Two enumerative results on cycles of permutations

The MIT Faculty has made this article openly available. **Please share** how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1016/j.ejc.2011.01.011</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Version</td>
<td>Author’s final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Nov 26 04:58:06 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/98849</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-NoDerivatives</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-nd/4.0/</td>
</tr>
</tbody>
</table>
Two Enumerative Results on Cycles of Permutations

Richard P. Stanley

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
rstan@math.mit.edu

In memory of Tom Brylawski

version of 15 April 2009

Abstract

Answering a question of Bóna, it is shown that for \(n \geq 2 \) the probability that 1 and 2 are in the same cycle of a product of two \(n \)-cycles on the set \(\{1, 2, \ldots, n\} \) is \(1/2 \) if \(n \) is odd and \(\frac{1}{2} - \frac{2}{(n-1)(n+2)} \) if \(n \) is even.

Another result concerns the polynomial \(P_{\lambda}(q) = \sum_w q^{\kappa((1,2,\ldots,n)w)} \), where \(w \) ranges over all permutations in the symmetric group \(S_n \) of cycle type \(\lambda \), \((1,2,\ldots,n) \) denotes the \(n \)-cycle \(1 \to 2 \to \cdots \to n \to 1 \), and \(\kappa(v) \) denotes the number of cycles of the permutation \(v \). A formula is obtained for \(P_{\lambda}(q) \) from which it is deduced that all zeros of \(P_{\lambda}(q) \) have real part 0.

1 Introduction.

Let \(\lambda = (\lambda_1, \lambda_2, \ldots) \) be a partition of \(n \), denoted \(\lambda \vdash n \). In general, we use notation and terminology involving partitions and symmetric functions from [12, Ch. 7]. Let \(S_n \) denote the symmetric group of all permutations of \([n] = \{1, 2, \ldots, n\} \). If \(w \in S_n \) then write \(\rho(w) = \lambda \) if \(w \) has cycle type \(\lambda \), i.e., if the (nonzero) \(\lambda_i \)'s are the lengths of the cycles of \(w \). The conjugacy classes of \(S_n \) are given by \(K_{\lambda} = \{w \in S_n : \rho(w) = \lambda\} \).

The “class multiplication problem” for \(S_n \) may be stated as follows. Given \(\lambda, \mu, \nu \vdash n \), how many pairs \((u, v) \in S_n \times S_n \) satisfy \(u \in K_{\lambda}, v \in K_{\mu}, \ldots \)
The case when one of the partitions is \((n)\) (i.e., one of the classes consists of the \(n\)-cycles) is particularly interesting and has received much attention. For a sample of some recent work, see [1][6][9]. In this paper we make two contributions to this subject. For the first, we solve a problem of Bóna and Flynn [4] asking what is the probability that two fixed elements of \([n]\) lie in the same cycle of the product of two random \(n\)-cycles. In particular, we prove the conjecture of Bóna that this probability is \(1/2\) when \(n\) is odd. Our method of proof is an ugly computation based on a formula of Boccara [2]. The technique can be generalized, and as an example we compute the probability that three fixed elements of \([n]\) lie in the same cycle of the product of two random \(n\)-cycles.

For our second result, let \(\kappa(w)\) denote the number of cycles of \(w \in \mathfrak{S}_n\), and let \((1, 2, \ldots, n)\) denote the \(n\)-cycle \(1 \to 2 \to \cdots \to n \to 1\). For \(\lambda \vdash n\), define the polynomial

\[
P_\lambda(q) = \sum_{\rho(w) = \lambda} q^{\kappa((1,2,\ldots,n) \cdot w)}.
\]

In Theorem 3.1 we obtain a formula for \(P_\lambda(q)\). We also prove from this formula (Corollary 3.3) that every zero of \(P_\lambda(q)\) has real part 0.

2 A problem of Bóna.

Let \(\pi_n\) denote the probability that if two \(n\)-cycles \(u, v\) are chosen uniformly at random in \(\mathfrak{S}_n\), then 1 and 2 (or any two elements \(i\) and \(j\) by symmetry) appear in the same cycle of the product \(uv\). Miklós Bóna conjectured (private communication) that \(\pi_n = 1/2\) if \(n\) is odd, and asked about the value when \(n\) is even. For the reason behind this conjecture, see Bóna and Flynn [4]. In this section we solve this problem. Let us note that it is easy to see (a straightforward generalization of [3, Prop. 6.18]) that the probability that \(1, 2, \ldots, k\) appear in the same cycle of a random permutation in \(\mathfrak{S}_n\) is \(1/k\) for \(k \leq n\).

Theorem 2.1. For \(n \geq 2\) we have

\[
\pi_n = \begin{cases}
\frac{1}{2}, & n \text{ odd} \\
\frac{1}{2} - \frac{2}{(n-1)(n+2)}, & n \text{ even}.
\end{cases}
\]

2
Proof. First note that if \(w \in \mathfrak{S}_n \) has cycle type \(\lambda \), then the probability that 1 and 2 are in the same cycle of \(w \) is

\[
q_\lambda = \frac{\sum \binom{\lambda_i}{2}}{\binom{n}{2}} = \frac{\sum \lambda_i(\lambda_i - 1)}{n(n-1)}.
\]

Let \(a_\lambda \) be the number of pairs \((u, v)\) of \(n \)-cycles in \(\mathfrak{S}_n \) for which \(uv \) has type \(\lambda \). Then

\[
\pi_n = \frac{1}{(n-1)!^2} \sum_{\lambda \vdash n} a_\lambda q_\lambda.
\]

By Boccara [2] the number of ways to write a fixed permutation \(w \in \mathfrak{S}_n \) of type \(\lambda \) as a product of two \(n \)-cycles is

\[
(n-1)! \int_0^1 \prod_i (x^{\lambda_i} - (x-1)^{\lambda_i}) \, dx.
\]

Let \(n!/z_\lambda \) denote the number of permutations \(w \in \mathfrak{S}_n \) of type \(\lambda \). We get

\[
\pi_n = \frac{1}{(n-1)!^2} \sum_{\lambda \vdash n} \frac{n!}{z_\lambda} \left(\sum_i \frac{\lambda_i(\lambda_i - 1)}{n(n-1)} \right) \cdot (n-1)! \int_0^1 \prod_i (x^{\lambda_i} - (x-1)^{\lambda_i}) \, dx
\]

\[
= \frac{1}{n-1} \sum_{\lambda \vdash n} z_\lambda^{-1} \left(\sum_i \lambda_i(\lambda_i - 1) \right) \int_0^1 \prod_i (x^{\lambda_i} - (x-1)^{\lambda_i}) \, dx.
\]

Now let \(p_\lambda(a, b) \) denote the power sum symmetric function \(p_\lambda \) in the two variables \(a, b \), and let \(\ell(\lambda) \) denote the length (number of parts) of \(\lambda \). It is easy to check that

\[
2^{-\ell(\lambda)+1} \left(\frac{\partial^2}{\partial a^2} - \frac{\partial^2}{\partial a \partial b} \right) p_\lambda(a, b)|_{a=b=1} = \sum \lambda_i(\lambda_i - 1).
\]

By the exponential formula (permutation version) [12, Cor. 5.1.9] or by [12, Prop. 7.7.4],

\[
\sum_{n \geq 0} \sum_{\lambda \vdash n} z_\lambda^{-1} 2^{-\ell(\lambda)} p_\lambda(a, b) \left(\prod_i (x^{\lambda_i} - (x-1)^{\lambda_i}) \right) t^n
\]
\[= \exp \sum_{k \geq 1} \frac{1}{k} \left(\frac{a^k + b^k}{2} \right) (x^k - (x - 1)^k)t^k. \]

It follows that \((n - 1)\pi_n\) is the coefficient of \(t^n\) in

\[F(t) := \]

\[2 \int_0^1 \left(\frac{\partial^2}{\partial a^2} - \frac{\partial^2}{\partial ab} \right) \exp \left[\sum_{k \geq 1} \frac{1}{k} \left(\frac{a^k + b^k}{2} \right) (x^k - (x - 1)^k)t^k \right] \bigg|_{a=b=1} \]

We can easily perform this computation with Maple, giving

\[F(t) = \int_0^1 \frac{t^2(1 - 2x - 2tx + 2tx^2)}{(1 - t(x - 1))(1 - tx)^3} \, dx \]

\[= \frac{1}{t^2} \log(1 - t^2) + \frac{3}{2} + \frac{-\frac{1}{2} + t}{(1 - t)^2}. \]

Extract the coefficient of \(t^n\) and divide by \(n - 1\) to obtain \(\pi_n\) as claimed. \(\square\)

It is clear that the argument used to prove Theorem 2 can be generalized. For instance, using the fact that

\[3^{-\ell(\gamma)+1} \left(\frac{\partial^3}{\partial a^3} - 3 \frac{\partial^3}{\partial a^2 \partial b} + 2 \frac{\partial^3}{\partial a \partial b \partial c} \right) p_\lambda(a, b, c) \bigg|_{a=b=c=1} \]

\[= \sum \lambda_i(\lambda_i - 1)(\lambda_i - 2), \]

we can obtain the following result.

Theorem 2.2. Let \(\pi_n^{(3)}\) denote the probability that if two \(n\)-cycles \(u, v\) are chosen uniformly at random in \(S_n\), then 1, 2, and 3 appear in the same cycle of the product \(uv\). Then for \(n \geq 3\) we have

\[\pi_n^{(3)} = \begin{cases} \frac{1}{3} + \frac{1}{(n-2)(n+3)}, & n \text{ odd} \\ \frac{1}{3} - \frac{3}{(n-1)(n+2)}, & n \text{ even}. \end{cases} \]

Are there simpler proofs of Theorems 2.1 and 2.2, especially Theorem 2.1 when \(n\) is odd?
3 A polynomial with purely imaginary zeros

Given \(\lambda \vdash n \), let \(P_\lambda(q) \) be defined by equation (1). Let \((a)_n \) denote the falling factorial \(a(a-1) \cdots (a-n+1) \). Let \(E \) be the backward shift operator on polynomials in \(q \), i.e., \(Ef(q) = f(q-1) \).

Theorem 3.1. Suppose that \(\lambda \) has length \(\ell \). Define the polynomial

\[
g_\lambda(t) = \frac{1}{1-t} \prod_{j=1}^{\ell} (1-t^{\lambda_j}).
\]

Then

\[
P_\lambda(q) = z_\lambda^{-1} g_\lambda(E)(q + n - 1)_n.
\]

Proof. Let \(x = (x_1, x_2, \ldots) \), \(y = (y_1, y_2, \ldots) \), and \(z = (z_1, z_2, \ldots) \) be three disjoint sets of variables. Let \(H_\mu \) denote the product of the hook lengths of the partition \(\mu \) (defined e.g. in [12, p. 373]). Write \(s_\lambda \) and \(p_\lambda \) for the Schur function and power sum symmetric function indexed by \(\lambda \). The following identity is the case \(k = 3 \) of [5, Prop. 2.2] and [12, Exer. 7.70]:

\[
\sum_{\mu \vdash n} H_\mu s_\mu(x)s_\mu(y)s_\mu(z) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} p_{\rho(w)}(x)p_{\rho(w)}(y)p_{\rho(w)}(z).
\]

For a symmetric function \(f(x) \) let \(f(1^q) = f(1,1,\ldots,1,0,0,\ldots) \) \((q \text{ 1's})\). Thus \(p_{\rho(w)}(1^q) = q^{\kappa(w)} \). Let \(\chi^\lambda(\mu) \) denote the irreducible character of \(\mathfrak{S}_n \) indexed by \(\lambda \) evaluated at a permutation of cycle type \(\mu \) [12, §7.18]. Recall [12, Cor. 7.17.5 and Thm. 7.18.5] that

\[
s_\mu = \sum_{\nu \vdash n} z_{\nu}^{-1} \chi^\mu(\nu)p_\nu,
\]

where \(\#K_\nu = n!/z_{\nu} \) as above. Take the coefficient of \(p_n(x)p_\lambda(y) \) in equation (3) and set \(z = 1^q \). Since there are \((n-1)! \) \(n \)-cycles \(u \), the right-hand side becomes \(\frac{1}{n} P_\lambda(q) \). Hence

\[
P_\lambda(q) = n \sum_{\mu \vdash n} H_\mu z_{\nu}^{-1} \chi^\mu(n) z_{\nu}^{-1} \chi^\mu(\lambda)s_\mu(1^q).
\]
have
\[\chi^\mu(n) = \begin{cases}
(-1)^i, & \text{if } \mu = \sigma(i), \ 0 \leq i \leq n-1 \\
0, & \text{otherwise.}
\end{cases} \]

Moreover, \(s_{\sigma(i)}(1^q) = (q + n - i - 1)_n H_{\sigma(i)}^{-1} \) by the hook-content formula \cite[Cor. 7.21.4]{12}. Therefore we get from equation (4) that
\[P_\lambda(q) = z_\lambda^{-1} \sum_{i=0}^{n-1} (-1)^i \chi^{\sigma(i)}(\lambda)(q + n - i - 1)_n. \tag{5} \]

The following identity is a simple consequence of Pieri’s rule \cite[Thm. 7.15.7]{12} and appears in \cite[I.3, Ex. 14]{7}:
\[\prod_i \frac{1 + tx_i}{1 - ux_i} = 1 + (t + u) \sum_{i=0}^{n-1} s_{\sigma(i)} t^i u^{n-i-1}. \]

Substitute \(-t\) for \(t\), set \(u = 1\) and take the scalar product with \(p_\lambda\). Since \(\langle s_\mu, p_\lambda \rangle = \chi^\mu(\lambda)\) the right-hand side becomes \((1-t) \sum_{i=0}^{n-1} (-1)^i \chi^{\sigma(i)}(\lambda)t^i\). On the other hand, the left-hand side is given by
\[\left\langle \exp \left(\sum_{n \geq 1} \frac{p_n}{n} \right) \cdot \exp \left(- \sum_{n \geq 1} \frac{p_n t^n}{n} \right), p_\lambda \right\rangle = \left\langle \exp \left(\sum_{n \geq 1} \frac{p_n (1 - t^n)}{n} \right), p_\lambda \right\rangle = \prod_{i=1}^\ell (1 - t^\lambda), \]
by standard properties of power sum symmetric functions \cite[§7.7]{12}. Hence
\[\sum_{i=0}^{n-1} (-1)^i \chi^{\sigma(i)}(\lambda)t^i = g_\lambda(t). \]

Comparing with equation (5) completes the proof. \(\square \)

Note.

1. Since \((1 - E)(q + n)_{n+1} = (n + 1)(q + n - 1)_n\), equation (2) can be rewritten as
\[P_\lambda(q) = \frac{1}{(n+1)z_\lambda} g'_\lambda(E)(q + n)_{n+1}, \tag{6} \]
where \(g'_\lambda(t) = \prod_{j=1}^\ell (1 - t^\lambda_j). \)
2. A different kind of generating function for the coefficients of \(P_\lambda(q) \) (though of course equivalent to Theorem 3.1) was obtained by D. Zagier [13, Thm. 1].

The zeros of the polynomial \(P_\lambda(q) \) have an interesting property that will follow from the following result.

Theorem 3.2. Let \(g(t) \) be a complex polynomial of degree exactly \(d \), such that every zero of \(g(t) \) lies on the circle \(|z| = 1 \). Suppose that the multiplicity of 1 as a root of \(g(t) \) is \(m \geq 0 \). Let \(P(q) = g(E)(q + n - 1)_n \).

(a) If \(d \leq n - 1 \), then

\[
P(q) = (q + n - d - 1)_{n-d} Q(q),
\]

where \(Q(q) \) is a polynomial of degree \(d - m \) for which every zero has real part \((d - n + 1)/2 \).

(b) If \(d \geq n - 1 \), then \(P(q) \) is a polynomial of degree \(n - m \) for which every zero has real part \((d - n + 1)/2 \).

Proof. First, the statements about the degrees of \(Q(q) \) and \(P(q) \) are clear; for we can write \(g(t) = c \prod_k (t - u) \) and apply the factors \(t - u \) consecutively. If \(h(q) \) is any polynomial and \(u \neq 1 \) then \(\deg (E - u)h(q) = \deg h(q) \), while \(\deg (E - 1)h(q) = \deg h(q) - 1 \).

The remainder of the proof is by induction on \(d \). The base case \(d = 0 \) is clear. Assume the statement for \(d < n - 1 \). Thus for \(\deg g(t) = d \) we have

\[
g(E)(q + n - 1)_n = (q + n - d - 1)_{n-d} Q(q)
\]

\[
= (q + n - d - 1)_{n-d} \prod_j \left(q - \frac{d - n + 1}{2} - \delta_j i \right)
\]

for certain real numbers \(\delta_j \). Now

\[
(E - u)g(E)(q + n - 1)_n
\]

\[
= (q + n - d - 1)_{n-d} Q(q) - u(q + n - d - 2)_{n-d} Q(q - 1)
\]

\[
= (q + n - d - 2)_{n-d-1} [(q + n - d - 1)Q(q) - u(q - 1) Q(q - 1)]
\]

\[
= (q + n - d - 2)_{n-d-1} Q'(q).
\]
say. The proof now follows from a standard argument (e.g., [8, Lemma 9.13]), which we give for the sake of completeness. Let \(Q'(\alpha + \beta i) = 0 \), where \(\alpha, \beta \in \mathbb{R} \). Thus

\[
(\alpha + \beta i + n - d - 1) \prod_{j} \left(\alpha + \beta i - \frac{d - n + 1}{2} - \delta_j i \right)
\]

\[
= u(\alpha + \beta i - 1) \prod_{j} \left(\alpha - 1 + \beta i - \frac{d - n + 1}{2} - \delta_j i \right).
\]

Letting \(|u| = 1\) and taking the square modulus gives

\[
\frac{(\alpha + n - d - 1)^2 + \beta^2}{(\alpha - 1)^2 + \beta^2} \prod_{j} \frac{(\alpha - \frac{d - n + 1}{2})^2 + (\beta - \delta_j)^2}{(\alpha - 1 - \frac{d - n + 1}{2})^2 + (\beta - \delta_j)^2} = 1.
\]

If \(\alpha < (d - n + 2)/2 \) then

\[
(\alpha + n - d - 1)^2 - (\alpha - 1)^2 < 0
\]

and

\[
\left(\alpha - \frac{d - n + 1}{2} \right)^2 < \left(\alpha - 1 - \frac{d - n + 1}{2} \right)^2.
\]

The inequalities are reversed if \(\alpha > (d - n + 2)/2 \). Hence \(\alpha = (d - n + 2)/2 \), so the theorem is true for \(d \leq n - 1 \).

For \(d \geq n - 1 \) we continue the induction, the base case now being \(d = n - 1 \) which was proved above. The induction step is completely analogous to the case \(d \leq n - 1 \) above, so the proof is complete. \(\square \)

Corollary 3.3. The polynomial \(P_\lambda(q) \) has degree \(n - \ell(\lambda) + 1 \), and every zero of \(P_\lambda(q) \) has real part 0.

Proof. The proof is immediate from Theorem 3.1 and the special case \(g(t) = g_\lambda(t) \) (as defined in Theorem 3.1) and \(d = n - 1 \) of Theorem 3.2. \(\square \)

It is easy to see from Corollary 3.3 (or from considerations of parity) that \(P_\lambda(q) = (-1)^n P_\lambda(-q) \). Thus we can write

\[
P_\lambda(q) = \begin{cases}
R_\lambda(q^2), & n \text{ even} \\
qR_\lambda(q^2), & n \text{ odd}
\end{cases}
\]

8
for some polynomial $R_\lambda(q)$. It follows from Corollary 3.3 that $R_\lambda(q)$ has (nonpositive) real zeros. In particular (e.g., [11, Thm. 2]) the coefficients of $R_\lambda(q)$ are log-concave with no external zeros, and hence unimodal.

The case $\lambda = (n)$ is especially interesting. Write $P_n(q)$ for $P_{(n)}(q)$. From equation (6) we have

$$P_n(q) = \frac{1}{n(n+1)}((q + n)_{n+1} - (q)_{n+1}).$$

Now

$$(q)_{n+1} = (-1)^{n+1} (-q + n)_{n+1}$$

and

$$(q + n)_{n+1} = \sum_{k=1}^{n+1} c(n + 1, k)q^k,$$

where $c(n + 1, k)$ is the signless Stirling number of the first kind (the number of permutations $w \in S_{n+1}$ with k cycles) [10, Prop. 1.3.4]. Hence

$$\frac{1}{n(n+1)}((q + n)_{n+1} - (q)_{n+1}) = \frac{1}{\binom{n+1}{2}} \sum_{k \equiv n \pmod{2}} c(n + 1, k)x^k.$$

We therefore get the following result, first obtained by Zagier [13, Application 3].

Corollary 3.4. The number of n-cycles $w \in S_n$ for which $w \cdot (1, 2, \ldots, n)$ has exactly k cycles is 0 if $n - k$ is odd, and is otherwise equal to $c(n+1, k)/\binom{n+1}{2}$.

Is there a simple bijective proof of Corollary 3.4?

Let $\lambda, \mu \vdash n$. A natural generalization of $P_\lambda(q)$ is the polynomial

$$P_{\lambda, \mu}(q) = \sum_{\rho(w) = \lambda} q^{e(w, \rho(w))},$$

where w_μ is a fixed permutation in the conjugacy class K_μ. Let us point out that it is false in general that every zero of $P_{\lambda, \mu}(q)$ has real part 0. For instance,

$$P_{332,332}(q) = q^8 + 35q^6 + 424q^4 + 660q^2,$$

four of whose zeros are approximately $\pm 1.11366 \pm 4.2292i$.

9
References

