1 Optimal debt policy with incomplete contracts

- Hart and Moore (1998)

- Debt as a discipline device

- Use debt (hard claim) to induce entrepreneur to pay back rather than divert funds

- If you refuse to pay, control goes to creditors

- 3 periods, two agents, D (debtor) and C (creditor)
• D can invest I (fixed amount) in period 0, which yields

\begin{align*}
 & R_1 \text{ in period 1} \\
 & R_2 \text{ in period 2 (if no liquidation)}
\end{align*}

• if liquidation occurs in period 1 then liquidation value is

\[L \]

• if no-liquidation occurs additional investment can be done at a rate of return

\[s \]

• R_1, R_2, L, s all random variables that are realized in period 1
• Assume

\[\frac{R_2}{L} \geq s \geq 1 \] always
• D has wealth w so he needs

$$I - w$$

• He can borrow more than that and hold the receipts in an account protected from creditors collection (T) so

$$B = I - w + T$$

• He promises to repay P

• Crucial: R_1, R_2, L, s cannot be verified in court $\implies P$ is non state contingent
• No asymmetry of information and perfect renegotiation at date 1

• The maximum the creditors can seize is the liquidation value \(L \)

• In period 2 liquidation value is 0, so \(D \) cannot promise to repay anything at date 2
1.1 Optimal renegotiation

- If D fails to pay P all bargaining power to D (see paper for intermediate cases), so he repays

$$L$$

- Then he will repay iff

$$P \leq L$$

(he can always repay if $P \leq L$ because he can liquidate part of the assets)

- Effective repayment is then

$$\tilde{P} = \min \{P, L\}$$
- Liquidation 1: if

\[R_1 + T - \tilde{P} \geq 0 \]

no liquidation occurs and \(D \) gets

\[R_2 + s \left(R_1 + T - \tilde{P} \right) \]

in period 2

- Liquidation 2: if

\[R_1 + T - \tilde{P} < 0 \]

liquidation occurs, fraction

\[f = \frac{\tilde{P} - R_1 - T}{L} \]
is liquidated and $1 - f$ continues so D gets payoff

$$(1 - f)R_2 = R_2 - \frac{R_2}{L} (\tilde{P} - R_1 - T)$$

in period 2

- Summarizing total expected payoff of D is

$$R_2 + s \left(R_1 + T - \tilde{P} \right) \quad \text{if} \quad R_1 + T - \tilde{P} \geq 0$$
$$R_2 + \frac{R_2}{L} \left(R_1 + T - \tilde{P} \right) \quad \text{if} \quad R_1 + T - \tilde{P} < 0$$

- Assume for simplicity

$$s = \frac{R_2}{L}$$

(same return on non-liquidated capital and on newly invested capital)
• Then expected return is just

$$E \left[R_2 + s \left(R_1 + T - \tilde{P} \right) \right]$$

• Participation constraint of C at date 0 is

$$E \left[\tilde{P} \right] = I - \omega + T$$
1.2 Optimal contract

\[\max_{T,P} \quad E \left[R_2 + s \left(R_1 + T - \tilde{P} \right) \right] \]

\[E \left[\tilde{P} \right] = I - w + T \]

Marginal effect of changing \(P \) on \(T \)

\[\frac{dT}{dP} = 1 - F(L) \]

(where \(F \) is CDF of \(L \))

So effect on payoff

\[E \left[s \right] (1 - F(L)) - E \left[s | L \geq P \right] (1 - F(L)) \]
If L is “good news” for s then we have

$$E[s] < E[s|L \geq P]$$

for all $P > L$ (where L is lower bound of L support).

Proposition If L is good news for s then it is optimal not too leave any “reserves” T to the entrepreneur (i.e. it is optimal $T = 0$) and to set P to its minimal value (which ensures $E[\tilde{P}] = I - w$)

More general result in paper: debt contract with $T = 0$ is optimal in a broad class of message games.

Idea: value of resources in entrepreneur’s hand is low when L is low, so debt contract works well because it makes the entrepreneur pays maximum when L is low and caps how much creditors can get when L is high
In macro crisis however opposite is true: bad realization of payoff today means scarcity of entrepreneurial net worth → high prospective return! So in anticipation of macro crisis, debt contract is bad