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Abstract
Details in mesh animations are difficult to generate but they have
great impact on visual quality. In this work, we demonstrate a prac-
tical software system for capturing such details from multi-view
video recordings. Given a stream of synchronized video images
that record a human performance from multiple viewpoints and an
articulated template of the performer, our system captures the mo-
tion of both the skeleton and the shape. The output mesh animation
is enhanced with the details observed in the image silhouettes. For
example, a performance in casual loose-fitting clothes will gener-
ate mesh animations with flowing garment motions. We accomplish
this with a fast pose tracking method followed by nonrigid defor-
mation of the template to fit the silhouettes. The entire process
takes less than sixteen seconds per frame and requires no markers
or texture cues. Captured meshes are in full correspondence mak-
ing them readily usable for editing operations including texturing,
deformation transfer, and deformation model learning.

CR Categories: I.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism—Animation

Keywords: deformation, motion capture

1 Introduction
Meshes are most often animated by hand using keyframing and pro-
cedural deformations. Adding detail with this approach is tedious
because it requires setting more than a hundred parameters. As a re-
sult, most animated characters appear to wear skin-tight garments
that move stiffly without flowing. Procedural approaches that take
physics into account can generate these details with more ease and
efficiency but they are difficult to control when the goal is to match
a particular motion or performance.

In this paper, we pursue a complementary direction to create de-
tailed mesh animations through observation rather than simulation.
Motion capture of moving meshes provides an alternative to effi-
cient generation of detailed animations. The potential value of this
approach is readily apparent in the success of motion capture for
skeletal animation. There, observed motions of the skeleton are
edited, transformed, interpolated, and recomposed to produce new
high-quality animations. The relative simplicity of that approach
has already taken root in the film industry where recorded motions
are often used instead of more traditional animation techniques.
What current motion capture lacks, however, is the ability to ef-
ficiently acquire both the internal skeleton and the external shape.

Input images

Output meshes

Pose Edit Texture Edit Geometry Edit

Figure 1: Our methods for pose tracking and non-rigid shape
matching make it possible to extract a mesh animation with full
correspondence (middle row) from multi-view video data (top row),
allowing easy editing of pose, appearance, and character geometry
(bottom row).

The ability to modify recorded shapes is also vitally important.
Recorded mesh animations need to be edited, transformed, inter-
polated, and recomposed so that new high-quality meshes can be
animated as easily as skeletons. This requires a method that main-
tains one-to-one vertex correspondence throughout the entire mo-
tion. This correspondence simplifies numerous applications includ-
ing texture editing, deformation transfer, and posing.

Our system processes a set of synchronized background-
subtracted videos that provide a record of a human performance
from multiple viewpoints. The silhouette from each viewpoint cor-
responds to a cone of rays from the camera origin through all points
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of the subject. The intersection of these cones approximates the
subject’s shape and is called the visual hull. Our method first uses
the visual hulls to track the skeletal pose of the performer. In es-
pecially difficult frames, the user can specify constraints for joint
positions, allowing for more robust tracking than is possible with
fully automatic methods. Our system then deforms a template mesh
of the performer to fit the recovered pose and the silhouettes at each
frame. The output is suitable for editing because the template en-
sures frame-to-frame correspondence. Figure 1 shows a few repre-
sentative results and some sample edits.

Our pipeline makes use of two novel techniques. The first is a
geometric pose tracking method fast enough to incorporate interac-
tively provided user constraints. This is essential because no current
automatic method can track the skeleton perfectly across all frames
in a setting such as ours: motions are fast and complex, performers
wear loose clothing, textures are poor, and the visual hull is am-
biguous (e.g., crossing hands). The second novel technique is an
iterative method for deforming a template mesh to match the ob-
served silhouettes while preserving the detail in the template. This
allows us to capture the secondary deformations, such as flapping
clothing, that make the motion appear natural. Together these tech-
niques enable us to process more challenging data faster and obtain
higher quality results than previously possible.

1.1 Previous Work

Traditional motion capture estimates skeleton motion using infor-
mation from markers or sensors on the body. While these sys-
tems are accurate, they still require manual adjustments to clean
up recorded data. Furthermore, recording requires skin-tight gar-
ments to ensure that markers move rigidly with the corresponding
limb. Markerless motion capture addresses these limitations by es-
timating pose directly from multi-view video [Ménier et al. 2006;
Cheung et al. 2005; Theobalt et al. 2002; de Aguiar et al. 2004].
However, these methods are less reliable when limbs are not clearly
distinguishable (e.g., when arms are close to the body). Manual
clean-up is often necessary, but the above methods do not discuss
ways to assist in this process.

Pose estimation does not capture the fine detail on the surface
of the shape. Richer templates with more degrees of freedom can
capture time-varying geometric detail better. Sand et al. [2003]
capture some of those effects with silhouette-bounded needles ra-
diating from each bone, without maintaining frame-to-frame cor-
respondence. Park and Hodgins [2006] improve on these results
to record detailed bulging and jiggling using a traditional motion-
capture system with many markers. Other researchers have shown
how to design patterns that can be printed on clothing to enable
highly detailed estimation of garment motion [Scholz et al. 2005;
White et al. 2007]. Markers, either attached or printed, make it less
convenient to record arbitrary human performances in casual cloth-
ing. Purely vision-based techniques rely on texture cues to track
motion of a few carefully selected points [de Aguiar et al. 2007b;
de Aguiar et al. 2007a]. These approaches are not as reliable on fast
motions, especially when there are few textures cues (e.g., pants in
Figure 1).

The multi-view stereo literature provides a powerful collection
of tools for recovering a single static mesh [Seitz et al. 2006].
Some of the best methods produce extremely accurate results but
they are computationally expensive, requiring an hour of computa-
tion or more for a single frame [Hornung and Kobbelt 2006; Fu-
rukawa and Ponce 2006; Esteban and Schmitt 2004]. Faster carv-
ing methods sacrifice quality but capture meshes at speeds more
practical for processing video streams [Rander et al. 1997; Starck
and Hilton 2007; Goldlücke et al. 2007]. These methods do not
make assumptions about the observed deformations and geometry,
allowing them to capture arbitrary deforming surfaces, not just ar-
ticulated characters. They, however, do not always reconstruct the

Template-based Static carving

Figure 2: Applying static carving techniques can result in topol-
ogy issues, such as the connected feet and arm in this frame while
template-based reconstruction ensures a consistent topology.

topology correctly and produce uncorresponded results (Figure 2).
Our approach is much faster and it generates mesh animations with
frame-to-frame vertex correspondence.

Our approach maintains correspondence by matching a single
mesh template to every frame in the sequence. Using a template
mesh leads to faster algorithms and allows interpolation of regions
where data is unavailable. Articulated templates are often used to
improve pose tracking, but they do not deform to capture details
in the video [Carranza et al. 2003; Theobalt et al. 2007; Cheung
et al. 2005; Anguelov et al. 2005; Corazza et al. 2006; Balan et al.
2007]. A template based on implicit surfaces [Plänkers and Fua
2001] can capture time-varying detail, but does not produce corre-
sponded meshes. To learn a skinning model, Allen et al. [2002]
obtain corresponded shapes for different poses by matching a sub-
division surface template to range data.

Our processing pipeline is most similar to the work of de Aguiar
and colleagues [2005] who also estimate the skeleton configura-
tion before deforming the template mesh to match the data. Both
approaches use Laplacian coordinates to preserve mesh detail while
satisfying silhouette constraints (their method also uses texture con-
straints). A critical difference is that they sample the mesh and drive
the samples towards the visual hull, while we sample the contours
and pull only the closest mesh points to our samples. Because most
of the correct surface is not on the visual hull, their method tends to
distort the shape and needs strong regularization as well as reliable
texture cues. In contrast, we only pull those vertices to the visual
hull that are likely to be on it and can therefore match the contours
more closely. Hence, our method performs significantly better on
images with poor texture cues and strong silhouette cues. Addition-
ally, our method is over an order of magnitude faster, which allowed
us to develop an interactive user interface to assist pose correction.
These differences enable us to capture mesh animations even for
fast and complex human motions.

1.2 Overview

A multi-view studio provides a set of synchronized high-definition
silhouette videos by recording a performance from several angles
using multiple calibrated cameras. Our software pipeline, shown
in Figure 3, also uses a template mesh rigged with a skeleton that
matches the physical dimensions of the performer: the skeleton is
positioned within the template mesh and each vertex is assigned a
weight that is used to deform the template with linear blend skin-
ning (LBS). Our software outputs a sequence of joint configura-
tions and vertex positions to represent the pose and shape of the
performer in every frame of the multi-view sequence.

The software pipeline proceeds in two stages: skeleton tracking
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Silhouettes Template Visual Hull LBS Shape Estimate Edits

Figure 3: From left to right, our system starts with a stream of silhouette videos and a rigged template mesh. At every frame, it fits the
skeleton to the visual hull, deforms the template using linear blend skinning (LBS), and adjusts the deformed template to fit the silhouettes.
The user can then easily edit the geometry or texture of the entire motion.

and surface refinement. In the first stage (Section 2), the system
optimizes the fit of the skeleton to the visual hull at each time step.
The system tracks most simple motions automatically, but may fail
on very complex motions. In such cases an easy manual interven-
tion can be used to correct the skeleton. In the second stage (Sec-
tion 3), our system deforms the template according to the skeleton
and adjusts its surface to better match the silhouettes.

2 Pose Estimation
During the pose estimation stage, we fit the skeleton to the visual
hull in each frame. Our objective is to position the bones deeply
into the visual hull and to maintain the temporal smoothness. Eval-
uating this objective requires computing the distance to the visual
hull and we develop an efficient method for this task. Addition-
ally, our objective incorporates information provided by the user
for especially difficult frames. To optimize the objective, we iterate
through the frames in order and find the best pose for each frame,
while providing visual feedback of the progress to the user and al-
lowing user corrections. To propagate user constraints backwards,
we make another pass over the frames in reverse order.

2.1 Objective Function

Pose estimation recovers the pose by minimizing an objective func-
tion that is a weighted combination of four terms. The first term
ED pushes the bones towards the medial axis of the visual hull, the
second term ET improves the temporal smoothness of the motion,
the third term ER pulls the end effectors into the extremities, and
the fourth term EU enforces the user constraints:

arg min
θ

(
wDED(θ) + wTET (θ) + wRER(θ) + wUEU (θ)

)
,

where θ represents the degrees of freedom of the skeleton and the
scalar weights w determine the relative importance of the depth,
temporal, refinement, and user terms. The vector θ consists of joint
angles (in radians) and the root translation (in meters). Joint limits
constrain it to lie in a range.

Depth (ED) The true deformed object is completely contained
inside the visual hull. Therefore, we require that in a good fit, the
distance from a point on the skeleton to the visual hull surface be no
less than the distance from the corresponding point on the template
skeleton to the surface of the template. Let pi be samples on the
bones of the skeleton and let ri be corresponding distances to the
template surface (so if p1 is in the middle of the femur, r1 is roughly
the thigh radius at that point). In a particular frame, let d(p) be
the distance from a point p to the visual hull surface. We wish to

penalize d(pi) < ri, so we set

ED(θ) =
∑

i

γ(d(pi(θ))− ri),

where γ(x) is a smooth function that is approximately −x when
x is negative and approximately 0 when x is positive. Using four
evenly spaced samples per bone provides a good compromise be-
tween performance and accuracy.

Temporal Smoothness (ET ) During the forward pass, we en-
force smoothness by penalizing deviation from the previous frame:
ET (θt) = ‖θt − θt−1‖2. During the reverse pass, we penalize
deviation from the next and the previous frame:

ET (θt) = ‖θt − θt−1‖2 + ‖θt − θt+1‖2.

Refinement From Shape Estimation (ER) Because the depth
term tends to pull the bones to the inside of the visual hull, the end
effectors (hands, feet, and head) often do not extend all the way
into the extremities. To enhance the skeleton fit, we use our shape
estimation algorithm (described in Section 3) to move these joints
into place. After an initial optimization with wR set to 0, we run
an iteration of shape estimation. This pulls the template vertices
towards the correct surface locations. For each end effector j, we
look at the portion of the surface that is nearly rigidly bound to that
joint. Let ∆mj be the vector by which the center of mass of that
portion moves as a result of shape estimation. We translate each
joint by ∆mj by setting

ER(θ) =
∑

j

‖qj(θ)− (qj(θ0) + ∆mj)‖2,

where qj(θ) is the position of joint j and θ0 is the joint angle vector
after the initial optimization. We repeat this process twice to obtain
the final pose.

User Constraints (EU ) When the user interrupts the forward
pass and drags a joint j to a new position on the screen, our sys-
tem interprets that as a constraint on the vertex to lie on the ray that
projects to that position. We incorporate this constraint by adding a
point-to-ray squared distance term to EU :

EU (θ) =
∑
u∈U

‖(qju(θ)− ou)× ru‖2,

where U is the set of user constraints, ju, ou and ru are the joint in-
dex, ray origin and ray unit direction, respectively, for constraint u.
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Incorrect Fit User Intervention Correct Fit

Figure 4: An incorrectly fit skeleton is fixed by the user dragging
the wrist joint. Our system repositions the hand joint automatically
to fit the visual hull.

To constrain a joint completely, the user needs to specify the con-
straint from two different views. The user is also allowed to remove
the refinement constraints.

Weights Our rationale in choosing the weights is that we want the
depth term to be stronger than the temporal smoothness term, the
estimation-from-refinement constraints to override the depth term,
and the user constraints to override everything. Because the error
terms ED , ET , ER, and EU have units of m, rad2 (our conversion
constant between radians and meters is 1), m2, and m2, respec-
tively, our weights have inverse units. The actual weights we use
are wD = 5, wT = 1, wR = 500, wU = 5000, but as discussed
in Section 4.2, our method is not overly sensitive to their precise
values.

2.2 Distance Evaluation

Without optimization, the most expensive part of the objective func-
tion evaluation would be computing d(pi) for the depth term. To
ensure interactive performance for user corrections, the evaluation
of the distance to the visual hull must be fast. Because computing
a full 3D distance field would take too much time per frame, we
make use of the fact that the visual hull is the intersection of eight
cones and most of the evaluations are inside the intersection.

In general, if we have several objects, the distance field inside
their intersection is the minimum of their individual distance fields.
So if we could quickly evaluate the distance field inside each cone,
we would be able to quickly evaluate the distance field inside the
visual hull. Let di(p) be the distance to the boundary of cone i and
let oi be the origin of that cone. Note that for an arbitrary scalar a,
di(oi + a(p − oi)) = a di(p). This lets us compute di at every
point on the camera image plane, and then evaluate di everywhere
else just by scaling. This formulation corrects an earlier observation
that uses image-space distances instead of point-ray distances [Erol
et al. 2005].

To compute di on the image plane, we adapt a vector distance
transform algorithm [Danielsson 1980]. We initialize di to zero on
the contour pixels and rather than propagating a 2D vector to the
nearest pixel during the scans, we propagate the nearest ray.

When the distance needs to be computed outside the visual hull,
that skeleton joint is far from where it should be and we don’t need
as much accuracy. In this case, we use a KD-tree to compute the
distance to a polygonal approximation of the visual hull. We extract
this polygonal approximation by evaluating the distance field near
the visual hull boundary and then running marching cubes.

LBS Initial Shape Final Shape

Figure 5: The template deformed with LBS suffers from artifacts
around joints and does not fit the silhouettes. Our method smooths
it and constrains it to the contours, gradually reintroducing detail.
The result after several iterations has the detail of the original tem-
plate, fits the silhouettes, and does not have LBS artifacts.

2.3 Processing
Because our objective function is nonlinear in joint angles, we use
SNOPT [Gill et al. 2002] to find a local minimum from an initial
guess. The first frame has no good initial guess and needs manual
constraints to fit the skeleton properly. The second frame is ini-
tialized to the solution for the first frame. During the rest of the
forward pass, we use the linear prediction from the previous two
frames 2θt−1 − θt−2 as an initial guess for frame t.

The user can interrupt the tracking if it fails and view the scene
from any direction (including original camera views). The user can
then fix the pose by dragging joints to their correct positions on
the screen (Figure 4), defining rays on which those joints must lie.
These constraints are incorporated into the objective function and
the skeleton is reoptimized several times per second. This enables
the user to position a joint interactively and observe the effect on
the rest of the skeleton.

After all frames have been processed, our system performs an
additional optimization pass over all the frames in reverse order
during which the user does not specify additional constraints. The
initial guess for a frame during this pass is the solution for that
frame from the forward pass. The temporal smoothness term in the
objective function allows user constraints and other information to
be propagated backwards during the reverse pass.

3 Shape Estimation
After recovering skeletal poses for the whole sequence, shape es-
timation deforms the template mesh for each frame. A naive way
of doing this is to put the template into the skeleton pose using
linear blend skinning. While resembling the true shape in over-
all deformation, the resulting shape does not respect the silhouettes
and exhibits artifacts at bent joints (Figure 5, left). We designed
an iterative method for non-rigid shape matching using Laplacian
coordinates that corrects this problem. The algorithm begins with
a smoothed version of the LBS mesh as the initial guess. At each
iteration, it reintroduces part of the original template detail and also
introduces vertex position constraints that bring the shape closer to
the contours in each camera. To enhance temporal consistency we
interleave a bilateral filter on the meshes with these iterations. The
resulting shapes match the silhouettes while still resembling the un-
deformed template.

3.1 Laplacian Coordinates
We convert our template mesh to Laplacian coordinates [Alexa
2003; Lipman et al. 2004] in order to represent the iteratively
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Algorithm 1 Shape Estimation
1: k ← number of frames
2: for t = 1 to k do
3: (CLBS,PLBS)← nearly-rigid vertices
4: Vt ← solve Equation 1
5: end for
6: V1..k ← TemporalFilter(V1..k)
7: for wL = 0 to 1, step 0.2: do
8: for t = 1 to k do
9: L′ ← Laplacian coordinates rotated using LBS

10: (CSIL,PSIL)← silhouette constraints using current Vt

11: Vt ← solve Equation 2
12: end for
13: V1..k ← TemporalFilter(V1..k)
14: end for

deforming shape. Let VT be the n × 3 matrix storing the tem-
plate mesh vertex coordinates. Then Laplacian coordinates L are
generated with:

L = ∆VT

where ∆ is the n × n mesh Laplacian matrix (cotangent weights
work best [Meyer et al. 2003]). Laplacian coordinates are well-
suited for our algorithm because they encode all of the geometric
detail of our template. In addition, they let us constrain a subset of
the vertices and the remaining vertices will be appropriately inter-
polated. Furthermore, we can control the smoothness of the shape
by scaling the coordinate vectors.

We recover the Euclidean vertex coordinates V from the Lapla-
cian coordinates and vertex position constraints by solving the fol-
lowing linear least squares system:

arg min
V

(
‖∆V − wLL‖2 + wC‖CV −P‖2

)
,

where the m × 3 matrix P contains the target positions of m con-
strained vertices, with the rows of them×nmatrix C having 1’s at
the corresponding columns. To constrain a point on the mesh that is
not a vertex, we put its barycentric coordinates into the appropriate
row of C instead. The first term ensures detail preservation, with
the weight wL determining how smooth the resulting mesh will be
(0 is the smoothest, while 1 incorporates the full detail of the orig-
inal mesh). The second term ensures that the constraints are satis-
fied, and the weight wC determines how much it is weighted com-
pared to the Laplacian coordinates term. We use soft constraints
rather than hard ones so that we can balance fitting to the contours
against the reproduction of detail from the template mesh.

3.2 Non-Rigid Shape Matching
We do not know initially which points on the mesh should be con-
strained to which points on the contours. We determine this itera-
tively (Algorithm 1), starting from a mesh deformed using only the
recovered pose. The initial and final shapes for one of the frames
are shown in Figure 5. The mesh does not match the silhouette per-
fectly because of our use of soft constraints and silhouette sampling.

Initialization (Lines 2–5) The LBS-deformed mesh is a poor ini-
tial guess for shape estimation because of skinning artifacts near
the joints. However, the vertices that are attached mostly to a single
bone are acceptable, as they deform almost rigidly. Therefore, for
our initial guess, we constrain the nearly-rigid vertices (whose LBS
weight is at least .95 for a single bone) and smoothly interpolate the
rest of the mesh by scaling the Laplacian coordinates to zero. We
solve:

arg min
V

(
‖∆V‖2 + wC‖CLBSV −PLBS‖2

)
, (1)

Undeformed shape
Deformed shape

Contour with sample
Constraint

Image Plane Image Plane

Figure 6: We deform the template to fit the silhouettes by constrain-
ing at most one surface point to each contour sample ray (top).
Adjusting the template by pulling the closest surface point toward
each contour sample (bottom left) exacerbates folding effects, while
preferring the points in the direction normal to the contour (bottom
right) helps diminish these effects.

where we setwC = 1000, and fill PLBS and CLBS with the nearly-
rigid LBS vertices and their indices. This results in the non-rigid
regions being smoothed-out, as shown in Figure 5 (middle), allevi-
ating problems such as over-folding and self-intersections.

Iteration (Lines 7–14) After obtaining the initial shape, we per-
form several iterations that bring it into better agreement with the
silhouettes. We compute each subsequent shape estimate by solving

arg min
V

(
‖∆V − wLL′‖2 + wC‖CSILV −PSIL‖2

)
, (2)

where wC = 1000 and CSIL is filled with barycentric coordi-
nates of surface points that are constrained to points on contour
rays (as described below). The target locations are stored in PSIL.
Rows of L′ contain transformed Laplacian coordinates `′i for the
current frame. This is necessary because changes in the subject’s
pose rotate portions of the surface and Laplacian coordinates are
not rotation-invariant. For vertex i, we transform its Laplacian co-
ordinate vector `i (ith row of L) by a linear combination of the
bone rotations:

`′i =
∑

j

bji R
j(`i),

where Rj is the rotation of bone j, and bji is that bone’s LBS weight
for vertex i. During our six iterations, we gradually increase wL

from 0 (completely smooth) to 1 (full original detail).

Silhouette Constraints (Line 10) At every iteration we use the
silhouette contours to determine CSIL, the surface points that need
to be constrained, and PSIL, the locations on the contour rays to
which they should be constrained. Every ray from a camera origin
through the contour is tangent to the subject. We therefore sample
the contours (every 10 pixels) and look for constraints to make the
estimated shape tangent to each sampled ray. For each ray, we find
a point on the mesh that should be pulled towards that ray. If the
ray is outside the reconstructed shape, we use the closest point on
the shape to the ray. If the ray intersects the reconstructed shape,
we find the point on the ray that’s deepest inside the shape and use
the point on the shape closest to it. Figure 6 (top) illustrates both of
these cases. To prevent the surface from folding in on itself (Fig-
ure 6, bottom), we distort the distance to the shape by preferring
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Visual hull Our reconstruction LBS

Figure 7: Our reconstruction has more detail than the visual hull
and fits the data better than the template deformed using LBS.

vertices that are in the normal direction of the ray (obtained using
the outward facing silhouette normal). We scale the distance met-
ric by 0.25 in this direction. To avoid incorrect constraints, we do
not constrain points that are farther than 5cm (in the scaled metric)
from the ray or whose mesh normal differs by more than 90◦ from
the silhouette normal. The resulting closest points are used to fill
in PSIL and CSIL in Equation 2. Figure 5 (middle) shows the con-
tour constraints pulling on various surface points for a frame in one
camera.

Temporal Filtering (Lines 6 and 13) Minor tracking errors and
temporal inconsistency in sampling the contours causes the esti-
mated shapes in neighboring frames to exhibit “texture sliding”
[Anuar and Guskov 2004] even if the subject is stationary: though
the surface appears smooth and fixed, the underlying triangulation
wobbles around. Simply applying temporal smoothing on the mesh
vertices works poorly because it causes large deviations from the
data when the subject is moving quickly. We therefore apply a bi-
lateral smoothing filter:

vt
i ← vt

i +

(
vt−1

i − 2vt
i + vt+1

i

4

)
e
−‖vt+1

i
−vt

i
‖2−‖vt−1

i
−vt

i
‖2

σ2 ,

where vt
i is the vertex i at time t. In our implementation, we use

σ = 0.07m. We apply a pass of this filter twice after each shape
estimation iteration. Texture sliding artifacts are most visible when
the object is static and our bilateral filtering between shape estima-
tion iterations greatly reduces them.

4 Results
We tested our method on eleven sequences with five subjects cap-
tured in two different studios. The accompanying video demon-
strates the ability of our method to produce meshes that capture
fine motion details for very fast and challenging motions. Fig-
ure 8 shows reconstructed shapes from five of these sequences. We
evaluate our algorithm according to several criteria: computation
efficiency, the amount of user interaction needed, and robustness
to parameter changes. We demonstrate the utility of our resulting
meshes by applying a static texture and a geometric deformation to
some sequences.

4.1 Experimental Setup
We have data sets from two different sources. In both cases the
setup consists of a ring of eight cameras looking down at the per-
former. The first data set was provided by Starck and Hilton [2007].
Their video streams are recorded at 25 FPS at 1920 by 1080 pixel
resolution. The second source was our studio where we capture

Sequence Total Fixed Total Time Avg. Seconds
Frames Frames (minutes) per Frame

Flashkick 250 4 57 13.7
Headstand 250 7 61 14.6

Kickup 220 1 53 14.5
Lock 250 13 64 15.4

Walkpose 66 0 16 14.5
Handstand 175 2 40 13.7
Bouncing 175 4 40 13.7

Crane 175 0 32 11.0
Jumping 150 2 32 12.8
Swing 150 5 33 13.2
Samba 175 0 36 12.3

Table 1: Number of frames requiring user intervention, along with
total and per frame processing times (including user interaction)
for our test sequences. We captured the bottom six sequences, while
the other five were provided by Starck and Hilton.

video at 1600 by 1200 resolution also at 25 FPS. We calibrated our
cameras using an LED and software by Svoboda et al. [2005].

The template mesh may be obtained by various means, such as
3D scanning [Levoy et al. 2000], static multi-view stereo of a single
frame [Seitz et al. 2006], or manual modeling (as in [Park and Hod-
gins 2006]). For the Starck and Hilton data set, we use a good frame
obtained by their multi-view stereo method [2007] as the template.
For our data sets we use a 3D scan of the performer (see Figure 8)
obtained with a Cyberware scanner. Each template mesh was deci-
mated to 10,000 vertices.

We manually built 40-DOF skeletons to fit the dimensions of
each performer and embedded them within the template meshes
(Figure 3, left). We attached each mesh to its skeleton with lin-
ear blend skinning using weights generated with Pinocchio [Baran
and Popović 2007].

4.2 Performance

Computation The processing was done on a 2.4 GHz Intel Core
2 Duo with 2GB of RAM. For the 175 frame Samba sequence, the
forward pass of pose estimation ran at 4.3 seconds per frame while
the backward pass added another 3.3 seconds per frame (some com-
putations are reused). Shape estimation took 4.8 seconds per frame,
making the total processing time about 12.4 seconds per frame, or
36 minutes for the whole sequence. User supervision is only nec-
essary for the forward pass, which took a total of 12.5 minutes for
this sequence.

User Interaction The provided interface allows an experienced
user to fix a frame with a poorly fitted skeleton in under 20 seconds
most of the time. As the user drags a joint constraint, the solver
updates the skeleton several times per second, providing immediate
feedback. Keyboard shortcuts let the user inspect the fit overlaid
on the video images, allowing quick evaluation of the skeleton fit
quality. We tracked each sequence and provided manual constraints
necessary to reconstruct it correctly. Table 1 shows the number of
frames that needed user constraints in our test sequences.

Sensitivity to Constants Our method depends on a number of
manually chosen constants. These include error function weights
for the pose estimation and the silhouette constraint parameters for
the shape estimation. There was no need for extensive tuning of
their values and we did not run into complicated interactions be-
tween them. We experimented with random changes to several
of these parameters and found that the results are reasonable even
when they are varied over a range of almost an order of magnitude.
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4.3 Editing
The reconstructed mesh sequence is ideal for editing the entire
motion. A texture applied to the template is trivially propagated
throughout the motion (Figure 9). A geometry edit to the mesh can
be propagated through all or part of the motion using deformation
transfer (see Figure 10) [Sumner and Popović 2004] or Kircher and
Garland’s method [2006]. It is also possible to train a better skin-
ning model than LBS such as [Wang et al. 2007] and use it with
new skeletal data or to generate new poses (Figure 1, bottom left),
using deformation transfer to apply details that the skinning model
does not capture.

5 Conclusion
Our approach demonstrates that by taking advantage of geometric
information in the silhouettes, we can obtain detailed mesh anima-
tions with full correspondence and correct topology. The output
mesh animations are suitable for editing with methods such as tex-
turing and deformation transfer. The key insight is to use skeletal
pose estimation for gross deformation followed by iterative non-
rigid shape matching to fit the image data. Moreover, an interac-
tive mechanism for correcting occasional pose estimation mistakes
allowed us to obtain high-quality tracking of complex sequences
with little effort. Our results show that silhouettes alone can convey
rich and complex visual details despite inaccuracies away from the
contours.

Because our method only relies on silhouettes, it is completely
immune to color noise, lighting, and color calibration problems.
However, this reliance leads to two limitations. First, our method
cannot reproduce the surface accurately away from the contours:
it has to rely on the template to interpolate geometric information.
This is especially problematic for unarticulated objects such as long
scarves, faces, or flowing hair. Using color information in a manner
that does not sacrifice robustness would improve their reconstruc-
tion. Second, our method is sensitive to errors in the silhouettes,
and will produce incorrect geometry when visual hulls are noisy.
However, this is not a serious problem in a studio setting where
chroma-keying methods can be used to obtain clean silhouettes.

We found that the quality of the output animation strongly de-
pends on the quality of the template. While a space-carved tem-
plate can convey the character of the motion convincingly, the final
appearance is much better for templates with accurate and high-
resolution detail, such as those obtained with a laser scanner. Ad-
ditionally, pose estimation is sensitive to the accuracy of the tem-
plate skeleton proportions and degrees of freedom. Fine-tuning the
skeleton is currently a manual task, but it may be possible to extract
an improved skeleton automatically from our output sequences and
use it to improve tracking of the same performer.

Another issue we have not completely addressed is texture slid-
ing, which is still occasionally visible despite bilateral filtering. We
believe that this problem traces back to temporally inconsistent ray
constraints used in shape estimation. A possible remedy is to per-
mit motions of a constrained point within the tangent plane of the
silhouette cone. This would allow more natural configurations of
the mesh and the resulting optimization procedure would still be
efficient to solve.

An interesting application of our results would be to learn a
model of shape motion that takes clothing and dynamics into ac-
count. Such a model could simplify mesh animation from skeletal
motion capture data and retain the details acquired during perfor-
mance. Another possible future direction would be to provide an
interface to edit and clean up the output mesh sequences, similar to
our user interface for pose correction. Standard mesh editing tech-
niques are not well suited for this purpose because they do not ac-
count for temporal consistency. An integrated mesh-editing frame-
work could take advantage of the video data to assist the user and
improve reconstruction.

Because future research can greatly benefit from a large volume
of data, we have built a studio that will enable us to capture more
performances, including multiple people interacting, animals, and
props. We hope that we can support further improvement of mesh
capture and processing techniques by acquiring a large data set and
sharing it with other researchers.
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Figure 8: Background-subtracted video frames (top) and the corresponding recovered shapes (bottom) for three subjects in five sequences.

Figure 9: Frame-to-frame correspondence allows a static texture
to be easily applied to the entire motion.

Figure 10: Top row: the template mesh and two frames of anima-
tion. Bottom row: the template mesh geometry is edited and the
change is propagated to the two frames using deformation transfer.
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