Constructing ensembles for intrinsically disordered proteins

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1016/j.sbi.2011.04.001

Publisher
Elsevier

Version
Author's final manuscript

Accessed

Citable Link
http://hdl.handle.net/1721.1/99137

Terms of Use
Creative Commons Attribution-Noncommercial-NoDerivatives

Detailed Terms
http://creativecommons.org/licenses/by-nc-nd/4.0/
Constructing Ensembles for Intrinsically Disordered Proteins

Charles K. Fishera and Collin M. Stultza,b,*

a Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02139-4307, United States of America

b Harvard-MIT Division of Health Sciences and Technology, Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, United States of America

Abstract

The relatively flat energy landscapes associated with intrinsically disordered proteins makes modeling these systems especially problematic. A comprehensive model for these proteins requires one to build an ensemble consisting of a finite collection of structures, and their corresponding relative stabilities, which adequately capture the range of accessible states of the protein. In this regard, methods that use computational techniques to interpret experimental data in terms of such ensembles are an essential part of the modeling process. In this review, we critically assess the advantages and limitations of current techniques and discuss new methods for the validation of these ensembles.

Introduction

Thermal fluctuations cause proteins to sample a variety of conformations during their biological lifetime, where the probability of each conformation is determined by the topography of the underlying energy landscape. Folded proteins exhibit energy landscapes that have a well-defined global energy minimum (Fig. 1A). By contrast, intrinsically disordered proteins (IDPs) correspond to a class of polypeptides with relatively flat energy landscapes (Fig. 1B) and consequently, these proteins sample a relatively large and diverse set of conformations at room temperature [1–2]. A great deal of interest in understanding the structure of IDPs has emerged due to their proposed role in neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases [3–11]. Therefore, a detailed characterization of these systems could pave the way to the development of new therapeutics through structure based drug design [12–13].

The earliest attempts at modeling disordered protein states were aimed at describing folded proteins under denaturing conditions[14–17]. Denatured proteins and IDPs share the characteristic that experimental observables correspond to averages over a diverse ensemble of conformations. Therefore, the typical approach to constructing an ensemble for both...
folded proteins under denaturing conditions and IDPs is to generate a set of conformations
that have ensemble averages that agree with experimental values. When formulated in this
way, the approach is straightforward; i.e., generate a diverse set of conformations and then
find a subset of structures and their relative stabilities (or weights) that agree with
experiment. In other cases, the ensemble is constructed using purely theoretical methods and
the predicted data are compared to experiment[18–19]. While important insights have been
obtained using this latter approach, using experimental data to guide the construction of the
ensemble helps to limit the space of possible solutions.

In practice, constructing an ensemble from experimental data is quite a challenging task
because the amount of data that are typically available pales in comparison to the number of
parameters needed to uniquely define the ensemble. In other words, there are typically many
different ensembles that agree with any given set of experimental data. Hence the
optimization problem described above leads to degenerate solutions. In light of this, how
does one reliably infer a set of conformations and weights that capture the essential features
of the energy landscape, from the available experimental data? In this article, we review
recent advances in this area and provide discussion regarding the advantages and limitations
of various techniques.

Sources of experimental data

To date, most of the experimental measurements that have been used to guide the
construction of unfolded ensembles correspond to observables obtained via NMR
spectroscopy. Examples of such measurements include chemical shifts, which provide
information about local conformational preferences [20–22**], scalar couplings, which
report on backbone dihedral angles, [23*], Residual Dipolar Couplings (RDCs), which
report on the angle of a bond relative to an external frame of reference, [8,22***,24*–28] and
Paramagnetic Relaxation Enhancement (PRE) effects, which provide long-range distance
restraints [7,29**]. These data can be combined with radius of gyration (\(R_g\)) estimates or
scattering profiles from Small Angle X-Ray Scattering (SAXS) [9,30–32]. FRET studies
have also provided additional experimental data that can further limit the available space of
solutions [33–35]. In most cases, the measured quantities correspond to ensemble averages
over a vast set of distinct conformations that interconvert on a fairly rapid timescale.
Therefore to ensure that the calculated ensemble agrees with experiment, one must compute
the corresponding observable from the ensemble and compare these data to the
corresponding experimental measurements.

A number of programs, such as SHIFTX [36], SPARTA [37], CamShift [38] and SHIFTS
[39] among others, can be used to estimate chemical shifts from the atomic coordinates of a
protein structure. PALES [40] is typically used to estimate the RDCs, although other
methods based on the radius of gyration tensor or the shape of the molecular surface are also
available [41–43]. It is important to keep in mind that the prediction of experimental
observables from a structure may not be entirely accurate [36,42]. For example, calculated
RDCs are often rescaled to better fit the data to account for uncertainty in the concentration
of the alignment medium [8]. It is also possible that experimental conditions, such as the
introduction of an alignment medium for measuring RDCs [44] or introducing a spin label to
the protein to measure PREs, could perturb the underlying ensemble.

Validation of Ensemble Building Methods

Before discussing specific algorithms used for constructing ensembles it is useful to
introduce a technique, which we will refer to as the reference ensemble method, which has
become a standard tool for evaluating the performance of these methods [22**,45*–47]. The
reference ensemble method is illustrated in Fig. 2. A reference ensemble is a pre-defined

Curr Opin Struct Biol. Author manuscript; available in PMC 2012 June 1.
“truth,” i.e. a pre-specified set of conformations and their statistical weights that can be used to calculate synthetic experimental data. The synthetic experimental data, therefore, correspond to measurements that would arise if the protein in question had the conformational distribution of the reference ensemble.

Within this formalism the marker of success is clear. That is, can the ensemble building algorithm being evaluated reproduce the reference ensemble using only the synthetic experimental data? More precisely, the synthetic experimental data is fed into the ensemble building algorithm, which produces an “output” ensemble. Comparison of the reference and output ensembles allows one to assess the performance of the algorithm (Fig. 2). This method is powerful because it allows one to control the sources of uncertainty in the problem; one can use the reference ensemble method to analyze the effects of experimental error or even systematic error in the prediction algorithms on the resulting ensemble, or these sources of uncertainty can be eliminated completely to examine the performance of the algorithm under ideal circumstances.

Ensemble-restrained MD simulations

Restrained MD simulations introduce a term into the potential function that biases the simulation towards regions of conformational space that agree with experimental observations. For an IDP, the restraints should be applied to an entire ensemble rather than an individual structure [45*]. This is accomplished by simulating multiple replicas of the protein in parallel and calculating the biasing potential based on averages taken over all of the replicas [45*,48]. Ganguly and Chen [29**] used the reference ensemble method to examine the performance of ensemble-restrained MD using only PRE derived distance restraints. The study found that the method performed poorly unless a very large number of distance restraints were used - more than 4 PRE distance restraints per residue per replica. They suggested that ensembles with a large number of replicas may be under-restrained because only a small number of conformations in the ensemble need to satisfy the restraint due to the r^{-6} weighting of the PRE effect. Subsequently, Allison et al. [45*] applied ensemble-restrained MD using approximately 2 PRE derived distance restraints per residue per replica in combination with the R_g to model the ensemble of α-synuclein. The R_g provides independent information to the PRE distances, and therefore helps to mitigate the problem encountered by Ganguly and Chen. In addition, the studies were performed on different proteins and used slightly different methods for implementing the distance restraints. Allison et al. first used the reference ensemble method to show that the number and type of restraints used in the study was adequate for accurately constructing ensembles and also cross-validated their ensemble using predictions of other types of experimental data that were not incorporated in the modeling procedure.

These studies highlight both the strengths and disadvantages of the method. When a relatively large number of constraints are known, it is possible to obtain an accurate representation of the ensemble. Nevertheless, it is difficult to know exactly how many restraints are sufficient to accurately model the protein. Also, it is likely that not all types of experimental data are created equal in that some types of data may be more informative than others. For example, while data obtained from PRE experiments are useful for estimating average inter-residue distances in an ensemble, it is important to note that in order to obtain these data one must introduce a paramagnetic probe into the protein. Furthermore, it is not clear whether such modifications alter the conformational distribution of the protein [49]. Therefore, it is likely that both the number of experimental constraints and the types of experimental data used are important factors that determine whether the method will find an accurate ensemble. While ensemble restrained MD simulations constitutes a useful and important tool in our arsenal for modeling IDPs, additional studies are needed to more fully...
define the limitations of the method and under what circumstances it is expected to yield accurate results.

Ensemble construction using a pre-defined conformational library

Another method for constructing ensembles for IDPs is to first generate a library of conformations and then to select a subset of conformations from this library such that averages calculated from this subset agree with the experimental data. The initial conformational library may be generated with MD, perhaps using techniques to enhance conformational sampling (see [50] for a review) like replica exchange [51], accelerated MD [46] or quenched MD [21], by piecing together small peptide fragments that have been constructed using MD simulations [22**], or with statistical coil models such as Flexible-Meccano [24*,47] or TraDES [23*,52–53]. The statistical coil models usually involve a simplified potential function taking into account backbone dihedral angle distributions and some type of excluded volume interactions.

Once the conformational library has been constructed, a smaller sample of conformations is selected to minimize the difference between the predicted and experimental data. The selection process typically involves some form of Monte Carlo, e.g. ENSEMBLE [17,52–54] or Sample and Select (SAS) [34*,55–56], or evolutionary algorithm, e.g. ASTEROIDS [20,24*,47], that performs a stochastic search for a set of conformations that give calculated values that agree with the experimental measurements. The conformations in the ensembles generated using ASTEROIDS, ENSEMBLE (in its most recent applications) and SAS are equally weighted, so that the statistical properties of the conformational distribution are represented implicitly by the composition of the final set of conformations rather than by explicit statistical weights for each conformation. Salmon et al. [47] and Mittag et al. [52] recently used the ASTEROIDS and ENSEMBLE methods, respectively, to identify transient long-ranged contacts in two IDPs.

A related approach to the selection of a sample of structures from a conformational library is to explicitly estimate the statistical weight of each conformation in the library. In fact, the selection of conformations from a library is really just a particular way of specifying weights over the entire structural library, where a conformation is assigned a weight of 0 if it is not included in the ensemble and a weight of 1/n if it is included in the ensemble (where n is the number of chosen structures). Hence at its core, selecting a subset of structures from a larger structural library is a subset of the more general problem of specifying a set of weights for a given set of structures. In the Energy-minima Mapping and Weighting (EMW) algorithm, both the sample of conformations and their statistical weights are optimized simultaneously using a simulated annealing protocol [21,57]. In this instance the weight of any given structure can vary from 0 to 1, and in general the set of structural weights spans a wide range of possibilities. Application of EMW to the second microtubule binding repeat of tau protein as well as an aggregation-prone mutant suggested that the mutation lead to aggregation-initiating regions of tau protein to adopt more extended states, thereby promoting the formation of aggregates rich in extended secondary structure [21].

Degeneracy and model construction

Degeneracy of the ensembles with respect to the experimental measurements is one problem that plagues the construction of IDP ensembles. At its core, the problem of degeneracy arises because in practice the number of experimental constraints is small relative to the number of degrees of freedom that are needed to uniquely specify the ensemble. Fisher, Huang and Stultz [22**] used the reference ensemble method to show that one can often find many sets of statistical weights (for a pre-specified set of conformations) that will agree with a given dataset within experimental uncertainty, but are all very different from the
“true” weights. Furthermore, it was shown that not all reference ensembles are created equal, some are easy to reconstruct while others are very hard, and that uncertainty in the predicted values of the experimental observables for each structure can have a detrimental effect on algorithm performance. The take home message is that agreement with experimental data alone does not guarantee that an ensemble is accurate. While this is known to be a significant problem, few methods have attempted to explicitly deal with the degeneracy issue. In prior work, Huang and Stultz [21] and Marsh and Forman-Kay [54] utilized similar approaches to mitigate the problem of degenerate ensembles by constructing multiple ensembles and making inferences based on characteristics they had in common. The idea is that although one cannot be sure that the final ensemble is accurate, if one generates many different ensembles and identifies structural features that are recur in the different ensembles, it is likely that inferences made on the preserved structural elements are accurate. The drawback here is that what defines a preserved structural feature is somewhat subjective. Moreover, it is not clear how many ensembles one needs to analyze to have confidence that the identified preserved structural features are not present because of chance alone.

An alternate approach is to calculate quantitative estimates of our uncertainty of a constructed ensemble, given a pre-specified set of experimental measurements. Bayesian inference provides a statistical framework for quantifying this uncertainty and for propagating it to parameters estimated from the ensemble in the form of confidence intervals [22**,30,58]. A recently described Bayesian Weighting (BW) algorithm [22**] uses a Bayesian framework for estimating the weights of a pre-defined set of conformations. In fact, the BW algorithm computes a probability distribution over all possible ways of weighting the conformations in the library. The global uncertainty of the statistical weights can be calculated from this probability distribution in terms of a posterior divergence or uncertainty parameter – a metric which is akin to the standard deviation of a Gaussian distribution. The posterior divergence ranges from 0 to 1, corresponding to a high and low confidence in the estimated population weights, respectively. An empirical study using reference ensembles suggested that when the uncertainty parameter is 0, one can be confident that the ensemble is accurate, assuming that the pre-specified set of structures is diverse enough to capture a wide range of energetically favorable conformations. Nonetheless, when the uncertainty parameter is non-zero we can still express calculated values from the ensemble with rigorous confidence intervals. The BW algorithm was applied to the K18 construct of Tau protein to construct confidence intervals examining the presence of long-ranged contacts [22**]. It was found that mutations known to affect the K18 aggregation propensity preferentially occur near regions that were identified to be involved in long-ranged contacts with high confidence.

Conclusions and future directions

Any comprehensive description of an IDP necessitates the construction of an ensemble – a finite collection of conformations and weights – that capture the essence of the conformational distribution of the protein. A variety of different approaches have been developed for constructing ensembles for IDPs, each of which has its own advantages and limitations. In the past few years, a number of advances have been made in our ability to model the conformational ensembles of IDPs. Many of these advances, including the use of reference ensembles, cross validation and Bayesian statistics, have focused on developing methods for assessing the validity of structural models.

There remain plenty of open methodological and conceptual problems in the computational modeling of IDP ensembles. Because each of the techniques discussed above is based on a specific set of assumptions (e.g. that the experimental conditions do not perturb the
ensemble) it is crucial to continue to develop methods for validating ensembles and for estimating their associated uncertainty. As more IDP ensembles are constructed, it will also become important to develop methods for comparing different ensembles [59] or generating consensus estimates from multiple ensembles.

We learn a great deal more about the IDP structural universe with each model of an IDP conformational ensemble that is constructed. In the last few years alone, we have learned that IDPs are not well described as pure random coils [23*], that some IDP ensembles may contain long-ranged contacts [7,22**,47] and that these contacts may be associated with important functional properties [22**]. Due, in part, to progress in computational modeling our understanding of IDPs is growing at an increasingly fast rate and we look forward to the surprising results that are yet to be discovered. Progress in the field would be greatly enhanced if all new ensemble generation algorithms and experimental data on IDPs (e.g., chemical shift values, RDCs, etc), were deposited in publically accessible repositories like the BioMagResBank [60] or the Database of Protein Disorder [61].

References

45. Allison JR, Varnai P, Dobson CM, Vendruscolo M. Determination of the free energy landscape of alpha-synuclein using spin label nuclear magnetic resonance measurements. J Am Chem Soc. 2009; 131:18314–18326. [PubMed: 20028147] The authors use the reference ensemble method to show that ensemble-restrained MD simulations with a large number of PRE restraints combined with the radius of gyration can provide an accurate model of an ensemble. An ensemble for the IDP α-synuclein is constructed and analyzed using a variety of tools developed by the authors.
Figure 1.
The energy landscape of a folded protein (A) exhibits a well-defined minimum energy state corresponding to the folded conformation. In comparison, the energy landscape of an IDP (B) lacks a deep energy minimum.
Figure 2.
A schematic representation of the Reference Ensemble Method for validating ensemble construction algorithms.