\section{Tensors}

Let V be an n-dimensional vector space and let V^k be the set of all k-tuples, (v_1, \ldots, v_k), $v_i \in V$. A function
\[T : V^k \rightarrow \mathbb{R} \]
is said to be linear in its ith variable if, when we fix vectors, $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k$, the map
\[v \in V \rightarrow T(v_1, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_k) \]
is linear in V. If T is linear in its ith variable for $i = 1, \ldots, k$ it is said to be k-\textit{linear}, or alternatively is said to be a k-\textit{tensor}. We denote the set of all k-tensors by $\mathcal{L}^k(V)$.

Let T_1 and T_2 be functions on V^k. It is clear from (2.1) that if T_1 and T_2 are k-linear, so is $T_1 + T_2$. Similarly if T is k-linear and λ is a real number, λT is k-linear. Hence $\mathcal{L}^k(V)$ is a vector space. Note that for $k = 1$, “k-linear” just means “linear”, so $\mathcal{L}^1(V) = V^\ast$.

We will next prove that this vector space is finite dimensional. Let
\[I = (i_1, \ldots, i_k) \]
be a sequence of integers with $1 \leq i_r \leq n$, $r = 1, \ldots, k$. We will call such a sequence a \textit{multi-index} of length k. For instance the multi-indices of length 2 are the square array of pairs of integers
\[(i, j), \ 1 \leq i, j \leq n\]
and there are exactly n^2 of them.

\begin{exercise}

Show that there are exactly n^k multi-indices of length k.

Now fix a basis, e_1, \ldots, e_n, of V and for $T \in \mathcal{L}^k(V)$ let
\[T_I = T(e_{i_1}, \ldots, e_{i_k}) \]
for every multi-index of length k, I.

\begin{proposition}

The T_I’s determine T, i.e., if T and T' are k-tensors and $T_I = T'_I$ for all I, then $T = T'$.

\begin{proof}

By induction on n. For $n = 1$ we proved this result in §1. Let’s prove that if this assertion is true for $n - 1$, it’s true for n. For each e_i let T_i be the $(k - 1)$-tensor
\[(v_1, \ldots, v_{n-1}) \rightarrow T(v_1, \ldots, v_{n-1}, e_i).\]
Then for $v = c_1 e_1 + \cdots c_n e_n$
\[T(v_1, \ldots, v_{n-1}, v) = \sum c_i T_i(v_1, \ldots, v_{n-1}), \]
so the T_I’s determine T. Now apply induction.
\end{proof}
\end{proposition}
The tensor product operation

If T_1 is a k-tensor and T_2 is an ℓ-tensor, one can define a $k + \ell$-tensor, $T_1 \otimes T_2$, by setting

$$(T_1 \otimes T_2)(v_1, \ldots, v_{k+\ell}) = T_1(v_1, \ldots, v_k)T_2(v_{k+1}, \ldots, v_{k+\ell}).$$

This tensor is called the tensor product of T_1 and T_2. Similarly, given a k-tensor, T_1, an ℓ-tensor, T_2 and an m-tensor, T_3, one can define a $(k + \ell + m)$-tensor, $T_1 \otimes T_2 \otimes T_3$ by setting

$$(2.3) \quad T_1 \otimes T_2 \otimes T_3(v_1, \ldots, v_{k+\ell})$$
$$= T_1(v_1, \ldots, v_k)T_2(v_{k+1}, \ldots, v_{k+\ell})T_3(v_{k+\ell+1}, \ldots, v_{k+\ell+m}).$$

Alternatively, one can define (2.3) by defining it to be the tensor product of $T_1 \otimes T_2$ and T_3 or the tensor product of T_1 and $T_2 \otimes T_3$. It’s easy to see that both these tensor products are identical with (2.3):

$$(2.4) \quad (T_1 \otimes T_2) \otimes T_3 = T_1 \otimes (T_2 \otimes T_3) = T_1 \otimes T_2 \otimes T_3.$$

We leave for you to check that if λ is a real number

$$(2.5) \quad \lambda(T_1 \otimes T_2) = (\lambda T_1) \otimes T_2 = T_1 \otimes (\lambda T_2)$$

and that the left and right distributive laws are valid: For $k_1 = k_2$,

$$(2.6) \quad (T_1 + T_2) \otimes T_3 = T_1 \otimes T_3 + T_2 \otimes T_3$$

and for $k_2 = k_3$

$$(2.7) \quad T_1 \otimes (T_2 + T_3) = T_1 \otimes T_2 + T_1 \otimes T_3.$$

A particularly interesting tensor product is the following. For $i = 1, \ldots, k$ let $\ell_i \in V^*$ and let

$$(2.8) \quad T = \ell_1 \otimes \cdots \otimes \ell_k.$$

Thus, by definition,

$$(2.9) \quad T(v_1, \ldots, v_k) = \ell_1(v_1) \cdots \ell_k(v_k).$$

A tensor of the form (2.9) is called a decomposable k-tensor. These tensors, as we will see, play an important role in multilinear algebra. In particular, let e_1, \ldots, e_n be a basis of V and e_1^*, \ldots, e_n^* the dual basis of V^*. For every multi-index, I, of length k let

$$e_I^* = e_{i_1}^* \otimes \cdots \otimes e_{i_k}^*.$$

Then if J is another multi-index of length k,

$$(2.10) \quad e_I^*(e_{j_1}, \ldots, e_{j_k}) = \begin{cases} 1, & I = J \\ 0, & I \neq J \end{cases}$$

by (1.6), (2.8) and (2.9). From (2.10) it’s easy to conclude
Theorem 2.2. The e_i^*’s are a basis of $L^k(V)$.

Proof. Given $T \in L^k(V)$, let

$$ T' = \sum T_i e_i^* $$

where the T_i’s are defined by (2.2). Then

$$(2.11) \quad T'(e_{j_1}, \ldots, e_{j_k}) = \sum T_i e_i^*(e_{j_1}, \ldots, e_{j_k}) = T_J $$

by (2.10); however, by Proposition 2.1 the T_J’s determine T, so $T' = T$. This proves that the e_i^*’s are a spanning set of vectors for $L^k(V)$. To prove they’re a basis, suppose

$$ \sum C_i e_i^* = 0 $$

for constants, $C_i \in \mathbb{R}$. Then by (2.11) with $T = 0$, $C_J = 0$, so the e_i^*’s are linearly independent.

Corollary. $\dim L^k(V) = n^k$.

The pull-back operation

Let V and W be finite dimensional vector spaces and let $A : V \to W$ be a linear mapping. If $T \in L^k(W)$, we define

$$ A^* T : V^k \to \mathbb{R} $$

to be the function

$$(2.12) \quad A^* T(v_1, \ldots, v_k) = T(Av_1, \ldots, Av_k).$$

It’s clear from the linearity of A that this function is linear in its ith variable for all i, and hence is a k-tensor. We will call $A^* T$ the pull-back of T by the map, A.

Proposition 2.3. The map

$$(2.13) \quad A^* : L^k(W) \to L^k(V), \quad T \to A^* T,$$

is a linear mapping.

We leave this as an exercise. We also leave as an exercise the identity

$$(2.14) \quad A^*(T_1 \otimes T_2) = A^* T_1 \otimes A^* T_2$$

for $T_1 \in L^k(W)$ and $T_2 \in L^m(W)$. Also, if U is a vector space and $B : U \to V$ a linear mapping, we leave for you to check that

$$(2.15) \quad (AB)^* T = B^*(A^* T)$$

for all $T \in L^k(W)$.

7
Exercises.

1. Verify that there are exactly n^k multi-indices of length k.

2. Prove Proposition 2.3.

4. Verify (2.15).