import math, random, pylab
X = 0
Y = 1

def takeStep(position):
 direction = random.randint(0,3)
 if direction == 0: position[Y] += 1 #North
 elif direction == 1: position[X] += 1 #East
 elif direction == 2: position[Y] -= 1 #South
 else: position[X] -= 1 #West

def performTrial(numSteps):
 position = [0, 0]
 distances = []
 for secs in range(1, numSteps):
 takeStep(position)
 distance = math.sqrt(position[X]**2 + position[Y]**2)
 distances.append(distance)
xAxis = pylab.arange(0, len(distances), 1)
pylab.plot(xAxis, distances)
pylab.title('Distance from Origin')
pylab.xlabel('Number of Steps')
pylab.ylabel('Distance from Origin')
return distance

def performSim(numSteps, numTrials):
 distList = []
distTot = 0.0
 for trials in range(numTrials):
 distance = performTrial(numSteps)
 distList.append(distance)
return distList

def simSteps(numSteps, numTrials):
 distList = performSim(numSteps, numTrials)
analyzeStats(distList, numTrials)

def analyzeStats(distList, numTrials):
 meanDist = pylab.sum(distList)/numTrials
 print 'Mean distance from origin:', meanDist
 pylab.figure()
 pylab.hist(distList)
 pylab.title('Distribution of Distances from Origin')
 pylab.xlabel('Distance from Origin')
 pylab.ylabel('Number of Trials')