Rhetorical Structure Theory

Regina Barzilay
EECS Department
MIT

November 2, 2004
Domain-Dependent Content Models

- Capture topics and their distribution
- Are based on pattern matching techniques
 - Motifs of semantic units
 - Distributional model
- Useful in generation and summarization
Domain-Dependent Rhetorical Model

Domain: Scientific Articles

- Humans exhibit high agreement on the annotation scheme
- The scheme covers only a small fraction of discourse relations
Domain-Independent Rhetorical Model

• Model elements:
 – Binary Relations
 – Compositionality Principle

• Requirements:
 – Stability and Reproducibility of an Annotation Scheme
 – Expressive Power of a Model
Informational Structure

- How many different coherence relations are there?
- Are different taxonomies of coherence relations compatible with each other?
- Some real-time evidence for validity of some coherence relations: pronoun experiments (difference cause-effect/resemblance)
Coherence Relations: Historic Perspective

Aristotle Boccaccio Hume
(4th cent. BC) (14th cent.) (18th cent.)
Example of Coherence Relation (1)

Causal relations: Cause-Effect

John is dishonest because he is a politician
Example of Coherence Relation (2)

Causal relations: Violated-Expectations

John is honest although he is a politician.

\[\sim \]

John is dishonest
Example of Coherence Relation (3)

Causal relations: Condition

If someone is a politician → he is dishonest
Example of Coherence Relation (4)

Resemblance relations: Parallel

John organized rallies for Gore,
and Fred distributed pamphlets for him
Resemblance relations: Contrast

John supported Gore, and Fred cheered for Bush.
Example of Coherence Relation (6)

Elaborations relations:

John supported Gore,
and Fred cheered for Bush.
How many coherence relations?

- Some accounts of coherence assume 2, other more than 400 coherence relations

- Hovy&Maier 1995: taxonomies with more relations represent subtypes of taxonomies with fewer relations
 - cause-effect → volitional, non-volitional
Problem: Ambiguity

To see this image, go to
http://images.google.com/images?q=yolady.gif
Find Coherence Relations

Consider this extract from “The Kreutzer Sonata“ by L. Tolstoy

(A) It is amazing how complete is the delusion that beauty is goodness.

(B) A handsome woman talks nonsense, you listen and hear not nonsense but cleverness.

(C) She says and does horrid things, and you see only charm.

(D) And if a handsome woman does not say stupid or horrid things, you at once persuade yourself that she is wonderfully clever and moral.
Rhetorical Structure Theory

(Mann&Thompson:1988, Matthessen&Thompson:1988)

• Developed in the framework of natural language generation

• Aims to describe “building blocks” of text structure
 – Nucleus vs Satellites
 – Binary Relations between Discourse Units

• Compositionality principle defines how to build a tree from binary relations
[No matter how much one wants to stay a non-smoker,A
], [the truth is that the pressure to smoke in junior high is
greater than it will be any other time of one’s life. B]. [We
know that 3,000 teens start smoking each day, C][although
it is a fact that 90\% of them once thought that smoking was
something that they’ll never do. D]
Binary Relations

- (JUSTIFICATION, A, B)
- (JUSTIFICATION, D, B)
- (EVIDENCE, C, B)
- (CONCESSION, C, D)
- (RESTATEMENT, D, A)
Relations

<table>
<thead>
<tr>
<th>Relation</th>
<th>Nucleus</th>
<th>Satellite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>text whose understanding is being facilitated</td>
<td>text whose understanding is being facilitated</td>
</tr>
<tr>
<td>Elaboration</td>
<td>basic information</td>
<td>additional information</td>
</tr>
<tr>
<td>Preparation</td>
<td>text to be presented</td>
<td>text which prepares the reader to expect and interpret the text to be presented</td>
</tr>
</tbody>
</table>
Whenever two large text spans are connected through a rhetorical relation, that rhetorical relation holds between the most important parts of the constituent spans.

Marcu (1997): used constraint-satisfaction approach to build discourse trees given a set of binary relations
Wolf (2004): tree structure is not an adequate representation of discourse structure
Automatic Computation of RST Relations

(Marcu, 1997; Marcu & Echihabi, 2002)
Surface cues for discourse relations:

I like vegetables, but I hate tomatoes.
Automatic Computation of RST Relations

(Marcu, 1997)

• Aggregate discourse relations to a few stable groups: (contrast, elaboration, condition, cause-explanation-evidence)

• Establish deterministic correspondence between cue phrases and discourse relations:
 – \{ But, However \} → Contrast
 – \{ In addition, Moreover \} → Elaboration
Accuracy

- Compared against manually constructed trees
- Tested against human-constructed trees
- Automatically constructed trees exhibit high similarity with human-constructed trees
- However, see (Marcu & Echihabi, 2002) CONTRAST vs ELABORATION: only 61 from 238 have a discourse marker (26%)
(Marcu & Echihabi, 2002)
Surface cues for discourse relations:

I like vegetables, but I hate tomatoes.
Method

• Assume that certain markers unambiguously predict discourse relations

• Create Cartesian product of words located on two sides of a discourse marker

• For each pair of words, compute its likelihood to predict a discourse relation

\[
\arg\max_{r_k} P(r_k|(s_1, s_2)) = \arg\max_{r_k} P((s_1, s_2)|r_k)*P(r_k)
\]

where \(s_i\) is a discourse clause, \(w_i\) is a word and \(r_k\) is a discourse relation

\[
P((s_1, s_2)|r_k) = \prod_{i,j \in s_1, s_2} P((w_i, w_j)|r_k)
\]
Evaluation

- Training data:
 - *Raw* 1 billion words corpus (41,147,805 sents)
 - *BLIPP* parsed corpus (1,796,386 sents)
- The system can compute accurately some relations (see handout)
- The size and the quality of the training data matters a lot