8.251 Homework 2

B. Zwiebach

Problem 1. (15 points) More on Lorentz transformations.
Show that the set of four objects $\frac{\partial}{\partial \xi^\mu}$ transform under Lorentz transformations in the same way as any four objects p_μ defining a four-vector with lower indices do (it suffices to verify this for boosts). Thus, partial derivatives with respect to conventional upper-index coordinates x^μ behave as a four-vector with lower indices – as reflected by writing it as ∂_μ.

Problem 2. (20 points) Maxwell equations in four dimensions.
(a) We said in class that the vanishing of the object $T_{\mu\lambda\nu}$

$$T_{\mu\lambda\nu} \equiv \partial_\mu F_{\lambda\nu} + \partial_\lambda F_{\nu\mu} + \partial_\nu F_{\mu\lambda} = 0,$$

encodes two of the Maxwell equations. Show that $T_{\mu\lambda\nu}$ is totally antisymmetric. How many independent equations do we get by setting this object to zero? Show explicitly that the two source-free Maxwell equations emerge precisely.

(b) We said in class that

$$\frac{\partial F^{\mu\nu}}{\partial x^\nu} = \frac{4\pi}{c} j^\mu,$$

encodes the other Maxwell equations. Show this explicitly.

Problem 3. (20 points) E&M in three dimensions.
(a) Consider both the standard Maxwell equations and the force law in four dimensions and find the reduced equations in three dimensions (t, x, y) by assuming that there cannot be forces in the z direction, and that no field can depend on the z-direction.

(b) Repeat the analysis of three-dimensional E&M by starting with the covariant equations beginning with $A^\mu = (\Phi, A^1, A^2)$ and examining $F_{\mu\nu}$, the Maxwell equations (shown in the problem above) and the equation of motion, as discussed in the previous homework, problem 4.

Problem 4. (30 points) Gravitational field of a point mass in compactified five dimensional world.
Consider five dimensional space-time with space coordinates (x, y, z, w) not yet compactified and consider a point mass of mass M located at the origin $(x, y, z, w) = (0, 0, 0, 0)$.

(a) Find the gravitational potential $V(r)$ due to this point mass. Here $r = (x^2 + y^2 + z^2 + w^2)^{1/2}$, and your answer should be in terms of $G^{(5)}$. You may use the equation $\nabla^2 V = 4\pi G^{(5)} \rho_M$, and the divergence theorem. Get your constants right – for this you will need to find out the volume of the three sphere.

Now let w become a circle with radius a keeping the same mass at the same point.

(b) Write an exact expression for the gravitational potential $V(x, y, z, 0)$. This potential is in fact a function of $R \equiv (x^2 + y^2 + z^2)^{1/2}$, and can be written as an infinite sum.

(c) Show that for $R \gg a$ the above gravitational potential takes the form of a four-dimensional gravitational potential, with Newton’s constant $G^{(4)}$ given in terms of $G^{(5)}$ as calculated in class. [Hint: turn the infinite sum into an integral].

These results confirm both the relation between the four and five dimensional Newton constants for a compactification, and the emergence of a four-dimensional potential at distances large compared to the compactification size.