18.03 Recitation Problems 14
March 30, 2004
Laplace Transform; Poles

Laplace transform:

\[f(t) \mapsto F(s) = \int_0^\infty f(t)e^{-st} \, dt. \]

s-shift law: \(e^{at}f(t) \mapsto F(s-a). \)

\[
1 \mapsto \frac{1}{s}, \quad e^{at} \mapsto \frac{1}{s-a}, \quad \cos(\omega t) \mapsto \frac{s}{s^2 + \omega^2}, \quad \sin(\omega t) \mapsto \frac{\omega}{s^2 + \omega^2}.
\]

A “pole” of a complex function \(F(s) \) is a complex number \(z \) at which the function value becomes infinite.

1. Sketch a graph of the “window” or “bump” function \(f(t) = u(t-a) - u(t-b), \) \(0 \leq a < b, \) and compute its Laplace transform \(F(s) \) using the integral definition.

2. Using fact that the Laplace transform is linear to deduce from 1. what the Laplace transform of \(g(t) = (1/b)(u(t) - u(t-b)) \) is. The “limit” of these functions \(g(t) \) as \(b \to 0 \) is the delta function. What is the limit of their Laplace transforms? (Hint: use l’Hôpital’s rule, or, better, the definition of the derivative.)

3. Using the fact that \(e^{wt} \mapsto 1/(s-w) \) for any complex number \(w, \) together with the expressions

\[
\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i},
\]

to compute the Laplace transforms of \(e^{at}\cos(\omega t) \) and \(e^{at}\sin(\omega t). \)

Where are the poles of these functions of \(s? \)

Sketch a graph of \(e^{-t}\cos(t) \) and of the pole diagram of its Laplace transform. Do the same for \(e^{-t}\sin(t) \) and \(e^t\sin(2t). \)