Problem 9.1

(a) Notice how consecutive 90° rotations around the \(x_i \) axis bring us from (1a) to (1b) to (1d) to (1c).

With Rubik's cube hindsight we figure that we can get \(\pm \frac{\pi}{2}, \pi \) rotations around \(x_2 \) from combinations of \(\pm \frac{\pi}{2} \), \(\pi \) rotations around \(x_1 \) and \(x_3 \) axes.

The Euler angles \(\psi, \Theta \) and \(\gamma \) need to be around \(x_3, x'_1 \) and \(x''_3 \), so we need to keep track of where the axes go as well.
3.1 cont'd...

We can get to (b) by choosing \((\psi, \theta, \psi) = (\frac{\pi}{2}, \frac{\pi}{2}, -\frac{\pi}{2})\)

or \((\psi, \theta, \psi) = (-\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2})\)

We can get to (c) with \((\psi, \theta, \psi) = (\frac{\pi}{2}, \frac{\pi}{2}, -\frac{\pi}{2})\) or \((-\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2})\)

We can get to (d) with \((\psi, \theta, \psi) = (\pi, \pi, 0)\) for instance.

b) \((b) \rightarrow (c)\) is \(180^\circ\) around \(x_2\) like \((a) \rightarrow (d)\), so \((\psi, \theta, \psi) = (\pi, \pi, 0)\).

c) \((c) \rightarrow (d)\) is \(-90^\circ\) around \(x_2\) like \((a) \rightarrow (c)\), so \((\psi, \theta, \psi) = (\frac{\pi}{2}, -\frac{\pi}{2}, -\frac{\pi}{2})\)

would do the trick.
Extra: let's look at the resulting rotation matrix for
\[(q, \theta, y) = \left(\frac{\pi}{2}, \frac{\pi}{2}, -\frac{\pi}{2} \right) \]

\[\hat{R}(q, \theta, y) = R_y R_\theta R_\gamma \]

\[= \begin{pmatrix} \cos y & -\sin y & 0 \\ -\sin y & \cos y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos y & \sin y & 0 \\ -\sin y & \cos y & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[\hat{R}\left(\frac{\pi}{2}, \frac{\pi}{2}, -\frac{\pi}{2} \right) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \]

\[= \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[= \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{pmatrix} \]

which is a rotation around the z-axis with rotation angle
\[\alpha = \frac{\pi}{2} \]
Problem 9.2

General idea in this problem is to conserve (linear) momentum and angular momentum before and after the collision.

This naturally splits into a center-of-mass and relative-to-center-of-mass parts.

In this problem we will ignore the mass \(m \) compared with \(M \), but we will not ignore the (angular) momentum that the small particle carries.

The center-of-mass will thus for all practical purposes be at the center of the ellipsoid with magnitude \(M \).

Before the collision total momentum is \(-m\mathbf{v}\mathbf{\hat{q}}\). So after the collision the center-of-mass has linear momentum \(-m\mathbf{v}\mathbf{\hat{q}}\) and velocity \(-\frac{m\mathbf{v}}{M}\).

After the collision there is zero linear momentum within the C-M-S frame, with \(m \) sticking at \(M \).

In the C-M-S frame, before the collision there is angular momentum (with respect to the center-of-mass):

\[
\mathbf{M} = \mathbf{r}_m \times \mathbf{p}_m \quad \text{with} \quad \mathbf{r}_m = (x, y, z) \quad \mathbf{p}_m = (0, -m\mathbf{v}, 0)
\]

\[
\mathbf{M} = (0, m\mathbf{v}, 0 - 0, -m\mathbf{v}) = \begin{pmatrix} 0 \\ m\mathbf{v} \end{pmatrix}
\]

After the collision:

\[
M_1 = g_2 \mathbf{v} = I_1 \omega_1
\]

with \(I_1 = I_2 = I_{xx} = I_{yy} = \frac{1}{5} M (a^2 + b^2) \)

\[
M_2 = 0 = I_2 \omega_2
\]

and \(I_3 = I_{zz} = \frac{1}{5} M (a^2 + a^2) \)

\[
M_3 = -g_1 \mathbf{v} = I_3 \omega_3
\]

ignoring the contribution of mass \(m \) to inertia tensor \(I_{ij} \).
9.2 cont'd

The Euler equations will tell us how \(\mathbf{\omega}(t) \) will evolve with time in the principal-axes coordinate system with origin at the center of mass.

\[
\begin{align*}
I_1 \mathbf{\dot{w}}_1 &= (I_2 - I_3) w_2 w_3 \\
I_2 \mathbf{\dot{w}}_2 &= (I_3 - I_1) w_1 w_3 \\
I_3 \mathbf{\dot{w}}_3 &= (I_1 - I_2) w_1 w_2
\end{align*}
\]

since \(I_1 = I_2, \ w_3 = 0, \ w_2 = \text{constant in time} \)

\[
I_3 \mathbf{\dot{w}}_3 = -\frac{\tau_3}{I_3} m \mathbf{v}
\]

\[
\omega_3 = -\frac{\tau_3}{I_3} \frac{V}{a^2} \left(\frac{m}{M} \right)
\]

\[
I_2 - I_3 = \frac{1}{2} M \left(b^2 - a^2 \right) = -(I_3 - I_1)
\]

\[
\begin{align*}
\mathbf{\dot{w}}_1 &= \left(\frac{I_2 - I_3}{I_1} \right) w_2 w_3 \\
\mathbf{\dot{w}}_2 &= \left(\frac{I_3 - I_1}{I_2} \right) w_3 w_1 \\
\mathbf{\dot{w}}_3 &= \left(\frac{I_1 - I_2}{I_3} \right) w_1 w_2
\end{align*}
\]

\[
\dot{w}_1 = \frac{3}{2} M \left(b^2 - a^2 \right) \left(\frac{\tau_3}{I_3} \frac{V}{a^2} \frac{m}{M} \right) w_2 \equiv \alpha w_2
\]

\[
\dot{w}_3 = \frac{3}{2} \frac{m}{M} \frac{\tau_3}{a^2} \left(\frac{V}{a^2} \right) \frac{1}{a^2 + b^2}
\]

Let the collision happen at \(t = 0 \), then, with \(\omega_1(0) = \frac{\tau_2}{I_1} m \mathbf{v} \) and \(\omega_2(0) = 0 \)

the solution is

\[
\omega_1(t) = 5 \frac{\tau_2}{I_1} \frac{V}{a^2 + b^2} \frac{m}{M} \cos(\alpha t)
\]

\[
\omega_2(t) = 5 \frac{\tau_2}{I_3} \frac{V}{a^2 + b^2} \frac{m}{M} \sin(\alpha t)
\]

\(\frac{m}{M} = "\text{small}" \)

So, an observer in an inertial system will see the ellipsoid move away with small velocity, rotate with small angular velocity, and rotation axis changes with small frequency.
Problem 9.3

(a) \[l_i = \sqrt{a^2 + \left(q_{i+1} - q_i\right)^2} \]

Increase in length from \(q_{i+1} = q_i \) is \(\Delta l_i \):

\[\Delta l_i = l_i - a = \sqrt{a^2 + \left(q_{i+1} - q_i\right)^2} - a \approx a \left(1 + \frac{1}{2} \left(\frac{q_{i+1} - q_i}{a}\right)^2\right) - a \]

when \(q_{i+1} - q_i << a \)

\[= a \left(\frac{1}{2} \left(\frac{q_{i+1} - q_i}{a}\right)^2\right) \]

(b) Kinetic energy is \(\sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 \)

Potential energy for ith mass is \(T \Delta l_i \); if we define our potential energy to be zero when \(l_i = a \), \(U = \sum_{i=1}^{N} T \Delta l_i = \sum_{i=1}^{N} a \frac{1}{2} \left(\frac{q_{i+1} - q_i}{a}\right)^2 \)

(Note that tension is a force; corresponding potential energy is integral over distance \(U = \int dx \ T \); e.g. for a spring with \(F = kx \), \(U = \int dx \ F = \frac{1}{2} kx^2 \), not worrying about the sign.)

The boundary conditions determine what happens to the potential energy for \(q_1 \) and \(q_N \). Here the boundary conditions are not specified, so we leave our result as a sum over \(i \), where the exact range for \(i \) is left undetermined (e.g. \(1 \leq i \leq N \) or \(1 \leq i \leq N-1 \) etc.)

\[L = \sum_{i=1}^{N} \left[\frac{1}{2} m_i v_i^2 - a \frac{1}{2} T \left(\frac{q_{i+1} - q_i}{a}\right)^2 \right] \]
3.3 contd.

c) \(N \to \infty \) but \(\xi \left\{ \sum_{i} \right\} \) constant finite requires \(a \to 0 \), \(a \propto \frac{1}{N} \).

Note that we cannot leave the mass \(m \) as is, as that would make the string infinitely heavy, and infinite-mass strings do not move. So replace \(m = \lambda a \) where \(\lambda \) is a mass density.

\[
L = \sum_{i} \left[a \frac{1}{2} \lambda q_i^2 - a \frac{1}{2} T (\frac{q_i - q_{i-1}}{a})^2 \right]
\]

Now replace \(q_i \to \dot{q}(x,t) \), \((\frac{q_i - q_{i-1}}{a}) \to q'(x,t) \), \(\xi a \to \int dx \)

to find in limit \(a \to 0 \):

\[
L = \int dx \left[\frac{1}{2} \lambda q'^2 - \frac{1}{2} T (q'^2) \right] = \int dx \ L
\]

\[L (\dot{q}(x,t), q'(x,t) ; x,t) = \frac{1}{2} \lambda \dot{q}^2 - \frac{1}{2} T q'^2 \]

\[
\frac{\partial L}{\partial \dot{q}} - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial q'} \right) = 0
\]

\[
0 - \lambda \frac{\partial \dot{q}}{\partial t} + T \frac{\partial^2 q'}{\partial x^2} = 0
\]

\[
\lambda \ddot{q} = T q'' \rightarrow \text{wave equation with } V = \sqrt{\frac{T}{\lambda}}.
\]
Substitute $\tilde{\eta} = A \sin (\vec{k} \cdot \vec{x} + wt + \phi)$ into the wave equation

$$\frac{\partial^2 \eta_i}{\partial t^2} - \frac{\lambda}{c} \nabla^2 \eta_i = 0$$

$$\frac{\partial^2}{\partial t^2} \left(A_i \sin \left(k_i x_i + wt + \phi \right) \right) - \frac{\lambda}{\lambda} \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_i} \left(A_i \sin \left(k_i x_i + wt + \phi \right) \right)$$

$$= -w^2 A_i \sin \left(k_i x_i + wt + \phi \right) - \frac{\lambda}{\lambda} - k_i k_i \int A_i \sin \left(k_i x_i + wt + \phi \right)$$

$$= -\left(w^2 - \frac{\lambda}{\lambda} \right) A_i \sin \left(k_i x_i + wt + \phi \right)$$

$$= 0 \quad \forall t, \vec{x}, i$$

so $w^2 - \frac{\lambda}{\lambda} \vec{k}^2 = 0$ (or $A_i = 0$, but that is a trivial solution)

$$w = \frac{\lambda |\vec{k}|}{\lambda} \quad \text{(we choose } w \text{ to be positive)}$$