE result [3] and a compilation of lower center-of-mass energy measurements [31–35]. The data are also compared to the PYTHIA 8 MBR simulation, as well as to the GLM [36] and KP [37,38] models. The CMS result is consistent with a SD cross section weakly rising with energy.

Figure 12(b) shows the extrapolated DD cross section compared to the ALICE results [3], those by CDF at \(\sqrt{s} = 630 \text{ GeV} \) and \(1.8 \text{ TeV} \) [39], as well as the PYTHIA 8 MBR, GLM [36], and KP [37,38] models. The CMS measurement at \(\sqrt{s} = 7 \text{ TeV} \) is in agreement with the ALICE measurement at the same energy. Note, however, that the ALICE result is obtained from the NSD (non-single-diffractive = DD + ND) data, while for the CMS measurement the ND background has been subtracted. Here as well, the data are consistent with a weakly rising cross section with energy, as predicted by the models.

B. Summary of results

Table IV presents the summary of the cross section measurements illustrated in the previous sections, together with the kinematic region covered by each measurement. The method used for the cross section extraction (LRG or MBR) is given as well. The \(\sigma_{NSD}^{\text{CASTOR}}, \sigma_{SD}^{\text{CASTOR}}, \) and \(\sigma_{CG} \) cross sections are measured from the two events passing the LRG selection (Sec. VIII). The \(\sigma_{SD}^{\text{Div}}, \sigma_{DD}^{\text{Div}}, \) and \(\sigma_{DD}^{\text{Div}} \) cross sections are extracted from the latter ones by subtracting the background contribution from other processes as predicted by the PYTHIA 8 MBR simulation (Sec. IX). In addition, \(\sigma_{DD}^{\text{Div}} \) is calculated from the combination of \(\sigma_{NSD}^{\text{CASTOR}} \) and \(\sigma_{CG}^{\text{CASTOR}} \). Finally, the \(\sigma_{SD} \) and \(\sigma_{DD} \) cross sections (Sec. IX A) are calculated by extrapolating \(\sigma_{SD}^{\text{Div}} \) and \(\sigma_{DD}^{\text{Div}} \) to the region of lower diffractive masses using the mass dependence of the cross section predicted by PYTHIA 8 MBR.

X. PSEUDORAPIDITY GAP CROSS SECTION

This section presents the results of an alternative approach to the study of diffractive events, in which the data are analyzed in terms of the widest pseudorapidity gap adjacent to the edge of the detector [40]. In each event, particles are first ordered in \(\eta \), and the largest pseudorapidity gap, \(\Delta \eta^F \), is determined as \(\Delta \eta^F = \max(|\eta_{\text{min}} - \eta^-|, |\eta_{\text{max}} - \eta^+|) \), where \(\eta^\pm = \pm 4.7 \) are the detector edges in \(\eta \), and \(\eta_{\text{max}} (\eta_{\text{min}}) \) is the highest (lowest) \(\eta \) of the PF objects in the event (see Fig. 3).

The analysis is based on a minimum bias data sample, selected as described in Sec. IV, with negligible pileup (0.006), and corresponding to an integrated luminosity of 20.3 \(\mu \text{b}^{-1} \). The uncorrected distribution of the pseudorapidity gap size is shown in Fig. 13, along with the predictions of various MC models. A wider bin width is used at low \(\Delta \eta^F \) to account for the lower spatial resolution in the forward region.

A. Corrections for experimental effects

Interactions of the beam protons with the residual gas particles in the beam pipe or inside the detector region affect the pseudorapidity gap distribution in data. The overall beam-induced background, integrated over the full measurement region, is about 0.7%. After the subtraction of this background, the differential cross section \(\frac{d\sigma}{d\Delta \eta^F} \) is determined according to the formula

\[
\frac{d\sigma}{d\Delta \eta^F} = \frac{N^{\text{evt}}}{T_r \mathcal{L}(\Delta \eta^F)_{\text{bin}}},
\]

where
TABLE IV. Measured diffractive cross sections in regions of M_X (or $\xi_X = M_X^2/s$), M_Y (or $\xi_Y = M_Y^2/s$), and $\Delta \eta$ ($\Delta \eta = -\log \xi$, where $\xi = M_X^2 M_Y^2/(s m_T^2)$) for DD. The method used for the cross section extraction is indicated as LRG for calculations involving all events selected in the LRG samples, and as MBR for calculations that involve background subtraction or extrapolation based on the prediction of the PYTHIA 8 MBR simulation. The first and the second errors in the data correspond to the statistical and systematic uncertainties, respectively. For σ^SD and σ^DD, the third errors correspond to the extrapolation uncertainties.

<table>
<thead>
<tr>
<th>Cross section</th>
<th>M_X or ξ_X range</th>
<th>M_Y or ξ_Y range</th>
<th>$\Delta \eta$ range</th>
<th>Result (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRG</td>
<td>$-5.5 < \log \xi_X < -2.5$</td>
<td>$\log_{10} M_Y < 0.5$</td>
<td>...</td>
<td>$2.99 \pm 0.02^{+0.32}_{-0.29}$</td>
</tr>
<tr>
<td></td>
<td>$5 \log_{10} M_X > 1.1$</td>
<td>$\log_{10} M_Y > 1.1$</td>
<td>$\Delta \eta > 3$</td>
<td>$0.58 \pm 0.01^{+0.11}_{-0.11}$</td>
</tr>
<tr>
<td>MBR</td>
<td>$-5.5 < \log \xi_X < -2.5$</td>
<td>$M_Y = m_p$</td>
<td>...</td>
<td>$4.06 \pm 0.04^{+0.69}_{-0.63}$</td>
</tr>
<tr>
<td></td>
<td>$-5.5 < \log \xi_X < -2.5$</td>
<td>$\log_{10} M_Y > 1.1$</td>
<td>$\Delta \eta > 3$</td>
<td>$1.06 \pm 0.02^{+0.12}_{-0.13}$</td>
</tr>
<tr>
<td></td>
<td>$5 \log_{10} M_X > 1.1$</td>
<td>$\log_{10} M_Y > 1.1$</td>
<td>$\Delta \eta > 3$</td>
<td>$0.56 \pm 0.01^{+0.15}_{-0.13}$</td>
</tr>
<tr>
<td></td>
<td>$0.5 < \log_{10} M_X < 1.1$</td>
<td>$-5.5 < \log \xi_Y < -2.5$</td>
<td>...</td>
<td>$2.69 \pm 0.04^{+0.29}_{-0.30}$</td>
</tr>
<tr>
<td></td>
<td>$0.5 < \log_{10} M_X < 1.1$</td>
<td>$\log_{10} M_Y > 1.1$</td>
<td>$\Delta \eta > 3$</td>
<td>$5.17 \pm 0.08^{+0.62}_{-0.57}$</td>
</tr>
</tbody>
</table>

where $N^\text{ev}t$ is the number of events in the bin, corrected for migration effects, T_x the trigger efficiency, L the integrated luminosity, and $(\Delta \eta^F)^\text{bin}$ the bin width.

The trigger efficiency is obtained from a comparison with zero-bias data where no trigger requirements were applied. In order to have a satisfactory correlation between the generated and reconstructed values of $\Delta \eta^F$, and hence a reliable correction for bin-migration effects, the cross section is evaluated for events with at least one stable final-state particle of transverse momentum $p_T > 200$ MeV in the region of $|\eta| < 4.7$. The migration corrections are evaluated with the iterative Bayesian unfolding technique [28], as implemented in the RooUnfold package [29], with a single iteration. The response matrix is obtained with PYTHIA 8 MBR ($\epsilon = 0.08$). The cross section is measured only for $\Delta \eta^F < 8.4$, so as to avoid regions where the trigger inefficiency and the unfolding uncertainty are large.

B. Corrected results

Figure 14 shows the unfolded and fully corrected differential cross section $d\sigma/d\Delta \eta^F$ for events with at least one particle with $p_T > 200$ MeV in the region of $|\eta| < 4.7$. As the statistical uncertainty is negligible, only the systematic uncertainty, discussed in Sec. XI, is shown. The predictions from PYTHIA 8 MBR ($\epsilon = 0.08$ and 0.104), PYTHIA 8 tune 4C, and PYTHIA 6 tune Z2* are also given. The MC predictions show that in the pseudorapidity range covered by the measurement, $|\eta| < 4.7$, a large fraction of nondiffractive events can be suppressed by means of the $\Delta \eta^F > 3$ requirement.

The present results are consistent with those from the ATLAS Collaboration [4], as shown in Fig. 15. The ATLAS measurement uses all stable final-state particles with $p_T > 200$ MeV over the region $|\eta| < 4.9$. According to the PYTHIA 8 MBR simulation, the difference in the η coverage between the two experiments causes changes in the $\Delta \eta^F$ distribution of up to 5%.
XI. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties are obtained by varying the selection criteria and modifying the analysis. The following sources of systematic uncertainties are taken into account for the results presented in Secs. VI–X:

(i) HF energy scale: varied in the MC simulations by $\pm 10\%$, to reflect the energy scale uncertainty estimated for data.

(ii) PF energy thresholds: raised by 10%, based on dedicated studies of the detector noise.

(iii) Modeling of the diffractive interaction and the hadronization process: the hadronization parameters in the nominal PYTHIA 8 MBR MC sample are tuned to describe the multiplicity and p_T spectra of diffractive systems in pp and $p\bar{p}$ collisions at $\sqrt{s} \leq 1800$ GeV [41]. The corresponding uncertainty is estimated by taking the difference (see Appendix B) between the results obtained with PYTHIA 8 MBR and those obtained with PYTHIA 8 4C (Secs. VI–IX), or PYTHIA 8 4C and PYTHIA 6-Z2* (Sec. X).

FIG. 14 (color online). Differential cross section $d\sigma/d\Delta \eta^F$ for stable particles with $p_T > 200$ MeV in the region $|\eta| < 4.7$ compared to the corresponding predictions of (a) PYTHIA 8 MBR ($\varepsilon = 0.08$), (b) PYTHIA 8 MBR ($\varepsilon = 0.104$), (c) PYTHIA 8 tune 4C, and (d) PYTHIA 6 tune Z2*. The band around the data points represents the total systematic uncertainty, which is discussed in Sec. XI.
The total systematic uncertainty is obtained by summing all individual uncertainties in quadrature, separately for the positive and negative deviations from the nominal cross section values, leading to a total systematic uncertainty of about 25%. Table V presents the summary of the systematic uncertainties for the measurement of the σ_{SDvis}, σ_{DDvis}, and σ_{CG} cross sections. The systematic uncertainties are significantly larger than the statistical ones, and the dominant sources are the HF energy scale and the modeling of diffraction and hadronization. For the σ_{DDvis} cross section, also the uncertainty related to the CASTOR alignment is significant.

XII. SUMMARY

Measurements of diffractive dissociation cross sections in pp collisions at $\sqrt{s} = 7$ TeV have been presented in kinematical regions defined by the masses M_X and M_Y of the two final-state hadronic systems separated by the largest rapidity gap in the event. Differential cross sections are measured as a function of $\xi_X = M_X^2/s$ in the region $-5.5 < \log_{10}\xi_X < -2.5$, for $\log_{10}M_Y < 0.5$, dominated by single dissociation (SD), and $0.5 < \log_{10}M_Y < 1.1$, dominated by double dissociation (DD). The discrimination between the above two M_Y regions is performed by means of the CASTOR forward calorimeter. The cross sections integrated over these regions are $\sigma_{\text{no-CASTOR}} = 2.99 \pm 0.02(\text{stat})^{+0.32}_{-0.29}(\text{syst})$ mb and $\sigma_{\text{CASTOR}} = 1.18 \pm 0.02(\text{stat}) \pm 0.13(\text{syst})$ mb, respectively.

The inclusive pp cross section is also measured as a function of the width of the central pseudorapidity gap, $\Delta \eta$, for $\Delta \eta > 3$, $\log_{10}M_X > 1.1$, and $\log_{10}M_Y > 1.1$ (dominated by DD contributions). The corresponding integrated cross section is $\sigma_{CG} = 0.58 \pm 0.01(\text{stat})^{+0.13}_{-0.11}(\text{syst})$ mb.

Table V. Systematic uncertainties for the measurement of the σ_{SDvis}, σ_{DDvis}, and σ_{CG} cross sections; individual contributions, as well as total systematic and statistical uncertainties, are shown.

<table>
<thead>
<tr>
<th>Source</th>
<th>σ_{SDvis}</th>
<th>σ_{DDvis}</th>
<th>σ_{CG}</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF energy scale</td>
<td>10</td>
<td>1.6</td>
<td>23</td>
</tr>
<tr>
<td>PF thresholds</td>
<td>0.8</td>
<td>0.4</td>
<td>6.9</td>
</tr>
<tr>
<td>Diff. and had. modeling</td>
<td>10</td>
<td>4.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Luminosity</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CASTOR energy scale</td>
<td>0.5</td>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>CASTOR threshold</td>
<td>0.9</td>
<td>2.8</td>
<td>0</td>
</tr>
<tr>
<td>CASTOR alignment</td>
<td>2.6</td>
<td>8.3</td>
<td>0</td>
</tr>
<tr>
<td>Trigger</td>
<td>0.6</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Background sub.</td>
<td>4.3</td>
<td>0.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Total systematic</td>
<td>16</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>Statistical</td>
<td>0.9</td>
<td>1.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>
The SD and DD cross sections in the above three regions, extracted by means of the PYTHIA 8 MBR simulation, which provides a good description of the data, are $\sigma_{\text{SD}} = 4.06 \pm 0.04(\text{stat})^{+0.66}_{-0.63}(\text{syst}) \text{ mb}$ (accounting for both $pp \rightarrow Xp$ and $pp \rightarrow pY$), $\sigma_{\text{CASTOR}}^{\text{DDvis}} = 1.06 \pm 0.02(\text{stat}) \pm 0.12(\text{syst}) \text{ mb}$, and $\sigma_{\text{CG}}^{\text{DDvis}} = 0.56 \pm 0.01(\text{stat})^{+0.15}_{-0.17}(\text{syst}) \text{ mb}$, respectively.

Extrapolations of the SD and DD cross sections to the regions $\xi < 0.05$ and $\Delta p > 3$, performed with PYTHIA 8 MBR, yield $\sigma_{\text{SD}}^{01} = 8.84 \pm 0.08(\text{stat})^{+1.49}_{-1.38}(\text{syst})^{+0.55}_{-0.37}(\text{extrap}) \text{ mb}$ and $\sigma_{\text{DD}}^{01} = 5.17 \pm 0.08(\text{stat})^{+0.57}_{-0.50}(\text{syst})^{+1.62}_{-0.51}(\text{extrap}) \text{ mb}$, respectively.

In addition, the inclusive differential cross section $d\sigma/d\Delta \eta$ for events with a pseudorapidity gap adjacent to the edge of the detector is measured over 8.4 units of pseudorapidity. These measurements are compared to results from other experiments as well as to phenomenological predictions. The data are consistent with the SD and DD cross sections weakly rising with energy, and provide new experimental constraints on the modeling of diffraction in hadronic interactions.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technological Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la...
APPENDIX A: SD/DD EXTRAPOLATION FACTORS

Figure 16 shows the $\xi_X = M_X^2/s$ dependence of the SD cross section for the PYTHIA 8 4C, PYTHIA 6 ZZ*, PHOJET, QGSJET-II 03, QGSJET-II 04, and EPOS simulations, compared to the nominal PYTHIA 8 MBR simulation used in this analysis for two regions of ξ_X, $-5.5 < \log_{10} \xi_X < -2.5$ (dashed yellow) and $\xi_X < 0.05$ (solid khaki). In addition, the PYTHIA 8 MBR simulations with values of α' and ϵ changed to $\alpha' = 0.125$ GeV$^{-2}$, $\epsilon = 0.104$, and $\epsilon = 0.07$ (one parameter changed at a time) are also included to provide a scale for their effect on the cross sections. Extrapolation factors, defined as the ratios of $\sigma^{SD}(\xi_X < 0.05)$ to $\sigma^{SD,vis}(5.5 < \log_{10} \xi_X < -2.5)$, are presented for each of the above ten MC models in Table V. For each model, two ratios are evaluated, one in which both cross sections (numerator and denominator of the extrapolation factor) are calculated by using the same generator (f^{SD}),
and another where the prediction of the $\sigma_{\text{SD,vis}}^{(5.5 < \log_{10}\xi_X < -2.5)}$ is calculated by using the nominal PYTHIA 8 MBR with $\varepsilon = 0.08$ ($f_{\text{MBR}}^{\text{SD}}$). The numbers in brackets in Table VI show the relative change of the extrapolation factors with respect to the nominal PYTHIA 8 MBR simulation; the one related to $f_{\text{MBR}}^{\text{SD}}$ is sensitive to the difference in the shape of the ξ_X (mass) distribution, while the one related to $f_{\text{MBR}}^{\text{SD}}$ is also sensitive to the normalization of the SD cross section.

Table VII shows the extrapolation factors for the DD case, defined as the ratios of $\sigma_{\text{DD}}^{(\Delta\eta > 3)}$ to $\sigma_{\text{MBR}}^{\text{DD,vis}}$, again for two cases: one when both cross sections are calculated with the same MC generator ($f_{\text{MBR}}^{\text{DD}}$), and the other when the predicted $\sigma_{\text{SD,vis}}^{\text{DD}}$ cross section is from PYTHIA 8 MBR with $\varepsilon = 0.08$ ($f_{\text{MBR}}^{\text{DD}}$). The relative change of the extrapolation factors with respect to the nominal PYTHIA 8 MBR simulation is shown in brackets; the one related to $f_{\text{MBR}}^{\text{DD}}$ accounts for the difference in the shape of the M_X and M_Y dependence, while the one related to $f_{\text{MBR}}^{\text{DD}}$ is sensitive to the difference in the mass dependence and the normalization of the DD cross section.

APPENDIX B: MC HADRONIZATION MODELS

In this section, the hadronization models used to generate particle spectra in the simulations introduced in Sec. III are compared to a reference model [41,46] based on data. The model correctly describes the charged-particle multiplicity and p_T spectra of diffractive and inclusive proton-(anti)proton data for $\sqrt{s} \leq 1800$ GeV by assuming that the Pomeron-proton collision produces a system of mass M_X that hadronizes as if it had been produced in a nondiffractive proton-proton collision at $\sqrt{s} = M_X$. Figures 17 and 18 show the charged-particle multiplicity distributions and p_T spectra for the SD process for three ranges of M_X: $5.6 < M_X < 10$ GeV, $32 < M_X < 56$ GeV, and $178 < M_X < 316$ GeV, for the PYTHIA 8 MBR, PYTHIA 8 4C, PYTHIA 6 Z2*, PHOJET, QGSIET-II 03, QGSIET-II 04, and EPOS simulations, compared to the reference model quoted above. The following conclusions can be drawn: PYTHIA 6 Z2**, QGSIET-II 03, QGSIET-II 04, and EPOS predict smaller multiplicities and harder p_T spectra than the model of Ref. [41,46]; PYTHIA 8 4C agrees with the mean values of the multiplicity distributions, but predicts narrower widths, and harder p_T spectra; PHOJET predicts multiplicity distributions consistent with the reference model with harder p_T spectra; and PYTHIA 8 MBR agrees with the reference model in both multiplicity and p_T spectra. The latter is an expected result, as the hadronization parameters of the PYTHIA 8 MBR simulation have been tuned to follow the reference model.
FIG. 17 (color online). Charged-particle multiplicity (N_{ch}) distributions (area-normalized) in the PYTHIA 8 MBR, PYTHIA 8 4C, PYTHIA 6 Z2*, PHOJET, QGSJET-II-03, QGSJET-II-04, and EPOS MC simulations (rows) in three bins of M_X (columns) in SD collisions, compared to a reference hadronization model (dashed line), which describes the available data at $\sqrt{s} \leq 1800$ GeV [41,46].
FIG. 18 (color online). Transverse-momentum (p_T) distributions (area-normalized) in the PYTHIA 8 MBR, PYTHIA 8 4C, PYTHIA 6 Z2*, PHOJET, QGSJET-II 03, QGSJET-II 04, EPOS MC simulations (rows) in three bins of M_X (columns) in SD collisions, compared to a reference hadronization model (dashed line), which describes the available data at $\sqrt{s} \lesssim 1800$ GeV [41,46].

6. Université Libre de Bruxelles, Bruxelles, Belgium
7. Ghent University, Ghent, Belgium
8. Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9. Université de Mons, Mons, Belgium
10. Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11. Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12. Universidade Estadual Paulista, São Paulo, Brazil
13. Universidade Federal do ABC, São Paulo, Brazil
14. Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
15. University of Sofia, Sofia, Bulgaria
16. State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17. University of Los Andes, Bogota, Colombia
18. University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
19. University of Split, Faculty of Science, Split, Croatia
20. Institute Rudjer Boskovic, Zagreb, Croatia
21. University of Cyprus, Nicosia, Cyprus
22. Charles University, Prague, Czech Republic
23. Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24. National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25. Department of Physics, University of Helsinki, Helsinki, Finland
26. Helsinki Institute of Physics, Helsinki, Finland
27. Lappeenranta University of Technology, Lappeenranta, Finland
28. DSM/IRFU, CEA Saclay, 91191 Gif-sur-Yvette cedex, France
29. Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30. Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31. Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
32. Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33. Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
34. RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
35. RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
36. RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
37. Deutsches Elektronen-Synchrotron, Hamburg, Germany
38. University of Hamburg, Hamburg, Germany
39. Institut für Experimentelle Kernphysik, Karlsruhe, Germany
40. Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
41. University of Athens, Athens, Greece
42. University of Ioánnina, Ioánnina, Greece
43. Wigner Research Centre for Physics, Budapest, Hungary
44. Institute of Nuclear Research ATOMKI, Debrecen, Hungary
45. University of Debrecen, Debrecen, Hungary
46. National Institute of Science Education and Research, Bhubaneswar, India
47. Panjab University, Chandigarh, India
48. University of Delhi, Delhi, India
49. Saha Institute of Nuclear Physics, Kolkata, India
50. Bhabha Atomic Research Centre, Mumbai, India
51. Tata Institute of Fundamental Research, Mumbai, India
52. Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
53. University College Dublin, Dublin, Ireland
54a. INFN Sezione di Bari, Bari, Italy
54b. Università di Bari, Bari, Italy
54c. Politecnico di Bari, Bari, Italy
55a. INFN Sezione di Bologna, Bologna, Italy
55b. Università di Bologna, Bologna, Italy
56. INFN Sezione di Catania, Catania, Italy
MEASUREMENT OF DIFFRACTIVE DISSOCIATION CROSS …

PHYSICAL REVIEW D 92, 012003 (2015)

159University of Tennessee, Knoxville, Tennessee 37996, USA
160Texas A&M University, College Station, Texas 77843, USA
161Texas Tech University, Lubbock, Texas 79409, USA
162Vanderbilt University, Nashville, Tennessee 37235, USA
163University of Virginia, Charlottesville, Virginia 22904, USA
164Wayne State University, Detroit, Michigan 48202, USA
165University of Wisconsin, Madison, Wisconsin 53706, USA

\(^a\)Deceased.
\(^b\)Also at Vienna University of Technology, Vienna, Austria.
\(^c\)Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
\(^d\)Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
\(^e\)Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
\(^f\)Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
\(^g\)Also at Universidade Estadual de Campinas, Campinas, Brazil.
\(^h\)Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
\(^i\)Also at Joint Institute for Nuclear Research, Dubna, Russia.
\(^j\)Also at Suez University, Suez, Egypt.
\(^k\)Also at Cairo University, Cairo, Egypt.
\(^l\)Also at Fayoum University, El-Fayoum, Egypt.
\(^m\)Also at British University in Egypt, Cairo, Egypt.
\(^n\)Also at Ain Shams University, Cairo, Egypt.
\(^o\)Also at Université de Haute Alsace, Mulhouse, France.
\(^p\)Also at Brandenburg University of Technology, Cottbus, Germany.
\(^q\)Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
\(^r\)Also at Eötvös Loránd University, Budapest, Hungary.
\(^s\)Also at University of Debrecen, Debrecen, Hungary.
\(^t\)Also at University of Visva-Bharati, Santiniketan, India.
\(^u\)Also at King Abdulaziz University, Jeddah, Saudi Arabia.
\(^v\)Also at University of Ruhuna, Matara, Sri Lanka.
\(^w\)Also at Isfahan University of Technology, Isfahan, Iran.
\(^x\)Also at Sharif University of Technology, Tehran, Iran.
\(^y\)Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
\(^z\)Also at Università degli Studi di Siena, Siena, Italy.

\(^aa\)Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France.
\(^bb\)Also at Purdue University, West Lafayette, Indiana 47907, USA.
\(^cc\)Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.
\(^dd\)Also at Institute for Nuclear Research, Moscow, Russia.
\(^ee\)Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
\(^ff\)Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
\(^gg\)Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
\(^hh\)Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
\(^ii\)Also at University of Athens, Athens, Greece.
\(^jj\)Also at Paul Scherrer Institut, Villigen, Switzerland.
\(^kk\)Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
\(^ll\)Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.

\(^mm\)Also at Gaziosmanpasa University, Tokat, Turkey.
\(^nn\)Also at Adiyaman University, Adiyaman, Turkey.
\(^oo\)Also at Cag University, Mersin, Turkey.
\(^pp\)Also at Anadolu University, Eskisehir, Turkey.
\(^qq\)Also at Izmir Institute of Technology, Izmir, Turkey.
\(^rr\)Also at Necmettin Erbakan University, Konya, Turkey.
\(^ss\)Also at Ozyegin University, Istanbul, Turkey.
\(^tt\)Also at Marmara University, Istanbul, Turkey.
\(^uu\)Also at Kafkas University, Kars, Turkey.
\(^vv\)Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

\(^ww\)Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
\(^xx\)Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
\(^yy\)Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at Argonne National Laboratory, Argonne, Illinois, USA.

Also at Erzincan University, Erzincan, Turkey.

Also at Yildiz Technical University, Istanbul, Turkey.

Also at Texas A&M University at Qatar, Doha, Qatar.

Also at Kyungpook National University, Daegu, Korea.