6.881: Natural Language Processing
Machine Translation II

Philipp Koehn
CS and AI Lab
MIT

November 23, 2004
Outline

● Lecture I
 – Introduction to Machine Translation
 – Principles of Statistical MT
 – Word-Based Models
 – Phrase-Based Models

● Lecture II
 – Beam Search Decoding
 – Evaluation
 – The Challenge of Syntax
Phrase-Based Translation

- Foreign input is segmented in phrases
 - any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered
Decoding Algorithm

- Goal of the decoding algorithm:
 Put models to work, perform the actual translation
Greedy Decoder

- Greedy Hill-climbing [Germann, 2003]
 - start with gloss
 - improve probability with actions
 - use 2-step look-ahead to avoid some local minima
Beam-Search Decoding Process

- Build translation left to right
 - select foreign words to be translated
Beam-Search Decoding Process

- Build translation left to right
 - select foreign words to be translated
 - find English phrase translation
 - add English phrase to end of partial translation
Beam-Search Decoding Process

- Build translation left to right
 - select foreign words to be translated
 - find English phrase translation
 - add English phrase to end of partial translation
 - mark foreign words as translated
Beam-Search Decoding Process

- One to many translation

Maria no dio una bofetada a la bruja verde

Mary did not
Beam-Search Decoding Process

- Many to one translation
Beam-Search Decoding Process

- Many to one translation

Maria no dio una bofetada a la bruja verde

Mary did not slap the

Philipp Koehn, CSAIL, MIT
Beam-Search Decoding Process

- Reordering
Beam-Search Decoding Process

- Translation finished
Translation Options

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td>a slap</td>
<td>by</td>
<td>green witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>slap</td>
<td>to the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not give</td>
<td></td>
<td>to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>slap</td>
<td>the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the</td>
<td>the witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Look up possible phrase translations
 - many different ways to segment words into phrases
 - many different ways to translate each phrase
Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>by</td>
<td>green witch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td></td>
<td>slap</td>
<td></td>
<td></td>
<td>to</td>
<td>the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not give</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- e: no English words
- f: no foreign words covered
- p: probability 1

Start with null hypothesis
Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td></td>
<td>did not</td>
<td>a</td>
<td>slap</td>
<td>by</td>
<td>green</td>
<td>witch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>did not give</td>
<td>to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e:</th>
<th>f:</th>
<th>p:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>*</td>
<td>.534</td>
</tr>
</tbody>
</table>

- **Pick translation option**
- **Create hypothesis**
 - e: add English phrase Mary
 - f: first foreign word covered
 - p: probability 0.534
Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>by</td>
<td></td>
<td>green witch</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not give</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>slap</td>
<td></td>
<td></td>
<td>the</td>
<td>the witch</td>
</tr>
</tbody>
</table>

- e: witch
 - f: ******-
 - p: .182

- e: Mary
 - f: *-------*
 - p: .534

- **Add another hypothesis**
Hypothesis Expansion

- Further hypothesis expansion
Hypothesis Expansion

- ... until all foreign words covered
 - find best hypothesis that covers all foreign words
 - backtrack to read off translation
Hypothesis Expansion

- Adding more hypothesis

⇒ Explosion of search space
Explosion of Search Space

- Number of hypotheses is exponential with respect to sentence length

\Rightarrow Decoding is NP-complete [Knight, 1999]

\Rightarrow Need to reduce search space

- risk free: hypothesis recombination
- risky: histogram/threshold pruning
Hypothesis Recombination

- Different paths to the same partial translation
Hypothesis Recombination

- Different paths to the same partial translation

⇒ Combine paths
 - drop weaker hypothesis
 - keep pointer from worse path
Hypothesis Recombination

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)
Hypothesis Recombination

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)

⇒ Combine paths
Pruning

- Hypothesis recombination is not sufficient

⇒ Heuristically discard weak hypotheses

- Organize Hypothesis in stacks, e.g. by
 - same foreign words covered
 - same number of foreign words covered (Pharaoh does this)
 - same number of English words produced

- Compare hypotheses in stacks, discard bad ones
 - histogram pruning: keep top n hypotheses in each stack (e.g., $n=100$)
 - threshold pruning: keep hypotheses that are at most α times the cost of best hypothesis in stack (e.g., $\alpha = 0.001$)
Comparing Hypotheses

- Comparing hypotheses with same number of foreign words covered

Maria no dio una bofetada a la bruja verde

<table>
<thead>
<tr>
<th>e: Mary did not</th>
<th>f: *-------</th>
<th>p: 0.154</th>
</tr>
</thead>
<tbody>
<tr>
<td>better partial translation</td>
<td>covers easier part --> lower cost</td>
<td></td>
</tr>
</tbody>
</table>

- Hypothesis that covers easy part of sentence is preferred

⇒ Need to consider future cost
Future Cost Estimation

- Estimate cost to translate remaining part of input

- **Step 1: find cheapest translation options**
 - find cheapest translation option for each input span
 - compute translation model cost
 - estimate language model cost (no prior context)
 - ignore reordering model cost

- **Step 2: compute cheapest cost**
 - for each contiguous span:
 - find cheapest sequence of translation options

- **Precompute and lookup**
 - precompute future cost for each contiguous span
 - future cost for any coverage vector:
 - sum of cost of each contiguous span of uncovered words
 → no expensive computation during run time
Word Lattice Generation

- Search graph can be easily converted into a word lattice
 - can be further mined for n-best lists
 → enables reranking approaches
 → enables discriminative training
Evaluation

- Manual Evaluation
 - human judge output
 - expensive

- Automatic Evaluation
 - machines judge output
 - fast
 - reliable?

- Task-Oriented Evaluation
 - humans do task with MT
 - tests usefulness of MT
Manual Evaluation

- Correct yes/no
 - simple
 - longer sentences almost always have at least one error

- Correct on scale
 - 0=bad, 5=perfect
 - disagreement between judges

- More detailed judgments
 - adequacy: how well is meaning preserved?
 - fluency: is it good English?
 - ...
Manual Evaluation

- Give grade from 0=bad to 5=perfect
 - In the First Two Months Guangdong's Export of High-Tech Products 3.76 Billion US Dollars
 - The Guangdong provincial foreign trade and economic growth has made important contributions.
 - Suicide explosion in Jerusalem

- Agreement
Automatic Evaluation

- Why automatic evaluation metrics?
 - manual evaluation is too slow
 - evaluation on large test sets reveals minor improvements
 - automatic tuning to improve machine translation performance

- History
 - Word Error Rate
 - BLEU since 2002
 - BLEU in short: overlap with reference translations
Bi-Lingual Evaluation Understudy (BLEU)

Reference (human) translation:
The U.S. island of Guam is maintaining a high state of alert after the Guam airport and its offices both received an e-mail from someone calling himself the Saudi Arabian Osama bin Laden and threatening a biological/chemical attack against public places such as the airport.

Machine translation:
The American [?] international airport and its office all receives one calls self the sand Arab rich business [?] and so on electronic mail, which sends out; The threat will be able after public place and so on the airport to start the biochemistry attack, [?] highly alerts after the maintenance.

BLEU4 formula

\[bp \times \exp (\log p_1 + \log p_2 + \log p_3 + \log p_4) \]

\[p_1 = 1\text{-gram precision} \]
\[p_2 = 2\text{-gram precision} \]
\[p_3 = 3\text{-gram precision} \]
\[p_4 = 4\text{-gram precision} \]

\[bp = \text{brevity penalty:} \quad \min(1, \exp(\text{words-in-reference / words-in-} \]

Philipp Koehn, CSAIL, MIT
Correlation with Manual Evaluation

- Correlates with human evaluation (adequacy, fluency)

\[R^2 = 88.0\% \]
\[R^2 = 90.2\% \]
The Challenge of Syntax

- Remember the pyramid
Advantages of Syntax-Based Translation

- Reordering for syntactic reasons
 - e.g., move German object to end of sentence

- Better explanation for function words
 - e.g., prepositions, determiners

- Conditioning to syntactically related words
 - translation of verb may depend on subject or object

- Use of syntactic language models
Inversion Transduction Grammars

- Generation of both English and foreign trees [Wu, 1997]
- Rules (binary and unary)
 - \(A \rightarrow A_1 A_2 | A_1 A_2 \)
 - \(A \rightarrow A_1 A_2 | A_2 A_1 \)
 - \(A \rightarrow e | f \)
 - \(A \rightarrow e | \ast \)
 - \(A \rightarrow \ast | f \)

⇒ Common binary tree required
 - limits the complexity of reorderings
Syntax Trees

Mary did not slap the green witch

- English binary tree
Syntax Trees (2)

Spanish binary tree

Maria no daba una bofetada a la bruja verde
Syntax Trees (3)

- Combined tree with reordering of Spanish
- Can such trees be learned from data?
- Do common tree exist with real syntax on both sides?
Dependency Structure

- Common dependency tree
- Interest in dependency-based translation models
String to Tree Translation

- Use of English syntax trees [Yamada and Knight, 2001]
 - exploit rich resources on the English side
 - obtained with statistical parser [Collins, 1997]
 - flattened tree to allow more reorderings
 - works well with syntactic language model
Yamada and Knight [2001]

 lider

VB

PRP VB1 VB2

he adores VB TO

listening TO MN
to music

reorder

PRP VB2 VB1

he TO VB adores

MN TO listening

mus to

insert

PRP VB2 VB1

he ha TO VB ga adores desu

MN TO listening no

music to

translate

PRP VB2 VB1

kare ha TO VB ga daisuki desu

MN TO kiku no

ongaku wo

take leaves

Kare ha ongaku wo kiku no ga daisuki desu
Syntactic Language Model

- Good syntax tree \rightarrow good English
- Allows for long distance constraints

- Left translation preferred by syntactic LM
String to Tree Transfer and Syntactic LM

- Work presented at this MT Summit by Charniak, Knight, Yamada
 - more grammatical correct output
 - more perfectly translated sentences
 - ... but no improvement in BLEU

- Syntactic transfer and LM on top of phrase translation
 - parse a lattice generated by phrase-based MT
 - no results yet
Augment Models with Syntactic Features

- Intuition: other models work fine, syntax provides additional clues

- Define syntactic properties that should hold
 - preservation of plural
 - output should have verb
 - no dropping of content words
 - ...

- 2003 summer workshop at John Hopkins: little improvement
Clause Structure

- Syntax tree from German parser
 - statistical parser by Amit Dubay, trained on TIGER treebank
Reordering When Translating

Reordering when translating into English

- tree is flattened
- clause level constituents line up

Philipp Koehn, CSAIL, MIT
Clause Level Reordering

Clause level reordering is a well defined task

- label German constituents with their English order
- done this for 300 sentences, two annotators, high agreement

Philipp Koehn, CSAIL, MIT
Systematic Reordering German → English

- Many types of reorderings are systematic
 - move verb group together
 - subject - verb - object
 - move negation in front of verb

⇒ Write rules by hand
 - apply rules to test and training data
 - train standard phrase-based SMT system

<table>
<thead>
<tr>
<th>System</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline system</td>
<td>25.2%</td>
</tr>
<tr>
<td>with manual rules</td>
<td>26.8%</td>
</tr>
</tbody>
</table>
Integration

- Transform f into f’ with our methods
- Translate n-best restructurings with phrase-based MT
 - uses both transformation score and translation/language model score
 - if no restructuring → baseline performance
- Transformation does not need to be perfect
 - phrase-based model may still reorder

Philipp Koehn, CSAIL, MIT
Improved Translations

- we must also this criticism should be taken seriously.
 → we must also take this criticism seriously.

- i am with him that it is necessary, the institutional balance by means of a political revaluation of both the commission and the council to maintain.
 → i agree with him in this, that it is necessary to maintain the institutional balance by means of a political revaluation of both the commission and the council.

- thirdly, we believe that the principle of differentiation of negotiations note.
 → thirdly, we maintain the principle of differentiation of negotiations.

- perhaps it would be a constructive dialog between the government and opposition parties, social representative a positive impetus in the right direction.
 → perhaps a constructive dialog between government and opposition parties and social representative could give a positive impetus in the right direction.