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Abstract:%%
% Recognition% of% objects% from% partial% information% presents% a% significant% challenge% for%
theories% of% vision% because% it% requires% spatial% integration% and% extrapolation% from% prior%
knowledge.%We%combined%neurophysiological%recordings% in%human%cortex%with%psychophysical%
measurements%and%computational%modeling%to% investigate%the%mechanisms% involved% in%object%
completion.% We% recorded% intracranial% field% potentials% from% 1,699% electrodes% in% 18% epilepsy%
patients%to%measure%the%timing%and%selectivity%of%responses%along%human%visual%cortex%to%whole%
and% partial% objects.% Responses% along% the% ventral% visual% stream% remained% selective% despite%
showing%only%9>25%%of%the%object.%However,%these%visually%selective%signals%emerged%~100%ms%
later% for% partial% versus%whole%objects.% The%processing%delays%were%particularly% pronounced% in%
higher% visual% areas% within% the% ventral% stream,% suggesting% the% involvement% of% additional%
recurrent% processing.% In% separate% psychophysics% experiments,% disrupting% this% recurrent%
computation%with%a%backward%mask%at%~75ms%significantly% impaired%recognition%of%partial,%but%
not% whole,% objects.% Additionally,% computational% modeling% shows% that% the% performance% of% a%
purely% bottom>up% architecture% is% impaired% by% heavy% occlusion% and% that% this% effect% can% be%
partially% rescued% via% the% incorporation% of% top>down% connections.% These% results% provide%
spatiotemporal%constraints%on%theories%of%object%recognition%that% involve%recurrent%processing%
to%recognize%objects%from%partial%information.%%
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Introduction 

During natural viewing conditions, we often have access to only partial information 

about objects due to limited viewing angles, poor luminosity or object occlusion. Despite 

these difficulties, the visual system shows a remarkable ability to interpret objects from 

their constituent parts. How the visual system can recognize objects from limited 

information while still maintaining fine discriminability between like objects remains 

poorly understood and represents a significant challenge for computer vision algorithms 

and theories of vision.  

Visual shape recognition is orchestrated by a cascade of signal processing steps 

along the ventral visual stream (for reviews, see (Connor et al., 2007; Logothetis and 

Sheinberg, 1996; Rolls, 1991; Tanaka, 1996)). Neurons in the highest echelons of the 

ventral stream in macaque monkeys, the inferior temporal cortex (ITC), demonstrate 

strong selectivity to complex objects (e.g. (Desimone et al., 1984; Hung et al., 2005; Ito 

et al., 1995; Keysers et al., 2001; Logothetis et al., 1995; Miyashita and Chang, 1988; 

Richmond et al., 1983; Rolls, 1991)). In the human brain, several areas within the 

occipital-temporal lobe showing selective responses to complex shapes have been 

identified using neuroimaging (Grill-Spector and Malach, 2004; Haxby et al., 1991; 

Kanwisher et al., 1997; Taylor et al., 2007) and invasive physiological recordings 

(Allison et al., 1999; Liu et al., 2009; Privman et al., 2007). Converging evidence from 

behavioral studies (Kirchner and Thorpe, 2006; Thorpe et al., 1996), human scalp 

electroencephalography (Thorpe et al., 1996), monkey (Hung et al., 2005; Keysers et al., 

2001; Optican and Richmond, 1987) and human (Allison et al., 1999; Liu et al., 2009) 

neurophysiological recordings has established that selective responses to and rapid 

recognition of isolated whole objects can occur within 100 ms of stimulus onset. As a 

first-order approximation, the speed of visual processing suggests that initial recognition 

may occur in a largely feed-forward fashion, whereby neural activity progresses along the 

hierarchical architecture of the ventral visual stream with minimal contributions from 

feedback connections between areas or within-area recurrent computations (Deco and 

Rolls, 2004; Fukushima, 1980; LeCun et al., 1998; Riesenhuber and Poggio, 1999).  

A critical feature of visual recognition is the remarkable degree of robustness to 

object transformations. Recordings in ITC of monkeys (Desimone et al., 1984; Hung et 
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al., 2005; Ito et al., 1995; Logothetis and Sheinberg, 1996) and humans (Liu et al., 2009) 

have revealed a significant degree of tolerance to object transformations. Visual 

recognition of isolated objects under certain transformations such as scale or position 

changes do not incur additional processing time at the behavioral or physiological level 

(Allison et al., 1999; Biederman and Cooper, 1991; Desimone et al., 1984; Ito et al., 

1995; Liu et al., 2009; Logothetis et al., 1995; Logothetis and Sheinberg, 1996) and can 

be described using purely bottom-up computational models. While bottom-up models 

may provide a reasonable approximation for rapid recognition of whole isolated objects, 

top-down as well as horizontal projections abound throughout visual cortex (Callaway, 

2004; Felleman and Van Essen, 1991). The contribution of these projections to the strong 

robustness of object recognition to various transformations remains unclear. In particular, 

recognition of objects from partial information is a difficult problem for purely feed-

forward architectures and may involve significant contributions from recurrent 

connections as shown in attractor networks (Hopfield, 1982; O'Reilly et al., 2013) or 

studies of Bayesian inference (Lee and Mumford, 2003). 

 Previous studies have examined the brain areas involved in pattern completion 

with human neuroimaging (Lerner et al., 2004; Schiltz and Rossion, 2006; Taylor et al., 

2007), the degree of selectivity in physiological signals elicited by partial objects (Issa 

and Dicarlo, 2012; Kovacs et al., 1995b; Nielsen et al., 2006; Rutishauser et al., 2011) 

and delays associated with recognizing occluded or partial objects (Biederman, 1987; 

Brown and Koch, 2000; Johnson and Olshausen, 2005). Several studies have principally 

focused on amodal completion, i.e., the linking of disconnected parts to a single ‘gestalt’, 

using geometric shapes or line drawings and strong occluders that provided depth cues 

(Brown and Koch, 2000; Chen et al., 2010; Johnson and Olshausen, 2005; Murray et al., 

2001; Nakayama et al., 1995; Sehatpour et al., 2008). Amodal completion is an important 

step in recognizing occluded objects. In addition to determining that different parts 

belong to a whole, the brain has to jointly process the parts to recognize the object 

(Gosselin and Schyns, 2001; Nielsen et al., 2006; Rutishauser et al., 2011), which we 

study here.  

We investigated the spatiotemporal dynamics underlying object completion by 

recording field potentials from intracranial electrodes implanted in epilepsy patients 
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while subjects recognized objects from partial information. Even with very few features 

present (9-25% of object area shown), neural responses in the ventral visual stream, 

principally in the inferior occipital gyrus and fusiform gyrus, retained object selectivity. 

Visually selective responses to partial objects emerged about 100ms later than responses 

to whole objects. These delays persisted when controlling for differences in contrast, 

signal amplitude, and the strength of selectivity. Furthermore, the processing delays 

associated with interpreting objects from partial information increased along the visual 

hierarchy. These delays stand in contrast to other object transformations such as position 

or scale changes that do not lead to physiological or behavioral delays. Together, these 

results argue against a feed-forward explanation for recognition of partial objects and 

provide evidence for the involvement of highest visual areas in recurrent computations 

orchestrating pattern completion. 

 

Results 

We recorded intracranial field potentials (IFPs) from 1,699 electrodes in 18 

subjects (11 male, 17 right-handed, 8-40 years old) implanted with subdural electrodes to 

localize epileptic seizure foci. Subjects viewed images containing grayscale objects 

presented for 150 ms. After a 650 ms delay period, subjects reported the object category 

(animals, chairs, human faces, fruits, or vehicles) by pressing corresponding buttons on a 

gamepad (Figure 1A). In 30% of the trials, the objects were unaltered (referred to as the 

‘Whole’ condition). In 70% of the trials, partial object features were presented through 

randomly distributed Gaussian “bubbles” (Figure 1B, Experimental Procedures, 

referred to as the ‘Partial’ condition) (Gosselin and Schyns, 2001). The number of 

bubbles was calibrated at the start of the experiment such that performance was ~80% 

correct. The number of bubbles (but not their location) was then kept constant throughout 

the rest of the experiment. For 12 subjects, the objects were presented on a gray 

background (the ‘Main’ experiment). While contrast was normalized across whole 

objects, whole objects and partial objects had different contrast levels because of the gray 

background.  In 6 additional subjects, a modified experiment (the ‘Variant’ experiment) 

was performed where contrast was normalized between whole and partial objects by 

presenting objects on a background of phase-scrambled noise (Figure 1B).  
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The performance of all subjects was around the target correct rate (Figure 1C, 

79%±7%, mean±SD). Performance was significantly above chance (Main experiment: 

chance = 20%, 5-alternative forced choice; Variant experiment: chance = 33%, 3-

alternative forced choice) even when only 9-25% of the object was visible. As expected, 

performance for the whole condition was near ceiling (95±5%, mean±SD). The analyses 

presented throughout the manuscript were performed on correct trials only. 

 

Object selectivity was retained despite presenting partial information  

Consistent with previous studies, multiple electrodes showed strong visually 

selective responses to whole objects (Allison et al., 1999; Davidesco et al., 2013; Liu et 

al., 2009). An example electrode from the ‘Main’ experiment, located in the Fusiform 

Gyrus (see map of electrode locations in Figure 4E), had robust responses to several 

exemplars in the Whole condition, such as the one illustrated in the first panel of Figure 

2A. These responses could also be observed in individual trials of face exemplars (gray 

traces in Figure 2A-B, left). This electrode was preferentially activated in response to 

faces compared to the other objects in the Whole condition (Figure 2C, left). Responses 

to stimuli other than human faces were also observed, such as the responses to several 

animal (red) and fruit (orange) exemplars (Figure S1B).  

The neural responses in this example electrode were remarkably preserved in the 

Partial condition, where only 11±4% (mean±SD) of the object was visible. Despite the 

variability in bubble locations, robust responses were observed in single trials (Figure 2A 

and Figure 2B, right). Even when largely disjoint sets of features were presented, the 

evoked responses were similar (e.g., compare Figure 2A, third and fourth images). 

Because the bubble locations varied from trial to trial, there was significant variability in 

the latency of the visual response (Figure 2B, right); this variability affected the average 

responses to each category of partial objects (Figure 2C, right). Despite this variability, 

the electrode remained selective and kept the stimulus preferences at the category and 

exemplar level (Figure 2C). 

The responses of an example electrode from the ‘Variant’ experiment support 

similar conclusions (Figure 3). Even though only 21%±4% (mean±SD) of the object was 

visible, the electrode demonstrated robust responses in single trials (Figure 3A-B), and 
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strong selectivity both for whole objects and partial objects at the category level (Figure 

3C). While the selectivity was consistent across single trials, there was significantly more 

trial-to-trial variation in the timing of the responses to partial objects compared to whole 

objects (Figure 3B, top right).  

To measure the strength of selectivity, we employed two approaches. The first 

approach (denoted ‘ANOVA’) was a non-parametric one-way analysis of variance test to 

evaluate whether and when the variance in the IFP responses across categories was larger 

than the variance within a category. An electrode was denoted “selective” if, during 25 

consecutive milliseconds, the ratio of variances across versus within categories (F-

statistic) was greater than a significance threshold determined by a bootstrapping 

procedure to ensure a false discovery rate q<0.001 (F = 5.7) (Figure 2-3D). The ANOVA 

test evaluates whether the responses are statistically different when averaged across trials, 

but the brain needs to discriminate among objects in single trials. To evaluate the degree 

of selectivity in single trials, we employed a statistical learning approach to measure 

when information in the neural response became available to correctly classify the object 

into one of the five categories (denoted ‘Decoding’; Figure 2E, chance = 20%; Figure 

3E, chance = 33%). An electrode was considered “selective” if the decoding performance 

exceeded a threshold determined to ensure q < 0.001 (Experimental Procedures).  

Of the 1,699 electrodes, 210 electrodes (12%) and 163 electrodes (10%) were 

selective during the Whole condition in the ANOVA and Decoding tests, respectively. To 

be conservative, we focused subsequent analyses only on those electrodes selective in 

both tests, yielding 113 electrodes (7% of the total number of electrodes), 83 from the 

main experiment and 30 from the variant (Table 1). As a control, shuffling the object 

labels yielded only 2.78±0.14 (mean±s.e.m., 1000 iterations) electrodes (0.16% of the 

total). Similar to previous reports, the preferred category of different electrodes spanned 

all five object categories, and the electrode locations were primarily distributed along the 

ventral visual stream (Figure 4E-F) (Liu et al., 2009). As demonstrated for the examples 

in Figures 2 and 3, even though only 9-25% of each object was shown, 30 electrodes 

(24%) remained visually selective in the Partial condition (Main experiment: 22; Variant 

experiment: 8) whereas the shuffling control yielded an average of 0.06 and 0.04 

electrodes in the Main and Variant experiments respectively (Table 1).  
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The examples in Figure 2C and 3C seem to suggest that the response amplitudes 

were larger in the Whole condition. However, this effect was due to averaging over trials 

and the increased trial-to-trial variability in the response latency for the Partial condition 

(i.e. no amplitude changes are apparent in the single trial data shown in Figure 2B and 

3B). For the 22 electrodes selective during both conditions in the Main experiment, the 

IFP amplitude of the responses in the preferred category, defined as the range of the IFP 

signal from 50 to 500 ms, was not significantly reduced (Figure 4A, p=0.68, Wilcoxon 

rank-sum test). The variability in the latency and the waveform, however, reduced the 

strength of category selectivity in the Partial condition, as measured by the F-statistic 

(p<10-4, signed-rank test) and the decoding performance (p<10-4, signed-rank test). 

To compare different brain regions, we measured the percentage of electrodes in 

each gyrus that were selective in either the Whole condition or in both conditions (Figure 

4B-C, see Experimental Procedures for electrode localization). Consistent with 

previous reports, electrodes in both early (Occipital Pole and Inferior Occipital Gyrus) 

and late (Fusiform Gyrus and Inferior Temporal Gyrus) visual areas were selective in the 

Whole condition (Figure 4C, black dots) (Allison et al., 1999; Davidesco et al., 2013; 

Liu et al., 2009). The locations with the highest percentages of electrodes selective to 

partial objects were primarily in higher visual areas, such as the Fusiform Gyrus and 

Inferior Occipital Gyrus (Figure 4E, gray bars, p = 2×10-6 and 5×10-4 respectively, 

Fisher’s exact test).  

The observation that even non-overlapping sets of features can elicit robust 

responses (e.g., third and fourth panel in Figure 2A) suggests that the electrodes tolerated 

significant trial-to-trial variability in the visible object fragments. To quantify this 

observation across the population, we defined the percentage of overlap between two 

partial images of the same object by computing the number of pixels shared by the image 

pair divided by the object area (Figure 4D, insert). We considered partial images where 

the response to the preferred category was highly discriminable from the response to the 

non-preferred categories (Experimental Procedures). Even for these trials with robust 

responses, 45% of the image pairs (n = 10,438 total image pairs from the 22 electrodes in 

the Main experiment) had less then 5% overlap, and 11% of the pairs had less than 1% 



!

! 7!

overlap (Figure 4D). Furthermore, in every electrode, there existed pairs of robust 

responses where the partial images had <1% overlap.  

In sum, electrodes in the highest visual areas in the human ventral stream retained 

visual selectivity to partial objects, their responses could be driven by disjoint sets of 

object parts and the response amplitude but not the degree of selectivity was similar to 

that of whole objects. 

 

Delayed responses to partial objects 

 In addition to the changes in selectivity described above, the responses to partial 

objects were delayed compared to the corresponding responses to whole objects (e.g. 

compare Whole versus Partial in the single trial responses in Figure 2A-B and 3A-B). To 

compare the latencies of responses to Whole and Partial objects, we measured both 

selectivity latency and visual response latency. Selectivity latency indicates when 

sufficient information becomes available to distinguish among different objects or object 

categories, whereas the response latency denotes when the visual response differs from 

baseline (Experimental Procedures).  

Quantitative estimates of latency are difficult because they depend on multiple 

variables, including number of trials, response amplitudes and thresholds. Here we 

independently applied different measures of latency to the same dataset. The selectivity 

latency in the responses to whole objects for the electrode shown in Figure 2 was 100±8 

ms (mean ± 99% CI) based on the first time point when the F-statistic crossed the 

statistical significance threshold (Figure 2D, black arrow). The selectivity latency for the 

partial objects was 320±6 ms (mean ± 99% CI), a delay of 220 ms. A comparable delay 

of 180 ms between partial and whole conditions was obtained using the single-trial 

decoding analyses (Figure 2E). Similar delays were apparent for the example electrode 

in Figure 3. 

We considered all electrodes in the Main experiment that showed selective 

responses to both whole objects and partial objects (n=22). For the responses to whole 

objects, the median latency across these electrodes was 155 ms, which is consistent with 

previous estimates (Allison et al., 1999; Liu et al., 2009). The responses to partial objects 

showed a significant delay in the selectivity latency as measured using ANOVA (median 
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latency difference between Partial and Whole conditions = 117 ms, Figure 4E, black 

dots, p < 10-5) or Decoding (median difference = 158 ms, Figure 4F, black dots, p < 10-

5).  

We examined several potential factors that might correlate with the observed 

latency differences. Stimulus contrast is known to cause significant changes in response 

magnitude and latency across the visual system (e.g. (Reich et al., 2001; Shapley and 

Victor, 1978)). As noted above, there was no significant difference in the response 

magnitudes between Whole and Partial conditions (Figure 4A). To further investigate 

whether contrast could explain the physiological delays observed in the Partial condition, 

we examined the experimental variant where the images had the same contrast in both 

Whole and Partial conditions (Figure 1B). In this Variant experiment, we still observed 

latency differences between conditions (median difference = 73 ms (ANOVA), Figure 

4E, and median difference = 93 ms (Decoding), Figure 4F, gray circles).  

We asked whether the observed delays could be related to differences in the IFP 

response strength or the degree of selectivity by conducting an analysis of covariance 

(ANCOVA). ANCOVA is a general linear model that tests for the significance of an 

effect while controlling for the variance contributed by other factors. The latency 

difference between conditions, as measured with the F-statistic, was significant even 

when accounting for differences in IFP amplitude (p < 10-9) or strength of selectivity (p < 

10-8). Even though the average amplitudes were similar for whole and partial objects 

(Figure 4A), the variety of partial images could include a wider distribution with weak 

stimuli that failed to elicit a response. To evaluate whether such potential weaker 

responses could contribute to the latency differences, we identified those trials where the 

decoder was correct at 500ms and evaluated the decoding dynamics before 500 ms under 

these matched performance conditions. The latency difference between whole and partial 

conditions was still statistically significant when matching decoding performance 

between conditions (p<10-7). 

Differences in eye movements between whole and partial conditions could 

potentially contribute to latency delays. We minimized the impact of eye movements by 

using a small stimulus size (5 degrees), fast presentation (150 ms) and trial order 

randomization. Furthermore, we recorded eye movements along with the neural 
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responses in two subjects. There were no clear differences in eye movements between 

whole versus partial objects in these two subjects, and those subjects contributed 5 of the 

22 selective electrodes in the Main experiment. We also recorded eye movements from 

20 healthy volunteers and found no difference in the statistics of saccades and fixation 

between Whole and Partial conditions.  

Several studies have documented visual selectivity in different frequency bands of 

the IFP responses including broadband and gamma band signals (Davidesco et al., 2013; 

Liu et al., 2009; Vidal et al., 2010). We computed the power in the Gamma band (70-100 

Hz) using a Hilbert Transform, and applied the previously described ANOVA and 

Decoding analyses. The response delays during the Partial condition documented above 

for the broadband signals were also observed when measuring the selectivity latency in 

the 70-100 Hz frequency band. The median latency difference between the Partial and 

Whole conditions in the Gamma band was 157 ms (70-100 Hz, n = 14).  

Because the spatial distribution of bubbles varied from trial to trial, each image in 

the Partial condition revealed different visual features. To account for the stimulus 

heterogeneity, we also measured the latency of the visual response in each individual trial 

by determining when the IFP amplitude exceeded a threshold set as three standard 

deviations above the baseline activity. The latency differences between Whole and Partial 

conditions were apparent even in single trials (e.g. Figure 2A, 2F). These latency 

differences depended on the sets of features revealed on each trial. When we presented 

repetitions of partial objects with one fixed position of bubbles (the ‘Partial Fixed’ 

condition). Under those conditions, the IFP timing was more consistent across trials 

(Figure 3C, right bottom), but the latencies were still longer for partial objects than for 

whole objects.  

The average response latencies in the Whole and Partial condition for the 

preferred category for the first example electrode were 172 and 264 ms respectively; the 

distributions in the two groups differed significantly (Figure 2F, Wilcoxon rank-sum 

test, p < 10-6). The distribution of response latencies in the Whole condition was highly 

peaked (Figure 2F, 3F), whereas the distribution of latencies in the Partial condition 

showed a larger variation, driven by the distinct visual features revealed in each trial. 
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Across the population, delays were observed in the visual response latencies (Figure 5A, 

rank-sum test, p < 10-15).  

Delays in the response latency between Partial and Whole conditions had a 

distinct spatial distribution: most of the delays occurred in higher visual areas such as the 

fusiform gyrus and inferior temporal gyrus (Figure 5B). The latency difference was 

smaller for electrodes in early visual areas (occipital cortex) versus late visual areas 

(temporal lobe), as shown in Figure 5C (p=0.02, t-test). There was also a significant 

correlation between the latency difference and the electrode position along the anterior-

posterior axis of the temporal lobe (Spearman’s correlation = 0.43, permutation test, p = 

0.02).  

The analyses presented thus far only measured selectivity latency at the level of 

individual electrodes, but the subject has access to activity across many regions. To 

assess selectivity at a population level, we combined information from multiple 

electrodes and across subjects by constructing pseudopopulations (Hung et al., 2005) 

(Experimental Procedures). Decoding performance using electrode ensembles was both 

fast and accurate (Figure 6C). Category information emerged within 150 ms for whole 

objects (black thick line) and 260 ms for partial objects (gray thick line), and reached 

80% and 45% correct rate, respectively (chance = 20%). Even for the more difficult 

problem of identifying the stimulus exemplar (chance = 4%), decoding performance 

emerged within 135 ms for whole objects (black dotted line) and 273 ms for partial 

objects (gray dotted line). Exemplar decoding accuracy reached 61% for whole objects 

and 14% for partial objects. Together, these results suggest that, within the sampling 

limits of our techniques, electrode ensembles also show delayed selectivity for partial 

objects. 

In sum, we have independently applied several different estimates of latency that 

use statistical (ANOVA), machine learning (Decoding), or threshold (Response latency) 

techniques. These latency measures were estimated while taking into account changes in 

contrast, signal strength and degree of selectivity. Each definition of latency requires 

different assumptions and emphasizes different aspects of the response, leading to 

variations in the absolute values of the latency estimates. Yet, independently of the 



!

! 11!

specific definition, the latencies for partial objects were consistently delayed with respect 

to the latencies to whole objects (the multiple analyses are summarized in Figure 6A).  

In contrast to the processing of whole objects, which can be explained by a feed-

forward architecture, the increased latencies observed with partial objects suggests a role 

for recurrent or top-down computations. We hypothesized that disrupting such recurrent 

computations would affect behavior for partial, but not whole, objects. To this end, we 

performed a separate backward masking experiment on healthy subjects. Backward 

masking is thought to disrupt recurrent processing in the ventral visual stream 

(Discussion). This psychophysics experiment was similar to the physiology experiment 

except for two main differences. First, the images were presented for variable times, 

ranging from 33 to 150 ms, which we refer to as the stimulus-onset asynchrony (SOA). 

Second, the images were followed by either a gray screen (unmasked condition) as 

before, or a phase-scrambled mask (masked condition) (Figure 7A). For whole objects, 

the backward mask did not significantly affect performance (Figure 7B, black solid line 

versus black dotted line). For occluded objects, however, performance decreased 

significantly with a backward mask for short SOAs compared to the unmasked condition 

(Figure 7B, gray solid line versus gray dotted line). For SOAs longer than 100 ms, the 

mask lost its efficacy. 

Finally, we evaluated the performance of a purely bottom-up architecture in 

recognizing the same set of objects and partial objects. We considered the HMAX 

architecture as implemented in (Serre et al., 2007). We used the same 25 images 

presented in the psychophysics experiment  (without masking) and in the physiology 

experiment and used an SVM classifier to decode the identity of the image (Hung et al., 

2005; Serre et al., 2007). The results of these analyses are presented in Figure 8B, red 

curve. While the purely bottom-up architecture could well identify the objects under 

reduced amounts of occlusion, its performance dropped significantly with increasing 

occlusion. Impairment was notable even under amounts of occlusion that would not lead 

to decreased psychophysical performance. As a proof-of-principle demonstration, we 

implemented an attractor network (schematically illustrated in Figure 8A) at the top of 

the bottom-up architecture. The addition of these recurrent connections to the bottom-up 
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architecture increased performance in recognition of occluded images (Figure 8B, blue 

curve).  

 

Discussion 

 

The visual system must maintain selectivity to individual objects while remaining 

tolerant to a myriad of transformations of those objects. Our results show that neural 

activity in the human occipitotemporal cortex remained visually selective (e.g. Figure 2) 

even when limited partial information about each object was presented (on average, only 

18% of each object was visible). Despite the trial-to-trial variation in the features 

presented, the field potential response waveform, amplitude and object preferences were 

similar between the Whole and Partial conditions (Figures 2-4). The neural responses to 

partial objects required approximately 100 ms of additional processing time compared to 

whole objects (Figures 4-6). While the exact value of this delay may depend on stimulus 

parameters and task conditions, the requirement for additional computation was robust to 

a variety of different definitions of latencies including single-trial analyses, different 

frequency bands and different statistical comparisons (Figure 6) and persisted when 

accounting for changes in image contrast, signal strength, and the strength of selectivity. 

This additional processing time was more pronounced in higher areas of the temporal 

lobe including inferior temporal cortex and the fusiform gyrus than in earlier visual areas 

(Figure 5B). 

Studies of object completion typically fall into two groups in terms of the stimuli 

used. Neurophysiological recordings in macaque IT have described neurons whose 

selectivity to simple geometric shapes is relatively invariant to occlusion (Kovacs et al., 

1995b). Yet, other studies using more naturalistic stimuli with textures show that IT 

neuronal activity depends on the diagnostic value of the occluded parts (Issa and Dicarlo, 

2012; Nielsen et al., 2006). These different findings illustrate the potential differences 

between amodal completion or line closure processes, and object completion arising from 

integrating information from partial textures. Our stimuli and findings address this second 

group, and do not test amodal completion. Both types of information are important to 
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recognizing occluded objects, and whether they are orchestrated by similar or perhaps 

different mechanisms remains an important question for future work. 

The observed speed of initial selective responses to presentation of whole objects 

is consistent with a largely bottom-up cascade of processes leading to recognition (Deco 

and Rolls, 2004; Fukushima, 1980; LeCun et al., 1998; Riesenhuber and Poggio, 1999; 

Rolls, 1991)(Hung et al., 2005; Keysers et al., 2001; Liu et al., 2009; Optican and 

Richmond, 1987; Thorpe et al., 1996). For partial objects, however, visually selective 

responses were significantly delayed with respect to whole objects (Figures 5-6). These 

physiological delays argue against a purely bottom-up signal cascade, and stand in 

contrast to other transformations (scale, position, rotation) that do not induce additional 

neurophysiological delays (Desimone et al., 1984; Ito et al., 1995; Liu et al., 2009; 

Logothetis et al., 1995; Logothetis and Sheinberg, 1996).  

Delays in response timing have been used as an indicator for recurrent 

computations and/or top-down modulation (Buschman and Miller, 2007; Keysers et al., 

2001; Lamme and Roelfsema, 2000; Schmolesky et al., 1998). In line with these 

arguments, we propose that the additional processing time implied by the delayed 

physiological responses can be ascribed to recurrent computations that rely on prior 

knowledge about the objects to be recognized (Ahissar and Hochstein, 2004). Anatomical 

studies have demonstrated extensive horizontal and top-down projections throughout 

visual cortex that could instantiate such recurrent computations (Callaway, 2004; 

Felleman and Van Essen, 1991). Several areas where such top-down and horizontal 

connections are prevalent showed selective responses to partial objects in our study 

(Figure 4B-C).  

It is unlikely that these delays were due to the selective signals to partial objects 

propagating at a slower speed through the visual hierarchy in a purely feed-forward 

fashion. Selective electrodes in earlier visual areas did not have a significant delay in the 

response latency, which argues against latency differences being governed purely by low-

level phenomena. Delays in the response latency were larger in higher visual areas, 

suggesting that top-down and/or horizontal signals within those areas of the temporal 

lobe are important for pattern completion (Figure 6B). Additionally, feedback is known 

to influence responses in visual areas within 100-200ms after stimulus onset, as 
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evidenced in studies of attentional modulation that involve top-down projections 

(Davidesco et al., 2013; Lamme and Roelfsema, 2000; Reynolds and Chelazzi, 2004). 

Those studies report onset latencies of feedback similar to the delays observed here in the 

same visual areas along the ventral stream.  

The selective responses to partial objects were not exclusively driven by a single 

object patch (Figure 2A-B, 3A-B). Rather, they were tolerant to a broad set of partial 

feature combinations. While our analysis does not explicitly rule out common features 

shared by different images with largely non-overlapping pixels, the large fraction of trials 

with images with low overlap that elicited robust and selective responses makes this 

explanation unlikely (Figure 4D). The response latencies to partial objects were 

dependent on the features revealed: when we fixed the location of the bubbles, the 

response timing was consistent from trial to trial (Figure 3B).  

A role for recurrent computations is supported by the psychophysics experiments 

involving backward masking (Figure 7). Neurophysiological studies in V1 (Macknik and 

Livingstone, 1998), ITC (Kovacs et al., 1995a; Rolls et al., 1999), and frontal eye fields 

(Thompson and Schall, 1999) suggest that the onset of the backward mask may disrupt 

any residual information about the preceding image in early visual areas, causing a 

mismatch between bottom up inputs and top-down signals from higher visual areas. This 

interpretation is consistent with the observation that backward masking caused more 

impairment in recognition of occluded objects compared to whole objects, particularly at 

short stimulus onset asynchrony values (Figure 7). These results suggest that recognizing 

occluded objects could be implemented via recurrent processing, and that disrupting this 

processing directly affects behavior. Backward masking is also known to disrupt the 

feed-forward processing of objects, but such effects occur at much smaller SOAs than the 

ones considered here (Felsten and Wasserman, 1980).  

 The distinction between purely bottom-up processing and recurrent computations 

confirms predictions from computational models of visual recognition and attractor 

networks. Whereas recognition of whole objects has been successfully modeled by purely 

bottom-up architectures (Deco and Rolls, 2004; Fukushima, 1980; LeCun et al., 1998; 

Riesenhuber and Poggio, 1999), those models struggle to identify objects with only 

partial information (Johnson and Olshausen, 2005; O'Reilly et al., 2013). Instead, 
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computational models that are successful at pattern completion involve recurrent 

connections (Hopfield, 1982; Lee and Mumford, 2003; O'Reilly et al., 2013). Different 

computational models of visual recognition that incorporate recurrent computations 

include connections within the ventral stream (e.g. from ITC to V4) and/or from pre-

frontal areas to the ventral stream. Our results implicate higher visual areas (Figure 4C, 

5B) as participants in the recurrent processing network involved in recognizing objects 

from partial information. Additionally, the object-dependent and unimodal distribution of 

response latencies to partial objects (e.g. Figure 2F) suggest models that involve graded 

evidence accumulation as opposed to a binary switch. 

 Recognizing objects from partial information involves extrapolation and 

evaluating the extent to which the fragments are consistent with a stored representation of 

the whole object. Attractor networks have been shown to be able to solve the problem of 

pattern completion. In a typical implementation, neurons in the network communicate in 

all-to-all fashion with a symmetrical connectivity matrix (Hopfield, 1982). Under these 

conditions, it is possible to define the weights so that the dynamics of the network is 

described by an energy function, which decreases monotonically and is bounded below, 

converging onto attractor states. Starting the network at states that represent partial 

information leads to convergence to the attractors and hence pattern completion. A 

simple demonstration of how this could work in the context of visual recognition is 

presented in Figure 8. The additional recurrent computations implied by this network are 

consistent with the physiological and behavioral delays demonstrated here.  

The current observations highlight the need for dynamical models of recognition 

to describe where, when and how recurrent processing interacts with feed-forward signals 

to describe object completion. Our findings provide spatial and temporal bounds to 

constrain these models. Such models should achieve recognition of objects from partial 

information within 200 to 300 ms, demonstrate delays in the visual response that are 

feature-dependent, and include a graded involvement of recurrent processing in higher 

visual areas. We speculate that the proposed recurrent mechanisms may be employed not 

only in the context of object fragments but also in visual recognition for other types of 

transformations that impoverish the image or increase task difficulty. The behavioral and 

physiological observations presented here suggest that the involvement of recurrent 
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computations during object completion, involving horizontal and top-down connections, 

result in a representation of visual information in the highest echelons of the ventral 

visual stream that is selective and robust to a broad range of possible transformations.  
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Experimental Procedures 
 

Physiology Subjects 

Subjects were 18 patients (11 male, 17 right-handed, 8-40 years old, Table S1) with 

pharmacologically intractable epilepsy treated at Children’s Hospital Boston (CHB), 

Brigham and Women’s Hospital (BWH), or Johns Hopkins Medical Institution (JHMI). 

They were implanted with intracranial electrodes to localize seizure foci for potential 

surgical resection. All studies described here were approved by each hospital’s 

institutional review boards and were carried out with the subjects’ informed consent. 

Electrode locations were driven by clinical considerations; the majority of the electrodes 

were not in the visual cortex. 

 

Recordings 

Subjects were implanted with 2mm diameter intracranial subdural electrodes (Ad-Tech, 

Racine, WI, USA) that were arranged into grids or strips with 1 cm separation. Each 

subject had between 44 and 144 electrodes (94±25, mean±SD), for a total of 1,699 

electrodes. The signal from each electrode was amplified and filtered between 0.1 and 

100 Hz with sampling rates ranging from 256 Hz to 1000 Hz at CHB (XLTEK, Oakville, 

ON, Canada), BWH (Bio-Logic, Knoxville, TN, USA) and JHMI (Natus, San Carlos, CA 

and Nihon Kohden, Tokyo, Japan). A notch filter was applied at 60 Hz. All the data were 

collected during periods without any seizure events.  In two subjects, eye positions were 

recorded simultaneously with the physiological recordings (ISCAN, Woburn, MA). 

 

Neurophysiology experiments 

After 500 ms of fixation, subjects were presented with an image (256x256 pixels) 

of an object for 150 ms, followed by a 650 ms gray screen, and then a choice screen 

(Figure 1A). The images subtended 5 degrees of visual angle. Subjects performed a 5-

alternative forced choice task, categorizing the images into one of five categories 

(animals, chairs, human faces, fruits, or vehicles) by pressing corresponding buttons on a 

gamepad (Logitech, Morges, Switzerland). No correct/incorrect feedback was provided. 

Stimuli consisted of contrast-normalized grayscale images of 25 objects, 5 objects in each 
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of the aforementioned 5 categories. In approximately 30% of the trials, the images were 

presented unaltered (the ‘Whole’ condition). In 70% of the trials, the visual features were 

presented through Gaussian bubbles of standard deviation 14 pixels (the ‘Partial 

condition, see example in Figure 1B) (Gosselin and Schyns, 2001). The more bubbles, 

the more visibility. Each subject was first presented with 40 trials of whole objects, then 

80 calibration trials of partial objects, where the number of bubbles was titrated in a 

staircase procedure to set the task difficulty at ~80% correct rate. The number of bubbles 

was then kept constant throughout the rest of the experiment. The average percentage of 

the object shown for each subject is reported in Figure 1C. Unless otherwise noted 

(below), the positions of the bubbles were randomly chosen in each trial. The trial order 

was pseudo-randomized.  

The contrast of the objects was normalized across the 25 exemplars in the Whole 

condition. However, due to the random positioning of the bubbles, the contrast could 

change across different trials in the Partial condition.  To evaluate the extent to which 

these differences could contribute to the results, 6 of the 18 subjects performed a variant 

of the main experiment with three key differences. First, contrast was normalized 

between the Whole and Partial conditions by presenting all objects in a phase-scrambled 

background (Figure 1B). Second, in 25% of the Partial condition trials, the spatial 

distribution of the bubbles was fixed to a single seed (the ‘Partial Fixed’ condition). Each 

of the images in these trials was identical across repetitions. Third, because experimental 

time was limited, only objects from three categories (animals, human faces and vehicles) 

were presented to collect enough trials in each condition.  

 

Psychophysics experiments 

The experiment used while collecting neurophysiological data was not designed to collect 

behavioral reaction time data. We conducted a separate psychophysics test on 10 healthy 

volunteers (6 male, 10 right-handed)  (Figure 7). The same stimulus set of 25 objects 

used in the neurophysiology experiments was shown in either the Whole or Occluded 

condition, and subjects categorized the object by pressing corresponding buttons on a 

gamepad. Eye location was recorded using an infrared camera eye tracker (EyeLink, SR 

Research, Mississauga, Canada). Each trial was initiated by fixating on a cross. Each 



!

! 19!

image was presented for a variable time (33 ms, 50 ms, 100 ms or 150 ms), which we 

denote as the stimulus onset asynchrony (SOA). For half the trials, the image presentation 

was followed by a gray screen for 500 ms, and then a choice screen. For the other half, 

the image presentation was followed by a phase-scrambled mask for 500 ms, and then a 

choice screen. The experiment consisted of 1,200 trials, and lasted approximately one 

hour.  

 

Psychophysics eye-tracking 

During the physiological recordings, we collected eye tracking data for two subjects. To 

further evaluate the type of eye movements that subjects execute under the same 

experimental conditions, we conducted a separate psychophysics test on 20 healthy 

volunteers (8 male, 15 right-handed). These subjects completed the same two 

experiments (10 subjects, Main Experiment, 10 subjects, Variant experiment). Eye 

location was recorded using an infrared camera eye tracker (EyeLink, SR Research, 

Mississauga, Canada). The experiment consisted of 1,200 trials, and lasted approximately 

one hour. We did not record physiological data from these additional subjects. 

 

Data Analyses 

 

Electrode Localization 

Electrodes were localized by co-registering the preoperative magnetic resonance imaging 

(MRI) with the postoperative computer tomography (CT) (Destrieux et al., 2010; Liu et 

al., 2009). For each subject, the brain surface was reconstructed from the MRI and then 

assigned to one of 75 regions by Freesurfer. Each surface was also co-registered to a 

common brain for group analysis of electrode locations. In Figure 5B, we computed the 

Spearman’s correlation coefficient between the latency differences (Partial - Whole) and 

distance along the posterior-anterior axis of the temporal lobe. In Figure 4C, we 

partitioned the electrodes into three groups: Fusiform Gyrus, Inferior Occipital Gyrus, 

and Other. We used the Fisher’s exact test to assess whether the proportion of electrodes 

selective in both conditions is greater in the Fusiform Gyrus versus Other, and in Inferior 

Occipital Gyrus versus Other.  
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Visual response selectivity 

All analyses in this manuscript used correct trials only. Noise artifacts were 

removed by omitting trials where the intracranial field potential (IFP) amplitude 

exceeded five times the standard deviation. The responses from 50 to 500 ms after 

stimulus onset were used in the analyses. 

ANOVA. We performed a non-parametric one-way analysis of variance (ANOVA) of the 

IFP responses. For each time bin, the F-statistic (ratio of variance across object categories 

to variance within object categories) was computed on the IFP response (Keeping, 1995). 

Electrodes were denoted ‘selective’ in this test if the F-statistic crossed a threshold 

(described below) for 25 consecutive milliseconds (e.g. Figure 2D). The latency was 

defined as the first time of this threshold crossing. The number of trials in the two 

conditions (Whole and Partial) was equalized by random subsampling; 100 subsamples 

were used to compute the average F-statistic. A value of 1 in the F-statistic indicates no 

selectivity (variance across categories comparable to variance within categories) whereas 

values above 1 indicate increased selectivity. 

Decoding. We used a machine learning approach to determine if, and when, sufficient 

information became available to decode visual information from the IFP responses in 

single trials (Bishop, 1995). For each time point t, features were extracted from each 

electrode using Principal Component Analysis (PCA) on the IFP response from [50 t] ms, 

and keeping those components that explained 95% of the variance. The features set also 

included the IFP range (max – min), time to maximum IFP, and time to minimum IFP. A 

multi-class linear discriminant classifier with diagonal covariance matrix was used to 

either categorize or identify the objects. Ten-fold stratified cross-validation was used to 

separate the training sets from the test sets to avoid overfitting. The proportion of trials 

where the classifier was correct in the test set is denoted the ‘Decoding Performance’ 

throughout the text (e.g. Figure 2E). In the Main experiment, a decoding performance of 

20% (1/5) indicates chance for categorization and 4% (1/25) indicates chance for 

identification. The dataset sizes in the Whole and Partial conditions were equalized by 

subsampling; we computed the average Decoding Performance across 100 different 

subsamples. An electrode was denoted ‘selective’ if the decoding performance crossed a 
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threshold (described below) at any time point t, and the latency was defined as the first 

time of this threshold-crossing. 

Pseudopopulation. Decoding performance was also computed from an ensemble of 

electrodes across subjects by constructing a pseudopopulation, and then performing the 

same analyses described above (Figure 6A). The pseudopopulation pooled responses 

across subjects (Hung et al., 2005; Mehring et al., 2003; Pasupathy and Connor, 2002). It 

should be noted that such pooling involves several assumptions including similarities 

across subjects and ignoring trial-to-trial correlations across electrodes (for discussion, 

see (Meyers and Kreiman, 2011)). The features for each trial in this pseudopopulation 

were generated by first randomly sampling exemplar-matched trials without replacement 

for each member of the ensemble, and then concatenating the corresponding features. The 

pseudopopulation size was set by the minimum dataset size of the subject, which in our 

data was 100 trials (4 from each exemplar). Because of the reduced data set size, four-

fold cross-validation was used. 

Significance Thresholds. The significance thresholds for ANOVA, Decoding and d’, 

were determined by randomly shuffling the category labels 10,000 times, and using the 

value of the 99.9 percentile (ANOVA: F = 5.7, Decoding: 23%, d’ = 0.7). This represents 

a false discovery rate q = 0.001. As discussed in the text, we further restricted the set of 

electrodes by considering the conjunction of the ANOVA and Decoding tests. We 

evaluated this threshold by performing an additional 1,000 shuffles and measuring the 

number of selective electrodes that passed the same selectivity criteria by chance. In 

Table 1, we present the number of electrodes that passed each significance test and the 

number of electrodes that passed the same tests after randomly shuffling the object labels. 

 

Latency Measures 

We considered several different metrics to quantify the selectivity latency (i.e. the first 

time point when selective responses could be distinguished), and the visual response 

latency (i.e. the time point when a visual response occurred). These measures are 

summarized in Figure 6. 
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Selectivity latency. The selectivity latency represented the first time point when different 

stimuli could be discriminated and was defined above for the ANOVA and Decoding 

analyses. 

 

Response Latency 

Latency of the visual response was computed at a per-trial level by determining the time, 

in each trial, when the IFP amplitude exceeded 3 standard deviations above the baseline 

activity. Only trials corresponding to the preferred category were used in the analysis. To 

test the multimodality of the distribution of response latencies, we used Hartigan’s dip 

test. In 27 of the 30 electrodes, the unimodality null hypothesis could not be rejected (p > 

0.05).  

 

Frequency Band Analyses 

Power in the Gamma frequency band (70-100 Hz) was evaluated by applying a 5th order 

Butterworth filter bandpass, and computing the magnitude of the analytical representation 

of the signal obtained with the Hilbert transform. The same analyses (ANOVA, 

Decoding, Per-Trial Latency) were applied to the responses from all electrodes in 

different frequency bands.  

 

Bubble Overlap Analyses 

For each pair of partial object trials, the percent of overlap was computed by dividing the 

number of pixels that were revealed in both trials by the area of the object (Figure 4D). 

Because low degree of object overlap would be expected in trials with weak 

physiological responses, we focused on the most robust responses for these analyses by 

considering those trials when the IFP amplitude was greater than the 90th percentile of 

the distribution of IFP amplitudes of all the non-preferred category trials. Note that this 

analysis includes all 22 electrodes in the main experiment, even though 12 of the 22 

electrodes had either too few trials or too many bubbles to generate enough low overlap 

pairs for this analysis. Exclusion of those electrodes would further reinforce the 

conclusions in the text by increasing the percentage of discriminable pairs with <5% and 

<1% overlap to 73% and 27%, respectively. 
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Table 1  
Experiment Frequency Band Whole Shuffled Both Shuffled Figures

Main Broadband 83 (1.66±0.07) 22 (0.06±0.01) 4, 5A-E, 6
Variant Broadband 30 (1.12±0.12) 8 (0.04±0.03) 4E-F, 5A-E; 6
Main Gamma 53 (1.56±0.05) 14 (0.04±0.01) 5F; 6D

 
Table 1: Number of selective electrodes 

For the experiment and frequency bands reported in the main text, this table shows the 

number of electrodes selective to whole images (‘Whole’) or to both whole and partial 

images (‘Both’). Also reported is the number of selective electrodes found when the 

object category labels were shuffled (mean±s.e.m., n=1000 iterations).   
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Figure Legends 

Figure 1: Experimental design and behavioral performance 

(A) After 500 ms fixation, an image containing a whole object or a partial object was 

presented for 150 ms. Subjects categorized objects into one of five categories (5-

Alternative Forced Choice) following a choice screen. Presentation order was pseudo-

randomized.  

(B) Example images used in the task. Objects were either unaltered (Whole) or presented 

through Gaussian bubbles (Partial). For 12 subjects, the background was a gray screen 

(Main experiment), and for 6 subjects the background was phase-scrambled noise 

(Variant experiment). In this example, the object is seen through 5 bubbles (18% of 

object area shown). The number of bubbles was titrated for each subject to achieve 80% 

performance. Stimuli consisted of 25 different objects belonging to five categories.  

(C) Above, percentage of the object visible (mean±SD) for each subject in the Main 

experiment (left) and the contrast-normalized Variant (right). Below, percentage of 

correct trials (performance) for Whole (black) and Partial (gray) objects. Average 

performance for Partial trials was 79±7 %, mean±SD (dashed line), well above chance 

(solid line).  

 

Figure 2: Example physiological responses from Main experiment 

Example responses from an electrode in the left Fusiform Gyrus.  

(A) Intracranial field potential (IFP) responses to an individual exemplar object. For the 

Whole condition, the average response (green) and single trial traces (gray) are shown. 

For the Partial condition, example single trial responses (green, n=1) to different partial 

images of the same exemplar (top row) are shown. The response peak time is marked on 

the x-axis. The dashed line indicates the stimulus onset time and the black bar indicates 

stimulus presentation duration (150 ms).  

(B) Raster of the neural responses for Whole (left, 52 trials) and Partial (right, 395 trials) 

objects for the category that elicited the strongest responses (human faces). Rows 

represent individual trials.  Dashed lines separate responses to the 5 face exemplars. The 

color indicates the IFP at each time point (bin size = 2 ms, see scale on top).  
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(C) Average IFP response to Whole (left) and Partial (right) objects belonging to five 

different categories (animals, chairs, human faces, fruits, and vehicles, see color map on 

top). Shaded areas around each line indicate s.e.m. The gray rectangle denotes the image 

presentation time (150 ms). The total number of trials is indicated on the bottom right of 

each subplot.   

(D) Selectivity was measured by computing the F-statistic at each time point for Whole 

(black) and Partial (gray) objects. Arrows indicate the first time point when the F-statistic 

was greater than the statistical threshold (black dashed line) for 25 consecutive 

milliseconds.  

(E) Decoding performance (mean±SD) using a linear multi-class discriminant algorithm 

in classifying trials into one of five categories. Arrows indicate the first time when 

decoding performance reached the threshold for statistical significance (black dashed 

line). Chance is 20% (blue dashed line).  

(F) Distribution of the visual response latency across trials for Whole (black) and Partial 

(gray) objects, based on when the IFP in individual trials was significantly above baseline 

activity. The distribution is based on kernel density estimate (bin size = 6 ms). The 

arrows denote the distribution means. 

 

Figure 3: Second example of physiological responses from Variant experiment 

Example responses from an electrode in the left Inferior Temporal Gyrus. The format and 

conventions are as in Figure 2, except that only three categories were tested, and the 

Partial Fixed condition was added in part A and B (Experimental Procedures). Note 

that the statistical thresholds for the F-statistic and decoding performance differ from 

those in Figure 2 because of the different number of categories.  

 

Figure 4: Neural responses remained visually selective despite partial information 

(A) Average IFP amplitude  across trials (N) in 

response to partial versus whole objects for electrodes that were visually selective in the 

Whole condition (blue, n=61+22), and electrodes that were visually selective in both 

Whole and Partial conditions (gray, n=22) (Main experiment). Most of the data clustered 

A = (1 / N )
i=1

i=N

∑max(IFPi (t))−min(IFPi (t))
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around the diagonal (dashed line). Inset, distribution of suppression index: !!!!"# −
!!"#$%"& /!!!!"# .  

(B) Locations of electrodes that showed visual selectivity in both Whole and Partial 

conditions. Example electrodes from Figure 2 and 3 are marked by arrows. Colors 

indicate different brain gyri.  

(C) Percent of total electrodes in each region that were selective in either the Whole 

condition (black) or in both conditions (gray). Color in the location name corresponds to 

the brain map in part E. The number of selective electrodes is shown next to each bar. 

Only regions with at least one electrode selective in both conditions are shown. 

 (D) For all pairs of discriminable trials (n = 10,438 pairs from 22 selective electrodes), 

we computed the distribution of the percent overlap in shared pixels. The percent overlap 

between two pairs of trials (inset, red and blue bubbles) was defined as the number of 

shared pixels (black) divided by the total object area (area inside gray outline).  

(E) Latency of selective responses, as measured through ANOVA (e.g. Figure 2D) for 

electrodes selective in both Whole and Partial conditions from the Main (black, n=22) 

and Variant (gray, n=8) experiments. The latency distributions were significantly 

different (signed-rank test, main experiment: p < 10-5, variant experiment: p = 0.02).  

(F) Latency as measured by the machine-learning decoding analysis (e.g. Figure 2E). 

These latency distributions were significantly different (signed-rank test, main 

experiment: p < 10-5, variant experiment: p = 0.004).  

  

Figure 5: Increased response latency for object completion 

 (A) Distribution of visual response latencies in single trials for Whole (black) and Partial 

(gray) objects (as illustrated in Figure 2F). These distributions were significantly 

different (rank-sum test, p<10-15). The vertical dashed lines denote the means of each 

distribution.  

(B) Brain map of electrodes selective in both conditions, colored by the difference in the 

response latency (Partial – Whole; see color scale on the bottom).  

(C) Comparison of response latency differences (Partial – Whole) between electrodes in 

occipital lobe (early visual) and temporal lobe (late visual). 

 Figure 6: Summary of Latency Measurements 
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 (A) Decoding performance from pseudopopulation of 60 electrodes for categorization 

(thick lines) or exemplar identification (dotted lines) for Whole (black) or Partial (gray) 

conditions (Experimental Procedures). Horizontal lines indicate chance for 

categorization (20%) and identification (4%). Error bars represent standard deviation. 

The 60 electrodes used in this analysis were selected using their rank-order based on their 

individual decoding performance on training data. 

(B) Summary of latency difference between Partial and Whole conditions for multiple 

definitions of latency (parentheses mark the figure source). Positive values means 

increased latency in the Partial condition. Box plots represent the median and quartile 

across the selective electrodes. For the Variant experiment, individual electrodes are 

plotted since the total number of electrodes n is small.  
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