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Abstract

In this paper we construct an atlas that summarizes functional connectivity characteristics of a 

cognitive process from a population of individuals. The atlas encodes functional connectivity 

structure in a low-dimensional embedding space that is derived from a diffusion process on a 

graph that represents correlations of fMRI time courses. The functional atlas is decoupled from the 

anatomical space, and thus can represent functional networks with variable spatial distribution in a 

population. In practice the atlas is represented by a common prior distribution for the embedded 

fMRI signals of all subjects. We derive an algorithm for fitting this generative model to the 

observed data in a population. Our results in a language fMRI study demonstrate that the method 

identifies coherent and functionally equivalent regions across subjects. The method also 

successfully maps functional networks from a healthy population used as a training set to 

individuals whose language networks are affected by tumors.

Introduction

The functional architecture of the cerebral cortex includes regions and networks of regions 

that become active at different times. The temporal profiles range from brief activity during 

specific tasks, such as processing of individual visual percepts (Kveraga et al., 2011), to 

extended periods of resting state in the absence of external stimuli, when the brain is 

suspected to engage in activities such as memory encoding (Buckner et al., 2008). 

Functional networks vary spatially across individuals due to natural variability (Saxe et al., 

2006; Fedorenko and Kanwisher, 2011), developmental processes in early childhood (Kuhl, 

2010) or adulthood (Elbert and Rockstroh, 2004), or due to pathology (Elkana et al., 2009). 

Reorganization in the cerebral system can occur over remarkably short periods of time 
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(Elbert and Rockstroh, 2004; Scholz et al., 2009). The brain can sustain intact functionality 

even in the case of substantial damage to anatomical sites due to lesions (Desmurget et al., 

2007). In both healthy brains and pathology the relationship between functional connectivity 

and anatomical organization is complex (Hagmann et al., 2008; Venkataraman et al., 2010). 

In particular, the relationship between the intrinsic structure of functional networks and the 

spatial distribution across the cerebral system is currently not well understood.

Our motivation comes from studies of reorganization of language networks caused by a 

lesion and of the relationship between the resulting network and the degree of recovery from 

aphasia (impairment of language ability). Evidence for a link exists, but the changes in 

language networks during reorganization are not yet characterized well enough to predict 

outcomes (Heiss et al., 2003). The spatial patterns of reorganization range from recruitment 

of neighboring regions to employing areas not typically associated with language (Meyer et 

al., 2003; Ackermann and Riecker, 2004).While there is considerable variability in outcomes 

across patients, there is no clear correlation between spatial distribution after reorganization 

and outcome (Heiss et al., 2003). That is, there is no tight coupling between the function of a 

cerebral network, and the spatial distribution of its units in the anatomical space.

This raises two immediate questions. First, what aspects of the functional network structure 

responsible for intact language functionality are independent of the spatial location of the 

network units? Second, how can we capture those characteristics, and how can we map them 

across subjects even if substantial differences in the spatial distribution occur? We 

emphasize that there is a conceptual difference between variability of the spatial distribution 

of functional units, and variability of function itself. A particularly strong disconnection 

between the two occurs in the context of displacement or reorganization, when the brain 

sustains functionality while redistributing functional units across the cortex. How does the 

actual function change at that point? We cannot tell from observing the spatial activation 

patterns across a population anymore. We have to study function decoupled from space to 

observe common networks across subjects despite anatomical differences.

In this paper we do not necessarily answer the questions above, but propose an approach to 

formulate and test such questions. We develop a novel methodology to capture, compare and 

summarize the functional structure that emerges during a specific cognitive task in a way 

that is decoupled from its anatomical location. We build a generative model that summarizes 

functional characteristics across a population of subjects without relying on consistency of 

the spatial distribution of activated regions. We argue that this decoupling is necessary for 

understanding the nature of changes in functional organization, and for differentiating 

between mere spatial redistribution and fundamental functional reorganization in future 

experiments. We suggest that the proposed representation can be viewed as an atlas, while at 

the same time being independent of anatomical and spatial properties of the functional units.

We demonstrate how to learn characteristics of functional networks from a population of 

individuals, and how to map the learned networks to other subjects. Experimental results 

indicate that the functional interaction structure active during an experimental condition can 

serve as a basis to identify functional networks across subjects. This paper extends our 

preliminary work presented in (Langs et al., 2011). Here we expand the method derivations, 
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extend the empirical evaluation to include tumor patient data, and introduce a framework to 

transfer information across subjects via the atlas. We detail the relationship to existing work 

in the next section.

This paper is organized as follows. In the Background section we discuss atlases and their 

limitations in the context of brain mapping. In An atlas as a generative model of functional 

connectivity section we detail the atlas representation as a generative model of functional 

connectivity, and in the Atlas construction: functional connectivity alignment section we 

derive the procedure for building the atlas from a population. In the Interpreting new data 

with help of the atlas section we detail how to use this atlas to interpret new data, in the 

Evaluation and Results sections we report findings on experimental data. In the Discussion 

section we discuss these results.

Background

Atlases and population studies

Collecting evidence from multiple individuals, capturing characteristics shared across a 

population, and summarizing them in a unified representation are central topics of 

neuroscience. A summary approach ubiquitous in neuroimaging studies results in a 

population atlas that reflects the common neural organization in a population. The atlas 

serves two purposes: first, it is a reference coordinate frame or stereotaxic space that serves 

as a basis for the study and summary of neuroimaging data since it establishes 

correspondences across multiple subjects. Second, the atlas itself is informative since it 

captures properties of interest, such as shape variability or activation patterns in the 

population.

The traditional brain imaging paradigm in most functional MRI (fMRI) studies treats 

functional activity as a feature of a location within the anatomical coordinate frame. The 

anatomical variability in a population is mitigated by smoothing and non-rigid registration 

of the anatomical data into a joint atlas coordinate system. Functional signals are mapped 

accordingly and the remaining spatial variability of functional regions is typically ignored or 

treated as a confounding factor. Talairach (Talairach and Tournoux, 1988) and Montreal 

Neurological Institute (MNI) (Collins et al., 1995) space are two atlas coordinate systems 

commonly used in practice for mapping and probabilistic detection of regions including 

widely popular implementations in FSL (Woolrich et al., 2009), Freesurfer (Fischl et al., 

2002), and SPM (Friston et al., 1995).

While we can learn a template from healthy subjects via group-wise registration, atlases can 

also be constructed from subjects affected by pathology. We can learn the statistical 

properties of shape and tissue across the population, and correlate them with disease 

progression where large data sets exist such as for the Alzheimer's disease (Mueller et al., 

2005). Some existing methods include a temporal component in atlas building, to reflect the 

dependence of the atlas on time, age, or disease stage (Davis et al., 2010; Dittrich et al., 

2014; Wolz et al., 2011). Such an approach depends on anatomic consistency of the 

pathology and hence is not suitable for lesions such as brain tumors or multiple sclerosis in 

which the location of the change varies across subjects (Fig. 1).
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Limits of spatial atlases

The goal of any atlas is to establish correspondences across examples. Despite being central 

to modeling populations, the nature of correspondences remains ambiguous, and existing 

approaches vary significantly on the underlying assumptions they make about the data. 

Anatomical atlases are based on registering morphology of individuals, and view function as 

feature of a locationin the reference space once an anatomical match has been achieved. This 

framework cannot express or account for spatial variability of functional networks within 

the population since it assumes perfect spatial correspondences when detecting networks by 

averaging over multiple subjects. This assumption has to be relaxed if the location of a 

functional unit is known to vary across subjects. For example, many studies of high-level 

function first identify functional regions of interest (fROIs) in individuals to cope with 

common spatial variability, and only then study the responses in the resulting small number 

of fROIs (Saxe et al., 2006; Fedorenko et al., 2010). This approach is based on detection 

results for each subject, which can be infeasible if the activation is weak and cannot be 

distinguished from noise in individual subjects without averaging over the group. 

Intermediate approaches integrate functional information in the alignment of cortical 

surfaces (Sabuncu et al., 2010a), or adapt the registration cost function to the specific task of 

functional alignment (Yeo et al., 2010). Correspondence across a population might even be 

impossible to establish if substantial differences exist and multiple templates are necessary 

to represent its variability (Sabuncu et al., 2010b), or if pathology has altered morphology. A 

recently proposed approach of Haxby et al. (2011) represents response patterns to different 

stimuli observed in fMRI data of the ventral temporal cortex in a high-dimensional space 

that enables decoding across subjects. The global interaction structure that emerges during 

cognitive processes is typically not considered by the methods demonstrated to date.

Decoupling function and space

In this paper we demonstrate that the interaction patterns can serve as the basis to identify 

functional networks across subjects independently of their spatial distribution. We do not 

assume a tight coupling between anatomical location and function, but view functional 

signals as the basis of a descriptive map that represents a global connectivity pattern 

associated with a particular specific cognitive process. We develop a representation of those 

networks based on manifold learning techniques and demonstrate an algorithm for learning 

an atlas from a population of subjects performing the same task. Our main assumption is that 

the connectivity pattern associated with a functional process is a fundamental characteristic, 

and is consistent across individuals. Accordingly, we construct a generative model (atlas) for 

these connectivity patterns that describes the common structures across individuals in a 

population.

The immediate clinical goal of our work is to provide additional evidence for localization of 

functional areas. A robust localization approach is important for neurosurgical planning if 

individual activations are weak or if displacement or reorganization is due to pathologies 

such as tumor growth. Furthermore the method provides a basis for understanding the 

mechanisms underlying formation and reorganization in the cerebral system.

Langs et al. Page 4

Neuroimage. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Related work

A spectral embedding (Von Luxburg, 2007) represents data points in a map that reflects a 

large set of pairwise affinity values in the Euclidean space. Diffusion maps establish a 

metric based on the concept of diffusion processes on a graph (Coifman and Lafon, 2006). A 

probabilistic interpretation of diffusion maps has also been proposed (Nadler et al., 2007). A 

probabilistic generative model that establishes a link between the embedding coordinates 

and a similarity matrix has been demonstrated in (Rosales and Frey, 2003). Previously 

demonstrated spectral methods in application to fMRI analysis mapped voxels into a space 

that captured joint functional characteristics of brain regions in individual subjects (Langs et 

al., 2008). This approach represents the magnitude of co-activation by the density in the 

embedding. Functionally homogeneous units have been shown to form clusters in the 

embedding in a study of parceled resting-state fMRI data (Thirion et al., 2006). Thirion and 

Faugeras (2004) used non-linear embedding for fMRI analysis in individual subjects, group-

level analysis relying on spatial correspondence across subjects was investigated by 

Craddock et al. (2012). In Friston et al. (1996) multidimensional scaling was employed to 

retrieve a low dimensional representation of positron emission tomography (PET) signals in 

a set of activated regions. In an approach closely related to the method proposed in this 

paper (Langs et al., 2010), an embedding of fMRI signals was used to match corresponding 

functional regions across different subjects.

An atlas as a generative model of functional connectivity

We use a probabilistic formulation of diffusion maps to embed fMRI signals, and to 

summarize the resulting patterns across the atlas population. We start by reviewing the 

original diffusion map formulation. We then derive a probabilistic likelihood model for the 

data based on this mapping and use the model to link diffusion maps of functional 

connectivity across subjects. The core concept is illustrated in Fig. 2. We seek to learn an 

atlas in the embedding space. Every voxel in each subject is mapped to a point in the 

embedding space. The atlas represents all voxels in the individual fMRI data. Point positions 

in the embedding space respect their mutual functional connectivity shared across the entire 

population.

From fMRI time courses to connectivity matrices and embedding coordinates

Given an fMRI sequence I ∈ ℝT × N that contains N voxels, each characterized by an fMRI 

signal over T time points, we calculate a pairwise similarity matrix W ∈ ℝ+N × N that assigns 

a non-negative symmetric weight to each pair of voxels (i, j):

(1)

where 〈·, ·〉 is the correlation coefficient of the time courses Ii and Ij, and ε controls the 

weight decay. We define a graph whose vertices correspond to voxels and whose edge 

weights are determined by W (Coifman and Lafon, 2006; Langs et al., 2008). In practice, we 

discard all edges that have a weight below a chosen threshold. This construction yields a 

graph with low edge density which is then transformed into a Markov chain. We define the 

Markov transition matrix P = D−1 W, where D is a diagonal normalization matrix such that 
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di = D(i, i) = ∑j w(i, j) is the strength of node i. By interpreting the entries P(i, j) as transition 

probabilities of a random walk (Meila and Shi, 2001), we can define the diffusion distance 

parameterized by the diffusion time t:

(2)

The transition probabilities are based on the functional connectivity of node pairs; the 

diffusion distance integrates the connectivity values over possible paths that connect two 

points and defines a geometry that captures the entirety of the connectivity pattern. This 

distance is characterized by the operator Pt, the tth power of the transition matrix. The value 

of the distance Dt(i, j) is low if there is a large number of paths of at most length t steps with 

high transition probabilities between the nodes i and j. Defining the distance by all possible 

paths up to a certain length, as opposed to the geodesic distance, results in relative 

robustness to noise (Coifman and Lafon, 2006). Setting maximal path length, or diffusion 

time, restricts the size of the neighborhood in the connectivity graph that influences distance 

values. This parameterization provides control of the granularity of the embedding, and at 

the same time preserves stability, even if the entire graph becomes very large (Von Luxburg 

et al., 2010).

The diffusion map coordinates Γ = [γ1, γ2,⋯, γN]T yield a low-dimensional embedding of 

the signal such that the resulting pairwise distances approximate diffusion distances, i.e., ‖γi 

− γj‖
2 ≈ Dt(i, j) (Nadler et al., 2007). They are derived from the right eigenvectors of the 

transition matrix. In Appendix A we show that a diffusion map can be viewed as a solution 

to a least-squares problem. We construct a symmetric matrix A = D−1/2WD−1/2 that is 

adjoint to P (Nadler et al., 2007), and define

(3)

We treat matrix L as the observation, and obtain L1, …, Ls for S subjects as illustrated in 

Fig. 2. The embedding coordinates are then found as follows:

(4)

where L is the dimensionality of the embedding. To simplify notation, we omit t for L and Γ 

in the derivations, assuming that all the results are derived for a fixed, known diffusion time.

As an aside, many embedding methods work with the normalized graph Laplacian Lapnorm 

= I − D−1 W = I − P. It can be shown that the largest eigenvalues of the transition matrix P 
correspond to the smallest eigenvalues of Lapnorm and for each eigenvector with eigenvalue 

λP of P there is an identical eigenvector with eigenvalue λLap = 1 − aP of Lapnorm (Von 

Luxburg, 2007).

The weight threshold in the graph construction is typically chosen so that the graph remains 

connected (Coifman and Lafon, 2006). One can also interpret it as the liberal value below 
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which weights are likely to be generated by noise (He et al., 2009). The weight decay 

parameter ε controls the step size, or the first order neighborhood for a random walk on the 

graph (Nadler et al., 2007). The diffusion time t then extends random walks to larger 

neighborhoods by parameterizing the family of diffusion distances corresponding to the 

powers of the transition matrix Pt, and acts as a scaling parameter (Lafon and Lee, 2006). 

Hence while ε controls the connectivity on the most local scale, increasing t allows for 

integrating evidence from multiple connections between two points to determine their 

closeness. The spectrum of Pt informs us about the graph structure, and is between the two 

extremes of a fully connected graph (only one non-zero eigenvalue) and a set of 

unconnected points (all eigenvalues equal 1). The distance can be estimated with accuracy δ 

by the Euclidean distance in the embedding, if the L largest eigenvectors are used, |λL|t > |

δλ1|t, and λ1 is the largest non-trivial eigenvalue. Thus, given an accuracy constraint δ we 

need fewer eigenvectors if the spectrum falls off more rapidly, which corresponds to an 

overall stronger connectivity in the graph.

A generative model for diffusion maps across subjects

To construct an atlas in the embedding space from a population we view the relationship 

between the embedding coordinates and the affinity matrix as a generative process. The goal 

of the generative model is to jointly explain the distribution of pairwise functional affinities 

of voxels across all subjects. Latent variables Γ = {Γs}s = 1
S correspond to the diffusion map 

coordinates representing the fMRI voxels for S subjects indexed by s ∈ {1,…, S} (Fig. 2). 

The matrix Ls of subjects is treated as a noisy observation of Γs. A joint mixture distribution 

in the embedding space serves as a prior for the points in each distribution Γs, 1 ≤ s ≤ S.

We can interpret Eq. (4) as maximization of a Gaussian likelihood model. We let γsi denote 

the embedding coordinates of voxel i in subject s and let Ls be the observation matrix for 

subject s.We further assume that elements of Ls are conditionally independent given the 

embedding coordinates:

(5)

Here,  (·;μ, σ2) is a Gaussian distribution with mean μ and variance σ2.We note that the 

variance depends on the node strength values di, dj, which is technically a problem since 

these quantities depend on the data W. We find that in practice, the method works well and 

leave the development of rigorous probability models for diffusion maps as an interesting 

future direction.

In the absence of a prior distribution on Γs, fitting this model to the data yields results 

similar to the conventional diffusion maps for each subject constructed independently from 

the rest of the population. Our goal is to define an atlas that represents a population-wide 

structure of functional connectivity in the space of diffusion maps. To capture this common 

structure, we define a shared prior distribution on the embedding coordinates Γs for all 

subjects, and expect the embedded vectors to be in correspondence across subjects. Here, we 

assume that the common distribution in the embedding space is a mixture of K Gaussian 
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components. We let zsi ∈ {1, ⋯, K} be the component assignment for voxel i in subject s 

and construct the prior on the embedding coordinates of voxel i in subject s:

(6)

where μk and Θk are the mean and covariance matrix for component k. We let the component 

assignments be independently distributed according to the weights of different components, 

i.e.,

(7)

Together, Eqs. (5)– (7) define the joint distribution of the fMRI voxel representatives in the 

embedding space , the component assignments {zsi}, and the observed affinities 

. The distribution is parameterized by component centers {μk}, covariance 

matrices {Θk}, weights {πk}, and data noise σs
2.

By adding the group prior over diffusion maps, we constrain the resulting subject maps to be 

aligned across subjects and further encourage them to resemble the population-level 

structures characterized by the mixture model. The mixture model in Eqs. (6) and (7) acts as 

a population atlas in the embedding space. While the data term is specific for each 

individual subject, the mixture model is shared across the entire population. Fig. 2 illustrates 

this relationship, which is also central during the learning of the atlas.

Atlas construction: functional connectivity alignment

We learn the atlas from observed population data represented by the matrix Ls of all subjects 

with a variational expectation maximization (EM) algorithm (Jaakkola, 2000). During 

optimization we estimate the coordinates of the mapped representations of all voxels in all 

fMRI data in the joint embedding space Γ together with the parameters of the GMM {μk, Θk, 

πk} that define the prior distribution. Using the variational approach, we approximate the 

posterior distribution p(z, Γ|L) of the latent variables with a product distribution

(8)

The problem reduces to minimization of the Gibbs free energy

(9)

where ℍ(q) is the entropy of the distribution q(·) and q is the expected value operator for 

the same distribution. We derive coordinate descent update rules that, given an initialization 

of all latent variables and parameters, find a local minimum of the cost function in Eq. (9). 

The detailed derivation of the update rules is presented in Appendix B. Once the algorithm 

converges, it produces the estimates of the model parameters {μk, Θk, πk}k = 1
K and the 

coordinates representing all embedded voxels of all subjects in the joint embedding space 

{Γs}.
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Initialization

To initialize the algorithm, we first perform embedding separately for each subject. We then 

randomly choose one subject r to serve as reference and align embedding coordinates Γs of 

each subject to the embedding coordinates Γr of the reference subject.

In general, the relationship between the diffusion map coordinates Γ and the corresponding 

symmetric matrix L is defined up to an arbitrary orthonormal matrix Q since (ΓQ)(ΓQ)T = 

ΓQQTΓT = ΓΓT = L. Q is a transformation that can rotate, flip coefficient signs, and reorder 

coefficient dimensions, or an isometry that leaves distances among points in the embedding 

space unchanged. In order to define an atlas of the functional connectivity across all 

subjects, we seek matrix Qs for each subject s such that the maps {ΓsQs}s = 1
S are aligned in 

a common coordinate frame. Consider aligning the diffusion map Γs of subject s to the 

diffusion map Γr of reference subject r.We can performinter-subject registration in two 

ways: (1) Inter subject signal correlation: Similar to the construction of the diffusion map, 

we compute the inter-subject affinities between the fMRI signals of subjects s and r using 

Eq. (1) and only keep those with a correlation above a pre-specified threshold. This step 

produces a set of M node pairs {(im, jm)}m = 1
M, characterized by affinities {wm}m = 1

M. (2) 

Distance after registration to a common anatomical template: Alternatively the node pairs 

{(im, jm)}m = 1
M can be matched and characterized by their distance after the anatomical data 

of both subjects has been mapped to a common template space (e.g., MNI). In the latter case 

no inter-subject signal correlation enters the registration process explicitly at any point. 

Then, initialization should ensure that nodes with similar fMRI signals are close in the 

common embedding space. Therefore, we choose matrix Q that minimizes the weighted 

Euclidean distance between pairs of corresponding embedding coordinates

(10)

Let Γsm = [γsi1, …, γsiM]T and Γrm = [γrj1, …, γrjM]T be matrices holding the embedding 

coordinates of a random set of matched points for subject s and the reference subject r, 

respectively. Then, it can be shown that Qsr
* = VUT, where U and V are constructed via the 

singular value decomposition  (Scott and Longuet-Higgins, 

1991).

We fit a K component Gaussian mixture model (GMM) to the initial estimates of the atlas 

embedding coordinates  of a randomly chosen reference subject r to obtain 

initial estimates of model parameters . Then we optimize the GMM 

parameters, and the embedded representations  of all fMRI voxels in the joint 

embedding space by minimizing the cost function in Eq. (9) as described above.

Interpreting new data with help of the atlas

Once constructed, the atlas can be used to interpret new data. By interpretation, we mean the 

transfer of information learned from the atlas population to a new target case, or more 
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generally transfer of information across multiple subjects, using the correspondences 

established by learning the atlas. This procedure is analogous to using an anatomical atlas 

template to transfer, for example, annotations of brain areas to a new subject.

Alignment of one map to the atlas

To transfer information from the atlas to a new subject, we align the target subject to the 

atlas in the shared embedding space. That is, for a new subject u we first calculate the 

diffusion map coordinates Γu and then find a transformation that aligns Γu to the atlas 

distribution ΓA. In our experiments we used the orthonormal alignment described in the 

Atlas construction: functional connectivity alignment section to find a matrix  that 

minimizes Eq. (10) with randomly chosen points  matched to 

. The alignment results in positions  that assign each voxel 

in the target subject a position in the joint embedding space of the atlas.

Transferring labels from the atlas to an individual case

After registering the target subject to the atlas we transfer labels that delineate the region of 

activity from the atlas to the subject as illustrated in Fig. 3. For each location in the atlas 

space, we assign a label based on the samples at positions ΓA. Each voxel iu (i = 1, 2, …, Nu) 

in the target subject corresponds to an aligned embedding coordinate γui in the joint atlas 

space. To illustrate the transfer, in our experiments we estimate labels Lu(i) for voxels in the 

target subject given values for all voxels observed in the atlas population 

 and corresponding joint embedding 

coordinates ΓA, by assigning the value of the nearest neighbor to the target voxel, i.e., 

 where .

Evaluation

The focus of our evaluation procedure is (1) to investigate the stability of the atlas and its 

power to represent and map subject-specific characteristics across the atlas population in a 

joint map; (2) to evaluate if the atlas can serve as a predictor for activity, i.e., if we can 

sample from the continuous distribution of the atlas, and transfer features to new data after 

alignment to the atlas; and (3) to assess the differences between mapping within a control 

population and mapping to tumor patients for whom reorganization is suspected to have 

taken place.

Stability and specificity

We hypothesize that working in the embedding space should allow us to capture the 

functional structure common to all subjects more robustly than using fMRI activation 

signals alone. In order to validate this assumption, we compare the consistency of clustering 

patterns found in the space of fMRI time courses (Signal), a low-dimensional (L = 20) PCA 

embedding of these time courses (PCA-Signal), and the low-dimensional (L = 20) 

embedding proposed in this paper. We also compare results for the initial alignment (Linear-

Atlas) and the result of the algorithm after convergence (Atlas).
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For all approaches (Signal, PCA Signal, Linear Atlas, and Atlas) we first apply clustering in 

each individual subject separately to find subject-specific cluster assignments. We then 

apply clustering to data combined from all subjects to construct the corresponding group-

wise cluster assignments. This latter clustering captures the feature distribution in the joint 

representation across the entire population. By comparing to subject-specific clustering, we 

evaluate how well the joint representation captures the functional characteristics observed in 

individuals. Since our group atlas for the lower-dimensional space is based on a mixture 

model, we also choose a mixture model for clustering in the Signal and PCA-Signal spaces. 

In both cases, each component in the mixture is an isotropic von Mises–Fisher distribution, 

defined on a hyper-sphere after centering and normalization of the fMRI signals to unit 

variance (Lashkari et al., 2010).

Likewise, we cluster the diffusion map coordinates Γs separately in each subject to obtain 

subject-specific assignments. We cluster the diffusion map coordinates of all subjects 

aligned to the first subject {ΓsQs,1} for the Linear-Atlas and then cluster the final 

embedding coordinates {Γs} for the full alignment atlas to obtain group-wise clustering 

assignments. Analyzing the consistency of clustering labels across methods evaluates how 

well the population model captures the individual embeddings. For the diffusion maps, 

Euclidean distance is a meaningful metric; we therefore use a mixture model with Gaussian 

components that share the same isotropic variance (equivalent to a k-means clustering) for 

the linear atlas and the initialization of the variational expectation maximization.

To handle the arbitrary cluster labeling, we match group-level clusters and subject-specific 

clusters by solving a bipartite graph matching problem. We find a one-to-one label 

correspondence that maximizes voxel overlap between pairs of clusters, similar to the 

method used in (Lashkari et al., 2010). After matching the cluster labels, we use the voxel 

set overlap (Dice, 1945) between voxels assigned to a certain cluster by group-level 

clustering, and those voxels assigned to the corresponding cluster by subject-specific 

clustering. This step evaluates the consistency between group-level and subject-specific 

assignments for each cluster. High overlap indicates that the group-level assignment agrees 

with the subject-specific assignment, while at the same time matching subject-specific 

patterns across the entire population. We also performed comparison with dual regression 

ICA (Erhardt et al., 2011) on the same data. We used GroupICAT v3.0a1 for Matlab, 

ICASSO with 5 ICA runs, standard PCA, 3 reduction steps, and 20, 15 and 7–12 

components.

Transferring features in the atlas space

We also evaluate whether activations can be accurately transferred from the atlas population 

to an individual subject via the model. We use the response to the experimental paradigm to 

investigate if the atlas reflects meaningful structure in the functional data. Successful 

prediction of activation in a single subject from an atlas indicates that the atlas matches 

specific functionally equivalent areas across a population and enables transfer to 

independent data. We perform three experiments: (1) transfer within the atlas population, (2) 

1http://mialab.mrn.org/software/gift/.
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transfer from the atlas population to a hold-out subject in a leave-one-out cross-validation 

and (3) transfer from a healthy atlas population to tumor patients.

After constructing the atlas we evaluate how well the activations from all but one atlas 

subject predict the activation of the remaining subject. Examining the prediction informs us 

about the consistency of the atlas alignment, and assesses the utility of the underlying 

alignment for group studies. For each position in the atlas space we obtain an activation 

value via the commonly used fixed effects (FFX) GLM activation detection (Friston et al., 

1995) in all control subjects. For each point in the fMRI data of the target subject, the 

activation value is predicted by the value at the corresponding atlas position in the functional 

space as described in the Interpreting new data with help of the atlas section. To test if the 

predicted activation matches the subject activation, we also perform subject-level GLM 

analysis in the target subject.

We perform two evaluations for the control cohort: (1) to test if the atlas establishes valid 

functional correspondences we predict activations within the atlas cohort; (2) to test if the 

atlas can serve as predictor for new subjects that are not part of the atlas cohort, we perform 

leave-one-out cross validation on the set of control subjects.

Analogously, we evaluate the prediction of activation in patients who are not part of the 

atlas. We build an atlas from the fMRI data of six control subjects who performed the 

language task. We map active regions to tumor patients who performed the same language 

task. We then compare the overlap between the predictions and the actual GLM activations 

in the patients for a range of activation thresholds.

In both cases, we compare functional alignment with non-linear registration (NFIRT) to an 

MNI template using FSL (Woolrich et al., 2009) that uses a high quality anatomical T1 MRI 

scan for alignment. The set of grey matter voxels for the evaluation of both anatomical and 

functional alignment is identical, and is identified by FSL.

Results

We illustrate the method on functional neuroimaging data acquired while subjects were 

performing a language processing task.

Data

We demonstrate the method on language task fMRI data in six healthy control subjects and 

seven patients with tumors. The fMRI data was acquired using a 3T GE Signa system 

(General Electric, Milwaukee, WI, USA), with single-shot gradient-echo echo-planar 

imaging (EPI) (TR = 2 s, TE = 40 ms, ip angle = 90°, FOV = 25.6 cm, acquisition matrix = 

80 × 80, reconstruction matrix=128 × 128, 27 axial slices, ascending interleaved sequence, 

slice gap=0 mm, voxel size of 2 ×2 × 4mm3)with a quadrature head coil. Pre-processing of 

functional data included rigid body motion correction by realigning the images to the first 

image of the functional run, and high-pass filtering (> 0.0078 Hz) to remove slow drifts. 

Whole brain T1-weighted axial 3D-SPGR (spoiled gradient recalled) structural images 

(TR=7.5 s, TE=30ms, ip angle=20°, acquisition matrix = 256 × 256, reconstruction matrix = 
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512 × 512, voxel size = 0.5 × 0.5 × 1 mm3, 176 slices) were acquired using array spatial 

sensitivity encoding technique (ASSET, i.e., parallel imaging) and an 8-channel head coil to 

obtain corresponding anatomical data. The anatomical data was registered to the functional 

data. Computation was restricted to grey matter segmented using FSL (Woolrich et al., 

2009) on the T1 data. The grey matter labels were transferred to the co-registered fMRI 

volumes. The language task (antonym generation) block design was identical for all subjects 

and patients (Suarez et al., 2008; Tie et al., 2009). It was 5 min 10 s long, starting with a 10 s 

pre-stimulus period. Eight task blocks and seven rest blocks, 20 s each, alternated in the 

design. The stimuli consisted of words that are part of antonym pairs (e.g., left–right, off–on, 

push–pull, north–south), subjects had to verbalize the antonym to a word stimuli with 

minimal movement of head, jaw, and lips. For each subject, an anatomical T1 MRI scan was 

acquired and registered to the functional data. Grey matter was segmented using FSL 

(Woolrich et al., 2009) on the T1 data. The grey matter labels were transferred to the co-

registered fMRI volumes, and computation was restricted to all voxels in the grey matter. 

We included seven patients (right handed, 4 females/3 males) with a variety of lesions in the 

study, for whom presurgical language mapping was performed, and for whom the location 

of the lesion was sufficiently close to language areas that the risk of displacement existed. 

The lesions included one ganglioglioma, two metastatic adenocarcinoma, two glioblastomas, 

one anaplastic oligoastrocytoma, and one oligoastrocytoma. Five lesions were located in the 

left temporal area, one was located in the left frontal area, and one ranged in the left parietal, 

and left temporal area. During pre-operative testing, three patients had speech difficulty, 

four patients exhibited normal language function. A table with the information regarding 

diagnosis, tumor size and location and language function is given in Appendix C in Table 1.

Implementation details

We construct an atlas from all healthy subjects. For the results presented in this paper, we 

set the dimensionality of the diffusion map to be L = 20 and choose a diffusion time t = 2 

that satisfies (λL/λ1)t < 0.2 for all subjects (see From fMRI time courses to connectivity 

matrices and embedding coordinates section for discussion of parameters). To accelerate 

computation we only keep grey matter voxels whose degree in the sparsified connectivity 

matrix is above a certain threshold. In the experiments reported here we choose a threshold 

of 100. In the EM algorithm, we set the standard deviation of the likelihood model to 

 for the first 10 iterations, then allow this parameter to update for the 

remaining iterations according to the rule defined in Appendix B. In our experiments, the 

initial value of σs leads to the lowest Gibbs free energy. Activation detection was performed 

via a generalized linear model (GLM); group-level inference in the atlas population 

employed commonly used fixed effect analysis (FFX).

Atlas stability

Fig. 4 reports the consistency of clusters between group-level and subject-specific 

assignments, measured in terms of volume overlap (Dice score) averaged across subjects. In 

addition, the color of the bars indicates the correlation of the average fMRI signal in each 

cluster with the fMRI language paradigm convolved with the hemodynamic response 

function (HRF). We emphasize that the paradigm was not used at any point during the 
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generation of the maps, the alignment, or the clusters. For a large range of cluster numbers, 

the cluster whose average signal has the highest correlation with the paradigm is also most 

stable across subjects. That is, clustering in the population is most consistent with subject-

specific clustering for voxels involved in the experimental paradigm. The highest Dice score 

(0.725, for K=7) for Signal stays consistent across different model sizes. Clustering in the 

PCA-Signal space offers no noticeable improvement overworking with raw signals. Initial 

alignment of the diffusion maps into the Linear-Atlas substantially increases the Dice score 

of the highest ranked clusters for all values of model size K, with a maximum value of 

0.876. The variational EM algorithm performed using a range of reasonable cluster numbers 

further improves the cluster agreement for the top ranked clusters (0.905).

Fig. 5 shows the networks that correspond to the top ranked atlas cluster (for K = 10), 

together with the corresponding average fMRI signal for all subjects in the study. Our 

method recovered the paradigm accurately, and for most subjects the cluster network 

plausibly spans visual, motor, and language areas. For subject 5 the corresponding cluster is 

substantially smaller. For this subject motion was higher than for all other subjects and was 

not entirely eliminated by the motion correction step. The language activation exhibited high 

scatter across the cortex compared to all other subjects. Fig. 6 compares the location and 

average signal of the top ranked cluster for K = 10 for Signal and Atlas models in a single 

subject. While both recover parts of the paradigm, the clustering in the atlas space is more 

consistent between the group and the subject levels. Additionally, the cluster in the signal 

space suffers from a relatively high dispersion across the entire cortex. This is not the case 

for the proposed functional atlas. The correlation between the average cluster signal and the 

paradigm increases slightly from 0.75 to 0.77, with the average absolute deviation 

decreasing from 0.84 to 0.80. The stability of the ICA components was below the one for the 

proposed methods, and never exceeded 0.2. In summary, these results demonstrate that the 

representation of fMRI time courses in the low dimensional space of diffusion maps 

captures the functional connectivity patterns across subjects better than the original space of 

signals. Not only are clustering assignments more consistent, but the spatial characteristics 

of these clusters are also more plausible anatomically. Furthermore, our results suggest that 

the probabilistic population model further improves the consistency across the population, 

and consolidates the distribution in the embedding space.

Transferring activation via the atlas

Fig. 7 illustrates the label transfer from the atlas population to new fMRI data. Figs. 8 and 9 

report the accuracy of predicting activated regions by transferring features from the atlas to a 

single target subject. The plots show the overlap between the predicted region and the 

regions identified by a GLM detector on the target subject. We vary the p-value threshold in 

the GLM detector used in all subjects to evaluate the agreement between the atlas and 

individual subjects for a range of detection sensitivity settings. To account for different 

numbers of suprathreshold voxels on group-level and subject-specific maps, we determine 

the number based on the group-level p-value, and match an equal number of the lowest p-

value voxels in the individuals. This results in the same number of voxels in the predictor 

(atlas) and the target (individual subject). Fig. 8 reports results of predicting the activation in 

a healthy subject that is part of the atlas population from activations in the N − 1 remaining 
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subjects of the atlas population. The matching accuracy within the atlas is substantially 

better for the functional registration compared to the anatomical atlas. This improvement is 

particularly strong for low thresholds, which correspond to signals that exhibit very strong 

activation for the fMRI experiment. The strong signals form relatively compact clusters in 

the map, leading to stable correspondences across subjects. To illustrate the improvement in 

accuracy for individual subjects, Fig. 8(b) reports subject-specific differences between 

functional and anatomical alignment, where positive values indicate higher overlap for 

functional alignment. All experiments were performed once using the inter-subject fMRI 

signal correlation as a basis for initial orthonormal alignment (red lines), or the spatial 

distance after registration to a joint template space (MNI) (cyan lines). In the latter case no 

inter-subject signal correlation is used at any point in the registration process. Orthonormal 

initialization based on fRMI signal correlation consistently leads to the highest overlap (red), 

while initialization based on spatial distance in the MNI space yields intermediate values 

(cyan). A leave-one-out cross validation (Figs. 8(c) and (d)) yields comparable results. Here 

the atlas is built from five control subjects, and the activations are transferred to the 

remaining subject as described in the Interpreting new data with help of the atlas section.

Fig. 9 reports the results of predicting activations in tumor patients using an atlas 

constructed on healthy control subjects, analogously to Fig. 8(c, d). Registration and atlas 

based grey matter segmentation yield results comparable to the healthy cohort on the tumor 

patients. Tumor tissue is typically partially segmented as grey matter, and was included as 

part of the potential target voxel set. All voxels classified as grey matter voxels are the target 

set in which activation is evaluated in the individual, and predicted by anatomical and 

functional alignment. This ensures consistent evaluation of the approaches, despite potential 

segmentation inaccuracies in the tumor neighborhood. When mapping active regions to 

tumor patients, the performance drops compared to the healthy atlas subjects. However, the 

functional atlas still outperforms the anatomical atlas in most cases, suggesting meaningful 

correspondences between atlas regions and those in the target image, despite pathology. The 

anatomical atlas registration leads to comparable results in subjects and patients. The median 

overlap for both cohorts is 0.21 for the lowest p-cutoff. The mean overlaps differ due to two 

outliers, subject 5 in the control cohort has low overlap (0.04), and patient 4 particularly 

high overlap (0.47).

Discussion

Alignment is a fundamental part of many neuroimaging studies. It is a prerequisite for 

comparing features such as brain activity at corresponding locations across subjects. 

However, in this context correspondence is ambiguous, since it can refer to appearance, 

anatomy, function, or even experimental condition. A widely accepted approach is to 

assume that once anatomical correspondence is established by registering anatomical MRI 

data, we can study function in populations, and obtain valid observations of its common 

characteristics and their variability. In this case variability of the spatial distribution of 

functional areas and their actual behavior are studied only jointly. If we aim to investigate 

spatial characteristics of functional areas (e.g., reorganization in tumor subjects), or 

functional characteristics of areas that exhibit location differences across individuals we 

have to find other means to establish correspondence. Even the assumption that 
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correspondences can be translated into a spatial mapping between subjects can be 

challenged. Functional correspondence can be a function of experimental condition, and 

regions that are recruited by different tasks might overlap for one subject, but not for 

another. For example, in some patients, initially unrelated areas are recruited for new 

functionality during reorganization (Duffau et al., 2001).

We propose and demonstrate a method to align functional MRI data across subjects based 

on their global functional connectivity patterns during a specific task. The experimental 

results demonstrate that this alignment is feasible and that it matches functionally 

corresponding regions more accurately than anatomical alignment in both healthy subjects 

and patients with mass lesions.

The underlying embedding and clustering in the embedding space are closely related to 

various approaches that have been employed for structure identification in fMRI data. 

(Thirion and Faugeras, 2004) demonstrated that non-linear embedding could be used to 

identify structure in subject-specific fMRI data. Group-level clusters in the embedding 

space, that rely on spatial correspondence across subjects have been investigated in 

Craddock et al. (2012). In contrast to these approaches, the proposed functional connectivity 

alignment uses the structure represented in the embedding space not only to characterize 

subjects, but also to establish correspondence across subjects irrespective of anatomical 

space. The results illustrate the extent to which embedding maps of multiple individual 

subjects exhibit sufficient common structure to match functional regions across the 

population, without assuming correspondence in the anatomical space.

Group alignment aims to form a joint representation that captures common characteristics of 

a population, while at the same time representing the individual data faithfully. For the 

proposed functional atlas this means that the point distribution that forms the map in the 

joint embedding space should accurately reflect the individual subject distributions, as the 

cluster agreement in our experiments indicates. In the first experiment, we observe that the 

structure of the joint distribution in the atlas is very similar to the structure in each 

individual subject map. That is, it captures the individual connectivity characteristics well, 

and matches them accurately across the population. We also observe that the alignment 

performs particularly well for brain areas that are active or interacting during fMRI 

acquisition. The signals from those areas forma distribution in the embedding space whose 

structure is repeated across subjects. Areas that do not exhibit connectivity captured by the 

correlation matrix are not matched well across subjects. The alignment is therefore specific 

for different experimental conditions. Resting state data would offer a potential alternative 

basis for alignment, since its correlation structure would cover the brain more evenly rather 

than highlight dominant networks (Sepulcre et al., 2010). Future work will focus on the role 

of resting state networks as a basis for alignment, and their complementary role to networks 

detected from task data.

In the second experiment, we evaluated whether the alignment establishes robust 

correspondences between areas that are active during the same task. The comparison shows 

that in a healthy cohort, functional alignment based on connectivity matches language areas 

with higher accuracy than anatomical alignment. This result holds regardless of whether 
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inter-subject fMRI signal correlations or anatomical registration is used for initialization. In 

both cases, the task information is not used explicitly by the alignment. However, in the first 

case high signal correlation of activated areas across subjects potentially drives successful 

registration. In the second case no signal correlation is used across subjects and the 

improvement over anatomical registration is due to the fact that the signal structure within 

the subjects offers sufficient similarity to enable matching. The proposed functional 

representation can therefore serve as a basis for registration in a way that is complementary 

to anatomical data. Our results support the use of functional connectivity alignment during 

neuroimaging studies in healthy subjects, since it could alleviate the degradation of group 

analysis by spatial variability of functional areas.

When using an atlas built based on a healthy cohort to localize language areas in patients 

who are not part of the atlas population, there is also improvement over anatomical 

registration. However, it is less pronounced than that for healthy subjects. For a more in-

depth analysis a larger cohort with controlled tumor characteristics is necessary. At this 

point results demonstrate the feasibility of the proposed approach for patients, but do not 

allow deriving conclusions regarding the differences between the two cohorts.

The orthonormal alignment results in well matched maps, and the cluster agreement is 

already substantially better compared to mere signal clustering, clustering in a PCA signal 

space, or ICA. Non-linear alignment brings additional improvement. The non-linear 

alignment by variational EM estimates both the joint distribution, and the positions of the 

embedded points. The initial distribution is dominated by the relatively compact clusters of 

the individual subjects, which are misaligned across the population. In some cases this leads 

to early convergence without the correct identification of clusters across subjects, since the 

subject-specific clusters warrant relatively accurate approximation by the Gaussian 

distributions. In other words, the algorithm is too confident during the initial iterations, and 

consequently does not change point positions. Artificially increasing noise variance σs 

during this initial phase alleviated this problem, and allowed individual clusters to merge 

across subjects.

This work has several limitations. While we demonstrate the feasibility of the approach on 

both healthy controls and patients, we do not make any observation regarding actual 

reorganization patterns or their relationship to specific lesion types, or locations at this point. 

The small tumor cohort with relatively heterogeneous lesion types does not allow us to make 

conclusions regarding common characteristics in tumor patients whose language areas are 

affected, or a systematic comparison of the algorithms applied to healthy subjects and tumor 

patients. Instead, the results prove that functional connectivity alignment is feasible for both 

healthy subjects and tumor patients, and that It might be a good approach to tackle the 

question of correspondence in related future studies. The anatomical alignment was 

performed based on anatomical data and a corresponding MNI template using FSL 

(Woolrich et al., 2009) since this is a widely used approach. We note that there are 

alternatives such as the SPM DARTEL toolbox that establish a population specific 

anatomical template (Ashburner, 2009) that can improve registration performance in normal 

control subjects (Klein et al., 2009). However, generating a population specific template 

from patients affected by tumors is not straightforward. To make results on patients and 
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control subjects comparable, we used a standard template for both. Further alternatives 

would be surface based registration such as the approach implemented in FreeSurfer (Fischl 

et al., 2002), and cortical profile registration (Sabuncu et al., 2010a). We validated if the 

captured correspondences are meaningful and not an arbitrary match of signals by 

comparing the overlap of areas activated by the language paradigm. Paradigm information is 

not available to the alignment algorithm. Repeating alignment on repeated scans of the same 

individuals to validate stability was not performed since data was not available. The 

embedding map is based on correlation among fMRI signals. There are several potential 

causes for high correlation unrelated to neural activity such as motion or susceptibility 

artifacts. Similarly to studies that focus on resting state fMRI, the results are expected to 

improve if these factors are accounted for by measures such as outlier detection (Jo et al., 

2010), or noise correction (Behzadi et al., 2007). The embedding is based on a thresholded 

matrix. Although this is in line with related work (Varoquaux et al., 2010; Supekar et al., 

2008), we note that negative correlation is lost. Including negative correlations is likely to 

improve segmentations for structures such as the default network. Worsley et al. (2005) 

offer a discussion of the impact of thresholding in functional network analysis.

Alignment based on functional connectivity patterns offers an approach to formulate and 

tackle various open questions that are beyond the scope of this paper. The decoupling of 

functional characteristics and location makes it possible to observe and quantify the 

relationship between spatial distribution of regions and their functional role. It enables the 

study of networks observed during different experimental conditions, and offers alignment 

of subject data in group studies that reduces variability introduced by anatomy. When 

comparing functional characteristics across cohorts, it separates anatomical variability, and 

functional differences. Ultimately it can serve as a tool to study the reorganization of 

networks and its relationship to function recovery.

Conclusions

We propose a method to learn an atlas of the functional connectivity structure that emerges 

during a cognitive process observed in a group of individuals. The atlas is a groupwise 

generative model that describes the fMRI responses of all subjects in the embedding space. 

The embedding space is a low dimensional representation of fMRI time courses that encodes 

the functional connectivity patterns within each subject. Results from an fMRI language 

experiment indicate that the diffusion map framework captures the connectivity structure 

reliably, and leads to valid correspondences across subjects. Future work will focus on the 

application of the framework to study reorganization processes.
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Appendix A. Diffusion map coordinates

In the standard diffusion map analysis, the embedding coordinates Γ for a L-dimensional 

space are obtained via the first L eigenvectors of matrix A = D−1/2WD−1/2 (Nadler et al., 

2007). Here we show that we can represent the embedding as a solution of a least-squares 

problem formulated directly on the similarity matrix W.

Formally, , where A = VΛVT is the eigenvector decomposition of matrix 

A, t is the diffusion time, and subscripts 1: L indicate that we select the first L eigenvectors. 

V1:L is a N × L matrix, ΛL is a L × L diagonal matrix of the first eigenvalues. Matrix 

 is a low-rank approximation of matrix A that is quite accurate if the 

remaining eigenvalues are much smaller than the sum of the first L eigenvalues. We define

(A.

1)

and use a generalization of the Eckart–Young theorem (Friedland and Torokhti, 2006) to 

formulate the eigen decomposition as an optimization problem:

(A.2)

where ‖ · ‖F denotes the Frobenius norm.

Appendix B. Variational EM update rules

We use a natural choice of a multinomial distribution for cluster membership q(zsi = k) for s 

∈ {1, …, S}, i ∈ {1, …, Ns}, and a Gaussian distribution for the embedding coordinates 

q(γsi) = (γsi; γsi], diag( γsi])), parameterized by its mean γsi] and component-wise 

variance γsi].

B.1. E-Step

We determine the parameter values of the approximating probability distribution q(·) that 

minimize the Gibbs free energy in Eq. (9) by evaluating the expectation, differentiating with 

respect to each parameter and setting the derivatives to zero. This yields
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Rather than solve the coupled system of equations above, we iteratively update each 

parameter of the distribution q(·) while fixing all the other parameters.

B.2. M-Step

We now find the parameter values with the update rules that are similar to the standard EM 

algorithm for mixture modeling, but using the approximating distribution q(·) to evaluate the 

expectation. Specifically, we find

(B.1)

(B.2)

(B.3)

(B.4)
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Appendix C. Patient information

Table 1

Information on the patients. All patients were right-handed according to the Edinburgh 

Handedness Inventory.

No. Gender/
Age

Diagnosis Tumor location/Size
(cm3)

Clinical language function 
assessment

Intra-operative language mapping

Pre-op Post-op Technique Results

1 M/43 Ganglioglioma WHO 
Grades I–II

Left temp/2.91 Normal Normal Wada test Left hemisphere 
dominance for 
language

2 F/55 Metastatic adenocarcinoma Left temporal/7.58 Normal Normal ECS testing Left hemisphere 
involvement of 
language

3 F/30 Glioblastoma WHO Grade 
IV

Left temporal/38.42 Speech difficulty Better ECS testing Tumor 
surrounding 
areas 
involvement of 
language

4 M/50 Anaplastic 
oligoastrocytoma WHO 
Grade III

Left temporal/7.27 Occasional word 
finding 
difficulty

Occasional 
word 
finding 
difficulty 
to normal

ECS testing Language areas 
were in the left 
hemisphere, and 
posterior to 
lesion

5 F/66 Metastatic adenocarcinoma Left parietal/1.67; 
left temporal/0.20

Normal Normal ECS testing No critical 
language areas 
immediately 
adjacent to 
lesion

6 M/35 Oligoastrocytoma WHO 
Grade II

Left frontal/19.62 Normal Normal N/a N/a

7 F/57 Glioblastoma WHO Grade 
IV

Left temporal/8.59 Speech difficulty N/a ECS testing No critical 
language areas 
in the region of 
lesion
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Figure 1. 
Example axial MRI slice in three control subjects, and three tumor patients. For each we 

show the T1 MRI data and a corresponding FSL segmentation as described in the 

experiment section.
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Figure 2. 
Joint functional geometry. The atlas represents the functional connectivity structure 

observed in all subjects of the population. Each voxel in each subject is represented by a 

point in the joint distribution. The distribution parameters are shared across subjects. 

Parameters and embedding point positions are estimated via variational EM.
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Figure 3. 
Transferring labels from the atlas to an individual. In this example activation probabilities 

are collected for each position in the functional atlas (A), or in a standard anatomical atlas 

(B). They are then transferred to a new subject after aligning to the template (functional or 

anatomical). The anatomical template assumes tight coupling between space and function, 

the functional template does not.
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Figure 4. 
Average cluster agreement between group-level and subject-specific clusters estimated from 

raw signals (Signal), signals after PCA (PCA Signal), embedding coordinates after linear 

alignment (Linear Atlas), and embedding coordinates after non-linear alignment by 

variational EM (Atlas). For each number of clusters K, we report the mean voxel set overlap 

between group-level and subject-specific clusters. To visualize the relationship of clusters 

with the language paradigm, color corresponds to the value of the correlation coefficient of 

the cluster average fMRI signal with the paradigm signal.
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Figure 5. 
A cluster in the joint map corresponds to a network in each subject. Here we illustrate a 

network that corresponds to one cluster in the atlas, and the mean fMRI signal of this 

cluster. While the 8-block paradigm in this language study was not explicitly used by the 

analysis, it is recovered by clustering. The right side of the figure shows the individual maps 

of three subjects before and after alignment in the embedding space (color corresponds to a 

subject).
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Figure 6. 
The most consistent cluster in the Signal space and the Atlas space is shown in the 

anatomical space. The 8-block paradigm in this language study was not explicitly used by 

the analysis, but was recovered by the algorithm. The corresponding networks were 

identified across all subjects. They typically span the visual cortex, the language areas 

(Wernicke and Broca), and the motor areas in some cases. For each method, the group-wise 

(top) and subject-specific (bottom) assignment for subject 2 are displayed. Also shown is the 

average and standard deviation of the cluster fMRI signal.
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Figure 7. 
Transferring structure learned from the atlas population to a target subject. (a) Each point in 

the atlas ΓA carries a cluster label, or activation information; (b) An embedding map of the 

new data is aligned to the atlas; (c) Labels are transferred from the atlas to the new subject 

map; (d) the cluster that includes active areas of all atlas subjects is mapped to voxels in the 

patient population that show similar activation profiles.
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Figure 8. 
Matching active areas from the atlas to individual control subjects. All plots report volume 

overlap between regions predicted by the atlas and active regions in the individual detected 

by GLM as a function of the p-value cutoff used by the detector. The p-value cutoff in the 

group analysis determines the number of voxels included in the matching. We then match an 

equal amount of the lowest p-value voxels between group-level and subject-specific maps. 

Mapping within the atlas: (a) Mapping overlap (average Dice scores) when predicting 

activated regions in a control subject from the other atlas subjects; (b) Increase in volume 

overlap offered by the functional atlas over the anatomical atlas. Leave-one-out-cross-

validation: (c)Mapping overlap when predicting activated regions in a control subject not 

included in the atlas from the atlas subjects; (d) Increase in volume overlap offered by the 

functional atlas over the anatomical atlas. Red: initial orthonormal alignment was based on 

fMRI signal correlation, cyan: initial orthonormal alignment was based on the spatial 

position in the MNI atlas. Black dashed lines represent anatomical alignment (MNI). Thin 

lines in (b) and (d) correspond to individual subjects.
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Figure 9. 
Matching active areas from the atlas to tumor patients. All plots report overlap between 

regions predicted by the atlas and active regions detected by GLM as a function of the p-

value cutoff used by the detector. The p-value cutoff in the group analysis determines the 

number of voxels included in the matching. We then match an equal amount of the lowest p-

value voxels between group-level and subject-specific maps. (a)Mapping overlap when 

predicting activated regions in a patient from the atlas subjects; (b) Increase in volume 

overlap offered by the functional atlas over the anatomical atlas. The red/cyan lines 

represent functional alignment. Red: initial orthonormal alignment was based on fMRI 

signal correlation, cyan: initial orthonormal alignment was based on spatial position in the 

MNI atlas. Black dashed lines represent anatomical alignment (MNI). Thin lines in (b) 

correspond to individual subjects.
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