LECTURE 11

Last time:

- Error Exponents
- Strong Coding Theorem

Lecture outline

- Binary source/BSC.
- Typical error events.
Review

• Strong Coding Theorem,
\[P_{e,m} \leq \exp[-nE_r(R)] \]
where
\[E_r(R) = \max_{\rho \in [0,1]} \max_{P_X} [E_0(\rho, P_X) - \rho R] \]
and
\[E_0(\rho) = -\log \left[\sum_y \left(\sum_x P_X(x) P_Y|X(y|x)^{1+\rho} \right)^{1+\rho} \right] \]

• \(E_r(R) > 0 \) for any \(R < C \).
• For any \(R \), the maximizing \(\rho \) is the slope of the \(E_r(R) \sim R \) curve at \(R \).
• **Definition** The critical rate
\[R_{crit} = \left. \frac{\partial E_0(\rho)}{\partial \rho} \right|_{\rho=1} \]

• The maximizing \(\rho \in [0,1] \) if \(R_{crit} \leq R \leq I(X;Y) \).
• For \(R < R_{crit} \), the slope of \(E_r(R) \sim R \) is \(-1\).
A Complete Picture of the Reliability Function

- To improve the random coding bound, expurgate bad codes.
- For a lower bound of the error probability: sphere packing bound.

Conclusion

- For $R < C$, error probability decays with n exponentially.
- For $R > R_{crit}$, random codes are optimal, the average error probability achieves the highest possible error exponent.
- For $R > R_{crit}$, the union bound is not tight, there is no one dominating pairwise error event.
- For $R < R_{crit}$, the union bound is fine, but random coding is not optimal.
Example: Binary Source/BSC

Choose the input to be equiprobable. Define

$$\tau = \frac{\sqrt{\epsilon}}{\sqrt{\epsilon} + \sqrt{1 - \epsilon}}$$

- For $R \geq \log 2 - H(\tau) = D(\tau||\frac{1}{2})$,

$$R = D\left(\gamma||\frac{1}{2}\right)$$

$$E_r(R) = D(\gamma||\epsilon)$$

for $\gamma \in (\epsilon, \tau)$.

- For $R < D(\tau||\frac{1}{2})$,

$$E_r(R) = \log 2 - \log(1 + 2\sqrt{\epsilon(1 - \epsilon)}) - R$$

Gallager: The most significant point about this example is that, even for such a simple channel, there is no simple way to express $E_r(R)$ except in parametric form.
A Little Large Deviation Theory

Suppose $h(x)$ is bounded and continuous on $[0, 1]$,

$$\lim_{n \to \infty} \frac{1}{n} \log \int_0^1 \exp[-nh(x)] \, dx = - \min_{x \in [0, 1]} h(x).$$

Chernoff exponent Let X^n be a sequence of $Bern(p)$ r.v.s, and $w(X^n)$ be the hamming weight of the vector, for $\tau > p$,

$$P(w(X^n) \geq N\tau) = 2^{-nD(\tau||p)}$$

Proof

Denote by E_q the event that a $Bern(p)$ sequence X^n is typical w.r.t. another distribution q

Recall

$$P(E_q) = 2^{-nD(q||p)}.$$

For large enough n, the probability $P(\cup_{q \geq \tau} E_q)$ is dominated by $P(\cup_{q \in [\tau, \tau+\epsilon]} E_q)$ for an arbitrarily small ϵ.
Output Centered Analysis

For random codes on the BSC:

Assume $X^n(0)$ is transmitted, and Y^n is observed. Let the other codewords be $X^n(i), i = 1, \ldots, M - 1$.

The joint distribution is

$$P(X^n(0), Y^n, \{X^n(i), i = 1, \ldots M - 1\}) = P(X^n(0), Y^n) \prod_i P(X^n(i))$$

Forney: We are only interested in the distances between the codewords and the output Y^n.

Consider this as two subsystems.

- Translate the correct codeword to the noise vector

$$\Delta = X^n(0) \oplus Y^n$$
Δ has i.i.d. $\{\epsilon, 1 - \epsilon\}$ entries.

- Translate the other codewords to

$$z_i = X^n(i) \oplus Y^n$$

For i, z_i has equiprobable entries.

Now the error occurs if $w(\Delta) > w(z_i)$ for some $i = 1, \ldots, M - 1$.

We compute the error probability and ask the question: is the error caused by

- large noise vector?

- or some incorrect codeword being too close?
The Exponents

• For the noise vector,

\[P(w(\Delta) \geq n\gamma) \doteq 2^{-nE_I} \]

where

\[E_I = \begin{cases}
 D(\gamma \| \epsilon) & \gamma > \epsilon \\
 0 & \gamma \leq \epsilon
\end{cases} \]

• For the incorrect codewords,

\[P(w(z_i) \leq n\gamma) \doteq 2^{nD(\gamma \| \frac{1}{2})} \]

Now

\[P(\min_i w(z_i) \leq n\gamma) = P\left(\bigcup_i \{ w(z_i) \leq n\gamma \} \right) = 2^{-nE_{II}} \]

where

\[E_{II} = \begin{cases}
 D(\gamma \| \frac{1}{2}) - R, & D(\gamma \| \frac{1}{2}) \geq R \\
 0 & D(\gamma \| \frac{1}{2}) \leq R
\end{cases} \]

For a given \(R \), let \(\gamma^*_R \) satisfy \(D(\gamma^*_R \| \frac{1}{2}) = R \)
• For any $\gamma > \gamma^*_R$, or equivalently $R \geq D(\gamma||\frac{1}{2})$, there are exponentially many code-words with $w(z_i) < n\gamma$.

• For any $\gamma < \gamma^*_R$, or equivalently $R \leq D(\gamma||\frac{1}{2})$, the probability that there exist a z_i with $w(z_i) < n\gamma$, is exponentially small.

• γ^*_R is the typical min distance at rate R, also called Gilbert-Varshamov distance.
Channel Capacity

• If $R < D(\epsilon \| \frac{1}{2})$, or equivalently, $\gamma_R^* > \epsilon$, then we can find $\gamma > \epsilon$ such that $D(\gamma \| \frac{1}{2}) \geq R$.

 – Decoder decodes if $\exists!$ codeword that is within $n\gamma$ distance from y^n, and claim error otherwise.

 – The probability of both $\{w(\Delta) > n\gamma\}$ and $\{\min_i w(z_i) < n\gamma\}$ are exponentially small, so the decoding error probability is exponentially small.

• If $R > D(\epsilon \| \frac{1}{2})$, then for γ such that $R > D(\gamma \| \frac{1}{2}) \geq D(\epsilon \| \frac{1}{2})$, both $\{w(\Delta) > n\gamma\}$ and $\{\min_i w(z_i) < n\gamma\}$ occurs with probability $\equiv 1$, so the rate is not supported.

• Notice $C = \log_2 -H(\epsilon) = D(\epsilon \| \frac{1}{2})$.
Error Exponent

Suppose that $R < D(\epsilon\|\frac{1}{2})$, we now find the error exponent for $P_e = P(w(\Delta) \geq \min_i w(z_i))$.

Define type γ error as the event

$$E_\gamma = \{w(\Delta) \geq n\gamma\} \cap \{\min_i w(z_i) \leq n\gamma\}$$

and $P(E_\gamma) = 2^{-nE_\gamma}$.

Now

$$E_\gamma = E_I + E_{II}$$

$$\begin{align*}
E_I &= D(\gamma\|\epsilon) + D(\gamma\|\frac{1}{2}) - R \\
E_{II} &= D(\gamma\|\epsilon) \\
\end{align*}$$

$D(\gamma\|\frac{1}{2}) \geq R, \gamma > \epsilon$

$D(\gamma\|\frac{1}{2}) \leq R$

The error exponent is

$$E_r(R) = \min_\gamma E_\gamma$$
Error Exponent

- The condition $D(\gamma||\frac{1}{2}) \geq R, \gamma > \epsilon$ is equivalent to $\epsilon < \gamma \leq \gamma^*_R$.

- The optimum must occur at $\gamma \leq \gamma^*_R$.

$$E_r (R) = \min \gamma \in (\epsilon, \gamma^*_R) \left[D(\gamma||\epsilon) + D(\gamma||\frac{1}{2}) - R \right]$$

- First ignore the constraint, minimum occurs at $\gamma = \tau$, where $D(\gamma||\epsilon) + D(\gamma||\frac{1}{2})$ is minimized. Can solve to have

$$\tau = \frac{\sqrt{\epsilon}}{\sqrt{\epsilon} + \sqrt{1 - \epsilon}}$$

Define $R_{crit} = D(\tau||\frac{1}{2})$. The minimum is

$$E_0 = D(\tau||\epsilon) + D(\tau||\frac{1}{2})$$

$$= \log 2 - \log(1 + 2\sqrt{\epsilon(1 - \epsilon)})$$
• If $\tau < \gamma^*_R$, or equivalently $R < R_{crit}$, the minimum is achieved at $\gamma = \tau$,

$$E_r(R) = E_0 - R$$

• If $\tau > \gamma^*_R$, or equivalently $R > R_{crit}$, the minimum occurs at $\gamma = \gamma^*_R$,

$$R = D(\gamma^*_R \Vert \frac{1}{2})$$

$$E_r(R) = D(\gamma^*_R \Vert \epsilon)$$
Discussions

Main Conclusion The error mechanisms are different in the high rate regime $R_{crit} \leq R < C$, and the low rate regime $R < R_{crit}$.

- In the high rate regime, error occurs when the noise is so large it reaches γ^*_R.
 - Confusion occurs among exponentially many codewords.
 - Union bound is not tight.
 - Draw a sphere of radius γ^*_R around each codeword, as long as the y^n lies in the sphere, error does not occur—sphere packing argument.
 - Cannot improve by expurgating bad codewords, since there are too many of them.
In the low rate regime, error occurs when the noise is within the sphere of radius γ^*_R, but some atypically bad codeword $X^n(i)$ is too close to y^n.

- Error occurs at one particular bad codeword.

- Union bound is fine: $P_e \leq Me^{nE_0}$.

- Error is caused by atypically bad codes from the ensemble. Can improve by expurgating the bad codeword.