Lecture 17: Insurance (1)

How well does mutual insurance work in the village economy?

Prof. Esther Duflo

April 14, 2004

We saw in the last lecture that risk averse households would like to smooth fluctuations of their income over time. They cannot achieve much consumption smoothing if they can only save, not borrow.

For example, there are times when assets run out and consumption can drop dramatically, and we have also seen that households do not have access to great savings mechanisms, so that the rate of return to savings is often very small. Can they achieve consumption smoothing through mutual insurance?

1 Insurance: theoretical principles

1.1 Basic set up

Start with a simple example: Atif and Bibir are two farmers. Next period, each of their incomes can be either low (Rs. 1000), with probability 0.5, or high (Rs. 2000), with probability 0.5. These probabilities are independent. To simplify, assume that they do not have access to savings or credit.

Each of them maximizes their expected utility next period: $E[u(y)]$. We make the usual assumption that $u(.)$ is concave (farmers are risk averse).

Therefore, $E[u(y)]$ is smaller or larger than $u(E[(y)])$? (This is known as Jensen’s inequality.) Start with a situation where they are isolated: what is their expected utility?
Consider bringing them together: they agree to share their total income, each taking half at all events. What are the possible events now, with their associated probabilities?

What is their expected utility now?

Are they better or worse off? To see this, note that the expected utility can be rewritten:

\[0.5E[u(y)] + 0.5u(E(y)) \]

How does it compare with \(E[u(y)] \)?

1.2 Remarks

1. Think about extending this scheme to all subsequent periods. In each period, they will share income in that way. Does it improve their welfare over staying alone?

2. If they could freely borrow and save, would this scheme be necessary?

3. Is current payment from Atif to Bibir related to past payments?

 How does that compare to credit?

 This is the fundamental difference between credit and pure insurance: insurance payments and proceeds are not linked to past payments, while credit payments are.

4. Assume that their income is entirely determined by the weather, and that Atif and Bibir face the same weather. So the income of Atif and Bibir are perfectly correlated.

 - What are the possible events now?

 - Can Atif and Bibir smooth consumption by mutual insurance? Why?
Aggregate shocks, which affect the members of the network identically, cannot be insured against by insurance within the network.

5. Assume that there are more than 2 members in the network, all with independent and identically distributed income streams, following the same process as Atif and Bibir. There are N members. The average income in the network each period is:

$$\frac{1}{N}\sum_{i=1}^{N} y_i$$

By the Law of large number, as N goes to infinity, this goes to:

So if all the members put their incomes together, what is the post-insurance income of each network member in any given period?

What is their utility?

Therefore, with a big enough network, and if the income of the network members are not correlated, they should achieve perfect income smoothing.

2. Is informal insurance effective in smoothing away income fluctuations?

The preceding discussion suggests that we should write individual income as the sum of three components:

$$Y_{hj}^t = A^t + \epsilon_{hj}^t + \theta_h^t$$

Where t is the time, h is the household, and j is the village.

A^t is the average income in the period (Rs. 1,500 in our previous example),

- ϵ_{hj}^t is a shock which affects only household h in period t (for example, a disease specific to his crop). ϵ_{hj}^t has mean 0, and the average of ϵ_{hj}^t over the villagers in any given period will therefore be equal to 0 (law of large number).

- θ_h^t is the aggregate shock that affects the whole village, for example, the weather. θ_h^t also has mean 0, but at any point in time it is either positive or negative for the village as a whole. It is only the average over time that sums to 0.
Consider a scheme where farmers put their income together. What is the post-insurance income of each farmer?

\[C_{hj} = \]

This suggests that two elements are going to be important in knowing whether informal insurance can smooth away income fluctuations:

1. How correlated are households’ incomes in the same village? If they are very correlated, then there is not much scope for insurance.

2. Do households actually pool their income together? If they do, then we should see consumption levels being much more correlated than income levels.

2.1 How correlated are incomes within a village?

2.1.1 Evidence from the ICRISAT villages in India

The ICRISAT study villages are 3 villages in South India. In each village, 40 households were studied and included in the survey for 10 years. The data has very rich information on agricultural production and techniques, soil type, etc. You will see many studies on these villages if you keep studying development!!

We have reason to think that the household incomes will not be very correlated:
- Households have plots in different parts of the village, which absorb rain differently.
- Households are engaged in different activities, and grow different crops, which may be affected differently by the weather.

Each year, there is data available on consumption and income for each household. We can therefore look directly at whether income in the village seems to move together or not.

Consider the series:

\[Y_{hj} - \bar{Y}_j = \]

where \(\bar{Y}_j \) is the average income in the sample. [NB: we would like to observe the average income in the village, but we have only sample households. We are hoping that the two will be the same, using again the law of large numbers.]

For each household, we can plot this series over time (for \(t = 1, 2, ..4 \)).
- What do we expect to see if the villagers’ incomes are perfectly correlated within the village?
- What do we expect to see if they are independent?
- What do we expect to see if they are very correlated?
- What to we expect to see if they are not very correlated?

Look at the pictures in the handout: is it evidence for or against correlation of income?

2.1.2 Evidence from Cote d'Ivoire

In Cote d'Ivoire, we have only two observations per household (two years in a row). We can still test whether the households face common shocks by using all the data together:

\[Y_{hj}^2 - Y_{hj}^1 = (A^2 - A^1) + (\epsilon^2_{hj} - \epsilon^1_{hj}) + (\theta^2_h - \theta^1_h) \]

If we wanted to run a regression corresponding to this equation, what would we do?
- \((A^2 - A^1)\) would be given by the coefficient of:
- \((\theta^2_h - \theta^1_h)\) are village effects: they could be given by the coefficients of:
- \((\epsilon^2_{hj} - \epsilon^1_{hj})\) is just:

What we want to know is whether the aggregate shock \(\theta^t_h\) is an important determinant of consumption. So we want to test whether the village effects are jointly significant: use an F test for joint significance of the village effects.

The results: the F tests are small: income is not very correlated across people in the village.

Evidence from India and Cote d’Ivoire both suggest that there is not much correlation of income across villagers. Therefore, there is room for consumption smoothing in the village.

2.2 How much consumption smoothing takes place in the villages

2.2.1 Evidence from the ICRISAT villages

The question is now whether individual consumption (our measure of post-insurance income) moves together with average consumption in the village:

What would the following series be with perfect insurance?

\[C_{hj}^t - \bar{C}_j^t = \]

If we plot this series for each household over time, like we did for consumption, what do we expect to see if there is perfect insurance? If insurance is not perfect?
The results: series are much less bumpy; there is a fair amount of insurance (perhaps not complete).

2.2.2 Evidence from Cote d’Ivoire

Perfect insurance implies that variations in consumption should not depend on individual income, only on village income. Consider running the regression:

\[C^2_{hj} - C^1_{hj} = \alpha + \beta(y^2_j - y^1_j) + \gamma(y^2_{hj} - y^1_{hj}) + \nu^t_{hj} \]

In the presence of perfect insurance, what do you expect to find for \(\gamma \)? Do we have a strong prediction for the coefficient of \(\beta \)? Result: see the handout.

Are the results suggestive of perfect insurance? Of partial insurance?

3 How does insurance work in practice? What are its limits?

There is scope for insurance in the village economy, since incomes of villages do not co-move very strongly. There is evidence of some consumption smoothing, but only partial. What are the limits to insurance? Limits to insurance:

- Adverse selection: you may not like someone new to join an insurance network.
- Moral hazard: will people slack if they know they will be covered in case of bad outcomes?
- Difficulty of observing real output
- Imperfect enforcement: people who have had a good shock may refuse to contribute to the pot: members will trade off the short term gain from defaulting today against the long term loss of being isolated from then on (if the defaulters are excluded from the network).
- Networks that are fragile can explode.

All of these will lead to limited insurance. You will need to maintain a difference between the income in the high state and the income in the low state to:

- Force people to work (moral hazard, imperfect observability of the output)
- Maintain people happy that they are in the system (imperfect enforcement).
People may make the payment partly dependent on history (a mix between credit and insurance): Udry, Nigeria – state contingent loans (repayment depends not only on history, but also the current situation of the borrower and the lender).