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Automatic Rigging and Animation of 3D Characters

Ilya Baran∗ Jovan Popović†

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Abstract

Animating an articulated 3D character currently requires manual
rigging to specify its internal skeletal structure and to define how
the input motion deforms its surface. We present a method for ani-
mating characters automatically. Given a static character mesh and
a generic skeleton, our method adapts the skeleton to the character
and attaches it to the surface, allowing skeletal motion data to an-
imate the character. Because a single skeleton can be used with a
wide range of characters, our method, in conjunction with a library
of motions for a few skeletons, enables a user-friendly animation
system for novices and children. Our prototype implementation,
called Pinocchio, typically takes under a minute to rig a character
on a modern midrange PC.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Animation, Deformations, Geometric Modeling

1 Introduction

Modeling in 3D is becoming much easier than before. User-friendly
systems such as Teddy [Igarashi et al. 1999] and Cosmic Blobs
(http://www.cosmicblobs.com/) have made the creation
of 3D characters accessible to novices and children. Bringing these
static shapes to life, however, is still not easy. In a conventional
skeletal animation package, the user must rig the character man-
ually. This requires placing the skeleton joints inside the charac-
ter and specifying which parts of the surface are attached to which
bone. The tedium of this process makes simple character animation
more difficult than it could be.

We envision a system that eliminates this tedium to make an-
imation more accessible for children, educators, researchers, and
other non-expert animators. For example, a child should be able to
model a unicorn, click the “Quadruped Gallop” button, and watch
the unicorn start galloping. To support this functionality, we need
a method (as shown in Figure 1) that takes a character, a skeleton,
and a motion of that skeleton as input, and outputs the moving char-
acter. The missing portion is the rigging: motion transfer has been
addressed in prior work [Gleicher 2001].

Our algorithm consists of two main steps: skeleton embedding
and skin attachment. Skeleton embedding computes the joint posi-
tions of the skeleton inside the character by minimizing a penalty
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Figure 1: The automatic rigging method presented in this paper
allowed us to implement an easy-to-use animation system, which
we called Pinocchio. In this example, the triangle mesh of a jolly
cartoon character is brought to life by embedding a skeleton inside
it and applying a walking motion to the initially static shape.

function. To make the optimization problem computationally feasi-
ble, we first embed the skeleton into a discretization of the charac-
ter’s interior and then refine this embedding using continuous op-
timization. The skin attachment is computed by assigning bone
weights based on the proximity of the embedded bones smoothed
by a diffusion equilibrium equation over the character’s surface.

Our design decisions relied on three criteria, which we also used
to evaluate our system:

• Generality: A single skeleton is applicable to a wide vari-
ety of characters: for example, our method can use a generic
biped skeleton to rig an anatomically correct human model,
an anthropomorphic robot, and even something that has very
little resemblance to a human.

• Quality: The resulting animation quality is comparable to
that of modern video games.

• Performance: The automatic rigging usually takes under one
minute on an everyday PC.

A key design challenge is constructing a penalty function that pe-
nalizes undesirable embeddings and generalizes well to new char-
acters. For this, we designed a maximum-margin supervised learn-
ing method to combine a set of hand-constructed penalty functions.
To ensure an honest evaluation and avoid overfitting, we tested our
algorithm on 16 characters that we did not see or use during devel-
opment. Our algorithm computed a good rig for all but 3 of these
characters. For each of the remaining cases, one joint placement
hint corrected the problem.

We simplify the problem by making the following assumptions.
The character mesh must be the boundary of a connected volume.
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The character must be given in approximately the same orientation
and pose as the skeleton. Lastly, the character must be proportioned
roughly like the given skeleton.

We introduce several new techniques to solve the automatic rig-
ging problem:

• A maximum-margin method for learning the weights of a lin-
ear combination of penalty functions based on examples, as
an alternative to hand-tuning (Section 3.3).

• An A∗-like heuristic to accelerate the search for an optimal
skeleton embedding over an exponential search space (Sec-
tion 3.4).

• Use of Laplace’s diffusion equation to generate weights for at-
taching mesh vertices to the skeleton using linear blend skin-
ning (Section 4). This method could also be useful in existing
3D packages.

Our prototype system, called Pinocchio, rigs the given charac-
ter using our algorithm. It then transfers a motion to the character
using online motion retargetting [Choi and Ko 2000] to eliminate
footskate by constraining the feet trajectories of the character to the
feet trajectories of the given motion.

2 Related Work

Character Animation Most prior research in character anima-
tion, especially in 3D, has focused on professional animators; very
little work is targeted at novice users. Recent exceptions include
Motion Doodles [Thorne et al. 2004] as well as the work of Igarashi
et al. on spatial keyframing [2005b] and as-rigid-as-possible shape
manipulation [2005a]. These approaches focus on simplifying an-
imation control, rather than simplifying the definition of the artic-
ulation of the character. In particular, a spatial keyframing system
expects an articulated character as input, and as-rigid-as-possible
shape manipulation, besides being 2D, relies on the constraints to
provide articulation information. The Motion Doodles system has
the ability to infer the articulation of a 2D character, but their ap-
proach relies on very strong assumptions about how the character
is presented.

Skeleton Extraction Although most skeleton-based prior work
on automatic rigging focused on skeleton extraction, for our prob-
lem, we advocate skeleton embedding. A few approaches to the
skeleton extraction problem are representative. Teichmann and
Teller [1998] extract a skeleton by simplifying the Voronoi skele-
ton with a small amount of user assistance. Liu et al. [2003] use
repulsive force fields to find a skeleton. In their paper, Katz and Tal
[2003] describe a surface partitioning algorithm and suggest skele-
ton extraction as an application. The technique in Wade [2000] is
most similar to our own: like us, they approximate the medial sur-
face by finding discontinuities in the distance field, but they use it
to construct a skeleton tree.

For the purpose of automatically animating a character, however,
skeleton embedding is much more suitable than extraction. For ex-
ample, the user may have motion data for a quadruped skeleton,
but for a complicated quadruped character, the extracted skeleton
is likely to have a different topology. The anatomically appropriate
skeleton generation by Wade [2000] ameliorates this problem by
techniques such as identifying appendages and fitting appendage
templates, but the overall topology of the resulting skeleton may
still vary. For example, for the character in Figure 1, ears may
be mistaken for arms. Another advantage of embedding over ex-
traction is that the given skeleton provides information about the
expected structure of the character, which may be difficult to ob-
tain from just the geometry. So although we could use an existing
skeleton extraction algorithm and embed our skeleton into the ex-
tracted one, the results would likely be undesirable. For example,

the legs of the character in Figure 1 would be too short if a skeleton
extraction algorithm were used.

Template Fitting Animating user-provided data by fitting a tem-
plate has been successful in cases when the model is fairly similar
to the template. Most of the work has been focused on human mod-
els, making use of human anatomy specifics, e.g. [Moccozet et al.
2004]. For segmenting and animating simple 3D models of charac-
ters and inanimate objects, Anderson et al. [2000] fit voxel-based
volumetric templates to the data.

Skinning Almost any system for mesh deformation (whether sur-
face based [Lipman et al. 2005; Yu et al. 2004] or volume based
[Zhou et al. 2005]) can be adapted for skeleton-based deformation.
Teichmann and Teller [1998] propose a spring-based method. Un-
fortunately, at present, these methods are unsuitable for real-time
animation of even moderate size meshes. Because of its simplicity
and efficiency (and simple GPU implementation), and despite its
quality shortcomings, linear blend skinning (LBS), also known as
skeleton subspace deformation, remains the most popular method
used in practice.

Most real-time skinning work, e.g. [Kry et al. 2002; Wang et al.
2007], has focused on improving on LBS by inferring the char-
acter articulation from multiple example meshes. However, such
techniques are unsuitable for our problem because we only have a
single mesh. Instead, we must infer articulation by using the given
skeleton as an encoding of the likely modes of deformation, not just
as an animation control structure.

To our knowledge, the problem of finding bone weights for LBS
from a single mesh and a skeleton has not been sufficiently ad-
dressed in the literature. Previous methods are either mesh reso-
lution dependent [Katz and Tal 2003] or the weights do not vary
smoothly along the surface [Wade 2000], causing artifacts on high-
resolution meshes. Some commercial packages use proprietary
methods to assign default weights. For example, Autodesk Maya 7
assigns weights based solely on the vertex proximity to the bone,
ignoring the mesh structure, which results in serious artifacts when
the mesh intersects the Voronoi diagram faces between logically
distant bones.

3 Skeleton Embedding

Skeleton embedding resizes and positions the given skeleton to fit
inside the character. This can be formulated as an optimization
problem: “compute the joint positions such that the resulting skele-
ton fits inside the character as nicely as possible and looks like the
given skeleton as much as possible.” For a skeleton with s joints (by
“joints,” we mean vertices of the skeleton tree, including leaves),
this is a 3s-dimensional problem with a complicated objective func-
tion. Solving such a problem directly using continuous optimiza-
tion is infeasible.

Pinocchio therefore discretizes the problem by constructing a
graph whose vertices represent potential joint positions and whose
edges are potential bone segments. This is challenging because the
graph must have few vertices and edges, and yet capture all poten-
tial bone paths within the character. The graph is constructed by
packing spheres centered on the approximate medial surface into
the character and by connecting sphere centers with graph edges.
Pinocchio then finds the optimal embedding of the skeleton into
this graph with respect to a discrete penalty function. It uses the
discrete solution as a starting point for continuous optimization.

To help with optimization, the given skeleton can have a lit-
tle extra information in the form of joint attributes: for example,
joints that should be approximately symmetric should be marked as
such; also some joints can be marked as “feet,” indicating that they
should be placed near the bottom of the character. We describe the
attributes Pinocchio uses in a supplemental document[Baran and
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Figure 2: Approximate Medial Sur-
face

Figure 3: Packed Spheres Figure 4: Constructed Graph Figure 5: The original and
reduced quadruped skeleton

Popović 2007a]. These attributes are specific to the skeleton but are
independent of the character shape and do not reduce the generality
of the skeletons.

3.1 Discretization

Before any other computation, Pinocchio rescales the character to
fit inside an axis-aligned unit cube. As a result, all of the tolerances
are relative to the size of the character.

Distance Field To approximate the medial surface and to facili-
tate other computations, Pinocchio computes a trilinearly interpo-
lated adaptively sampled signed distance field on an octree [Frisken
et al. 2000]. It constructs a kd-tree to evaluate the exact signed dis-
tance to the surface from an arbitrary point. It then constructs the
distance field from the top down, starting with a single octree cell
and splitting a cell until the exact distance is within a tolerance τ of
the interpolated distance. We found that τ = 0.003 provides a good
compromise between accuracy and efficiency for our purposes. Be-
cause only negative distances (i.e. from points inside the character)
are important, Pinocchio does not split cells that are guaranteed not
to intersect the character’s interior.

Approximate Medial Surface Pinocchio uses the adaptive dis-
tance field to compute a sample of points approximately on the
medial surface (Figure 2). The medial surface is the set of C1-
discontinuities of the distance field. Within a single cell of our oc-
tree, the interpolated distance field is guaranteed to be C1, so it is
necessary to look at only the cell boundaries. Pinocchio therefore
traverses the octree and for each cell, looks at a grid (of spacing
τ ) of points on each face of the cell. It then computes the gradient
vectors for the cells adjacent to each grid point—if the angle be-
tween two of them is 120◦ or greater, it adds the point to the medial
surface sample. We impose the 120◦ condition because we do not
want the “noisy” parts of the medial surface—we want the points
where skeleton joints are likely to lie. For the same reason, Pinoc-
chio filters out the sampled points that are too close to the character
surface (within 2τ ). Wade discusses a similar condition in Chap-
ter 4 of his thesis [2000].

Sphere Packing To pick out the graph vertices from the medial
surface, Pinocchio packs spheres into the character as follows: it
sorts the medial surface points by their distance to the surface (those
that are farthest from the surface are first). Then it processes these
points in order and if a point is outside all previously added spheres,
adds the sphere centered at that point whose radius is the distance
to the surface. In other words, the largest spheres are added first,
and no sphere contains the center of another sphere (Figure 3).
Although the procedure described above takes O(nb) time in the
worst case (where n is the number of points, and b is the final num-
ber of spheres inserted), worst case behavior is rarely seen because
most points are processed while there is a small number of large

spheres. In fact, this step typically takes less than 1% of the time of
the entire algorithm.

Graph Construction The final discretization step constructs the
edges of the graph by connecting some pairs of sphere centers (Fig-
ure 4). Pinocchio adds an edge between two sphere centers if the
spheres intersect. We would also like to add edges between spheres
that do not intersect if that edge is well inside the surface and if
that edge is “essential.” For example, the neck and left shoulder
spheres of the character in Figure 3 are disjoint, but there should
still be an edge between them. The precise condition Pinocchio
uses is that the distance from any point of the edge to the surface
must be at least half of the radius of the smaller sphere, and the
closest sphere centers to the midpoint of the edge must be the edge
endpoints. The latter condition is equivalent to the requirement that
additional edges must be in the Gabriel graph of the sphere centers
(see e.g. [Jaromczyk and Toussaint 1992]). While other conditions
can be formulated, we found that the Gabriel graph provides a good
balance between sparsity and connectedness.

Pinocchio precomputes the shortest paths between all pairs of
vertices in this graph to speed up penalty function evaluation.

3.2 Reduced Skeleton

The discretization stage constructs a geometric graph G = (V, E)
into which Pinocchio needs to embed the given skeleton in an op-
timal way. The skeleton is given as a rooted tree on s joints. To
reduce the degrees of freedom, for the discrete embedding, Pinoc-
chio works with a reduced skeleton, in which all bone chains have
been merged (all degree two joints, such as knees, eliminated), as
shown in Figure 5. The reduced skeleton thus has only r joints.
This works because once Pinocchio knows where the endpoints of
a bone chain are in V , it can compute the intermediate joints by
taking the shortest path between the endpoints and splitting it in ac-
cordance with the proportions of the unreduced skeleton. For the
humanoid skeleton we use, for example, s = 18, but r = 7; with-
out a reduced skeleton, the optimization problem would typically
be intractable.

Therefore, the discrete skeleton embedding problem is to find
the embedding of the reduced skeleton into G, represented by an r-
tuple v = (v1, . . . , vr) of vertices in V , which minimizes a penalty
function f(v) that is designed to penalize differences in the embed-
ded skeleton from the given skeleton.

3.3 Discrete Penalty Function

The discrete penalty function has great impact on the generality and
quality of the results. A good embedding should have the propor-
tions, bone orientations, and size similar to the given skeleton. The
paths representing the bone chains should be disjoint, if possible.
Joints of the skeleton may be marked as “feet,” in which case they
should be close to the bottom of the character. Designing a penalty
function that satisfies all of these requirements simultaneously is
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difficult. Instead we found it easier to design penalties indepen-
dently and then rely on learning a proper weighting for a global
penalty that combines each term.

The Setup We represent the penalty function f as a linear com-

bination of k “basis” penalty functions: f(v) =
Pk

i=1 γibi(v).
Pinocchio uses k = 9 basis penalty functions constructed by hand.
They penalize short bones, improper orientation between joints,
length differences in bones marked symmetric, bone chains shar-
ing vertices, feet away from the bottom, zero-length bone chains,
improper orientation of bones, degree-one joints not embedded
at extreme vertices, and joints far along bone-chains but close in
the graph [Baran and Popović 2007a]. We determine the weights
Γ = (γ1, . . . , γk) semi-automatically via a new maximum margin
approach inspired by support vector machines.

Suppose that for a single character, we have several example em-
beddings, each marked “good” or “bad”. The basis penalty func-
tions assign a feature vector b(v) = (b1(v), . . . , bk(v)) to each
example embedding v. Let p1, . . . ,pm be the k-dimensional fea-
ture vectors of the good embeddings and let q1, . . . ,qn be the fea-
ture vectors of the bad embeddings.

Maximum Margin To provide context for our approach, we re-
view the relevant ideas from the theory of support vector ma-
chines. See Burges [1998] for a much more complete tuto-
rial. If our goal were to automatically classify new embeddings
into “good” and “bad” ones, we could use a support vector ma-
chine to learn a maximum margin linear classifier. In its sim-
plest form, a support vector machine finds the hyperplane that
separates the pi’s from the qi’s and is as far away from them
as possible. More precisely, if Γ is a k-dimensional vector with
‖Γ‖ = 1, the classification margin of the best hyperplane normal to

Γ is 1
2

`

minn
i=1 ΓT qi − maxm

i=1 ΓT pi

´

. Recalling that the total

penalty of an embedding v is ΓT b(v), we can think of the maxi-
mum margin Γ as the one that best distinguishes between the best
“bad” embedding and the worst “good” embedding in the training
set.

In our case, however, we do not need to classify embeddings,
but rather find a Γ such that the embedding with the lowest penalty
f(v) = ΓT b(v) is likely to be good. To this end, we want Γ to
distinguish between the best “bad” embedding and the best “good”
embedding, as illustrated in Figure 6. We therefore wish to max-
imize the optimization margin (subject to ‖Γ‖ = 1), which we
define as:

n

min
i=1

ΓT
qi −

m

min
i=1

ΓT
pi.

Because we have different characters in our training set, and be-
cause the embedding quality is not necessarily comparable between
different characters, we find the Γ that maximizes the minimum
margin over all of the characters.

Our approach is similar to margin-based linear structured classi-
fication [Taskar et al. 2003], the problem of learning a classifier that
to each problem instance (cf. character) assigns the discrete label
(cf. embedding) that minimizes the dot product of a weights vec-
tor with basis functions of the problem instance and label. The key
difference is that structured classification requires an explicit loss
function (in our case, the knowledge of the quality of all possible
skeleton embeddings for each character in the training set), whereas
our approach only makes use of the loss function on the training la-
bels and allows for the possibility of multiple correct labels. This
possibility of multiple correct skeleton embeddings prevented us
from formulating our margin maximization problem as a convex
optimization problem. However, multiple correct skeleton embed-
dings are necessary for our problem in cases such as the hand joint
being embedded into different fingers.

0 b1

Margin

Good embeddings (pi’s):

Bad embeddings (qi’s):

Best Γ

b2

Figure 6: Illustration of optimization margin: marked skeleton em-
beddings in the space of their penalties (bi’s)

Learning Procedure The problem of finding the optimal Γ does
not appear to be convex. However, an approximately optimal Γ
is acceptable, and the search space dimension is sufficiently low
(9 in our case) that it is feasible to use a continuous optimization
method. We use the Nelder-Mead method [Nelder and Mead 1965]
starting from random Γ’s. We start with a cube [0, 1]k, pick random
normalized Γ’s, and run Nelder-Mead from each of them. We then
take the best Γ, use a slightly smaller cube around it, and repeat.

To create our training set of embeddings, we pick a training set
of characters, manually choose Γ, and use it to construct skeleton
embeddings of the characters. For every character with a bad em-
bedding, we manually tweak Γ until a good embedding is produced.
We then find the maximum margin Γ as described above and use
this new Γ to construct new skeleton embeddings. We manually
classify the embeddings that we have not previously seen, augment
our training set with them, and repeat the process. If Γ eventually
stops changing, as happened on our training set, we use the found
Γ. It is also possible that a positive margin Γ cannot be found, in-
dicating that the chosen basis functions are probably inadequate for
finding good embeddings for all characters in the training set.

For training, we used 62 different characters (Cosmic Blobs
models, free models from the web, scanned models, and Teddy
models), and Γ was stable with about 400 embeddings. The weights
we learned resulted in good embeddings for all of the characters in
our training set; we could not accomplish this by manually tuning
the weights. Examining the optimization results and the extremal
embeddings also helped us design better basis penalty functions.

Although this process of finding the weights is labor-intensive,
it only needs to be done once. According to our tests, if the basis
functions are carefully chosen, the overall penalty function gener-
alizes well to both new characters and new skeletons. Therefore,
a novice user will be able to use the system, and more advanced
users will be able to design new skeletons without having to learn
new weights.

3.4 Discrete Embedding

Computing a discrete embedding that minimizes a general penalty
function is intractable because there are exponentially many em-
beddings. However, if it is easy to estimate a good lower bound on
f from a partial embedding (of the first few joints), it is possible to
use a branch-and-bound method. Pinocchio uses this idea: it main-
tains a priority queue of partial embeddings ordered by their lower
bound estimates. At every step, it takes the best partial embedding
from the queue, extends it in all possible ways with the next joint,
and pushes the results back on the queue. The first full embedding
extracted is guaranteed to be the optimal one. This is essentially
the A* algorithm on the tree of possible embeddings. To speed up
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the process and conserve memory, if a partial embedding has a very
high lower bound, it is rejected immediately and not inserted into
the queue.

Although this algorithm is still worst-case exponential, it is fast
on most real problems with the skeletons we tested. We considered
adapting an approximate graph matching algorithm, like [Gold and
Rangarajan 1996], which would work much faster and enable more
complicated reduced skeletons. However, computing the exact op-
timum simplified penalty function design and debugging.

The joints of the skeleton are given in order, which induces an
order on the joints of the reduced skeleton. Referring to the joints
by their indices (starting with the root at index 1), we define the
parent function pR on the reduced skeleton, such that pR(i) (for
1 < i ≤ r) is the index of the parent of joint i. We require that the
order in which the joints are given respects the parent relationship,
i.e. pR(i) < i.

Our penalty function (f ) can be expressed as the sum of inde-
pendent functions of bone chain endpoints (fi’s) and a term (fD)
that incorporates the dependence between different joint positions.
The dependence between joints that have not been embedded can
be ignored to obtain a lower bound on f . More precisely, f can be
written as:

f(v1, . . . , vr) =
r

X

i=2

fi(vi, vpR(i)) +
r

X

i=2

fD(v1, . . . , vi).

A lower bound when the first k joints are embedded is then:

k
X

i=2

fi(vi, vpR(i)) +

k
X

i=2

fD(v1, . . . , vi) +

+
X

{i>k|pR(i)≤k}

min
vi∈V

fi(vi, vpR(i))

If fD is small compared to the fi’s, as is often the case for us, the
lower bound is close to the true value of f .

Because of this lower bound estimate, the order in which joints
are embedded is very important to the performance of the optimiza-
tion algorithm. High degree joints should be embedded first be-
cause they result in more terms in the rightmost sum of the lower
bound, leading to a more accurate lower bound. For example, our
biped skeleton has only two joints of degree greater than two, so
after Pinocchio has embedded them, the lower bound estimate in-
cludes fi terms for all of the bone chains.

Because there is no perfect penalty function, discrete embedding
will occasionally produce undesirable results (see Model 13 in Fig-
ure 9). In such cases it is possible for the user to provide manual
hints in the form of constraints for reduced skeleton joints. For ex-
ample, such a hint might be that the left hand of the skeleton should
be embedded at a particular vertex in G (or at one of several ver-
tices). Embeddings that do not satisfy the constraints are simply not
considered by the algorithm.

3.5 Embedding Refinement

Pinocchio takes the optimal embedding of the reduced skeleton
found by discrete optimization and reinserts the degree-two joints
by splitting the shortest paths in G in proportion to the given skele-
ton. The resulting skeleton embedding should have the general
shape we are looking for, but typically, it will not fit nicely inside
the character. Also, smaller bones are likely to be incorrectly ori-
ented because they were not important enough to influence the dis-
crete optimization. Embedding refinement corrects these problems
by minimizing a new continuous penalty function (Figure 7).

For the continuous optimization, we represent the embedding of
the skeleton as an s-tuple of joint positions (q1, . . . , qs) in R

3. Be-
cause we are dealing with an unreduced skeleton, and discrete op-
timization has already found the correct general shape, the penalty

Figure 7: The embedded skeleton after discrete embedding (blue)
and the results of embedding refinement (dark red)

function can be much simpler than the discrete penalty function.
The continuous penalty function g that Pinocchio tries to minimize
is the sum of penalty functions over the bones plus an asymmetry
penalty:

g(q1, . . . , qs) = αAgA(q1, . . . , qs) +
s

X

i=2

gi(qi, qpS(i))

where pS is the parent function for the unreduced skeleton (anal-
ogous to pR). Each gi penalizes bones that do not fit inside the
surface nicely, bones that are too short, and bones that are oriented
differently from the given skeleton: gi = αSgS

i + αLgL
i + αOgO

i .
Unlike the discrete case, we choose the α’s by hand because there
are only four of them [Baran and Popović 2007a].

Any continuous optimization technique [Gill et al. 1989] should
produce good results. Pinocchio uses a gradient descent method
that takes advantage of the fact that there are relatively few inter-
actions. As a subroutine, it uses a step-doubling line search: start-
ing from a given point (in R

3s), it takes steps in the given opti-
mization direction, doubling step length until the penalty function
increases. Pinocchio intersperses a line search in the gradient di-
rection with line searches in the gradient direction projected onto
individual bones. Repeating the process 10 times is usually suffi-
cient for convergence.

4 Skin Attachment

The character and the embedded skeleton are disconnected until
skin attachment specifies how to apply deformations of the skeleton
to the character mesh. Although we could make use of one of the
various mesh editing techniques for the actual mesh deformation,
we choose to focus on the standard linear blend skinning (LBS)
method because of its widespread use. If vj is the position of vertex

j, Ti is the transformation of the ith bone, and wi
j is the weight of

the ith bone for vertex j, LBS gives the position of the transformed
vertex j as

P

i wi
jT

i(vj). The attachment problem is finding bone

weights wi for the vertices—how much each bone transform affects
each vertex.

There are several properties we desire of the weights. First of
all, they should not depend on the mesh resolution. Second, for the
results to look good, the weights need to vary smoothly along the
surface. Finally, to avoid folding artifacts, the width of a transi-
tion between two bones meeting at a joint should be roughly pro-
portional to the distance from the joint to the surface. Although
a scheme that assigns bone weights purely based on proximity to
bones can be made to satisfy these properties, such schemes will
often fail because they ignore the character’s geometry: for exam-
ple, part of the torso may become attached to an arm. Instead, we
use the analogy to heat equilibrium to find the weights. Suppose we
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Figure 8: Top: heat equilibrium for two bones. Bottom: the result
of rotating the right bone with the heat-based attachment

treat the character volume as an insulated heat-conducting body and
force the temperature of bone i to be 1 while keeping the tempera-
ture of all of the other bones at 0. Then we can take the equilibrium
temperature at each vertex on the surface as the weight of bone i at
that vertex. Figure 8 illustrates this in two dimensions.

Solving for heat equilibrium over a volume would require tes-
sellating the volume and would be slow. Therefore, for simplic-
ity, Pinocchio solves for equilibrium over the surface only, but at
some vertices, it adds the heat transferred from the nearest bone.

The equilibrium over the surface for bone i is given by ∂w
i

∂t
=

∆wi + H(pi − wi) = 0, which can be written as

−∆w
i + Hw

i = Hp
i, (1)

where ∆ is the discrete surface Laplacian, calculated with the
cotangent formula [Meyer et al. 2003], pi is a vector with pi

j = 1

if the nearest bone to vertex j is i and pi
j = 0 otherwise, and H is

the diagonal matrix with Hjj being the heat contribution weight of
the nearest bone to vertex j. Because ∆ has units of length−2, so
must H. Letting d(j) be the distance from vertex j to the nearest
bone, Pinocchio uses Hjj = c/d(j)2 if the shortest line segment
from the vertex to the bone is contained in the character volume
and Hjj = 0 if it is not. It uses the precomputed distance field to
determine whether a line segment is entirely contained in the char-
acter volume. For c ≈ 0.22, this method gives weights with similar
transitions to those computed by finding the equilibrium over the
volume. Pinocchio uses c = 1 (corresponding to anisotropic heat
diffusion) because the results look more natural. When k bones are
equidistant from vertex j, heat contributions from all of them are
used: pj is 1/k for all of them, and Hjj = kc/d(j)2.

Equation (1) is a sparse linear system, and the left hand side
matrix −∆ + H does not depend on i, the bone we are interested
in. Thus we can factor the system once and back-substitute to find
the weights for each bone. Botsch et al. [2005] show how to use
a sparse Cholesky solver to compute the factorization for this kind
of system. Pinocchio uses the TAUCS [Toledo 2003] library for
this computation. Note also that the weights wi sum to 1 for each
vertex: if we sum (1) over i, we get (−∆ + H)

P

i w
i = H · 1,

which yields
P

i w
i = 1.

It is possible to speed up this method slightly by finding vertices
that are unambiguously attached to a single bone and forcing their
weight to 1. An earlier variant of our algorithm did this, but the im-
provement was negligible, and this introduced occasional artifacts.

5 Results

We evaluate Pinocchio with respect to the three criteria stated in
the introduction: generality, quality, and performance. To ensure
an objective evaluation, we use inputs that were not used during
development. To this end, once the development was complete, we
tested Pinocchio on 16 biped Cosmic Blobs models that we had not
previously tried.

Figure 10: A centaur pirate with a centaur skeleton embedded looks
at a cat with a quadruped skeleton embedded

Figure 11: The human scan on the left is rigged by Pinocchio and is
posed on the right by changing joint angles in the embedded skele-
ton. The well-known deficiencies of LBS can be seen in the right
knee and hip areas.

5.1 Generality

Figure 9 shows our 16 test characters and the skeletons Pinocchio
embedded. The skeleton was correctly embedded into 13 of these
models (81% success). For Models 7, 10 and 13, a hint for a single
joint was sufficient to produce a good embedding.

These tests demonstrate the range of proportions that our method
can tolerate: we have a well-proportioned human (Models 1–4, 8),
large arms and tiny legs (6; in 10, this causes problems), and large
legs and small arms (15; in 13, the small arms cause problems). For
other characters we tested, skeletons were almost always correctly
embedded into well-proportioned characters whose pose matched
the given skeleton. Pinocchio was even able to transfer a biped
walk onto a human hand, a cat on its hind legs, and a donut.

The most common issues we ran into on other characters were:

• The thinnest limb into which we may hope to embed a bone
has a radius of 2τ . Characters with extremely thin limbs often
fail because the the graph we extract is disconnected. Reduc-
ing τ , however, hurts performance.

• Degree 2 joints such as knees and elbows are often positioned
incorrectly within a limb. We do not know of a reliable way
to identify the right locations for them: on some characters
they are thicker than the rest of the limb, and on others they
are thinner.

Although most of our tests were done with the biped skeleton,
we have also used other skeletons for other characters (Figure 10).

5.2 Quality

Figure 11 shows the results of manually posing a human scan us-
ing our attachment. Our video [Baran and Popović 2007b] demon-
strates the quality of the animation produced by Pinocchio.
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1. 2. 3. 4. 5. 6.

7. 8. 9. 10. 11. 12.

13. 14. 15. 16.

Figure 9: Test Results for Skeleton Embedding

Model 3 10 11 Mean

Number of Vertices 19,001 34,339 56,856 33,224

Discretization Time 10.3s 25.8s 68.2s 24.3s
Embedding Time 1.4s 29.1s 5.7s 5.2s
Attachment Time 0.9s 1.9s 3.2s 1.8s

Total Time 12.6s 56.8s 77.1s 31.3s

Table 1: Timings for three representative models and the mean over
our 16 character test set

The quality problems of our attachment are a combination of the
deficiencies of our automated weights generation as well as those
inherent in LBS. A common class of problems is caused by Pinoc-
chio being oblivious to the material out of which the character is
made: the animation of both a dress and a knight’s armor has an
unrealistic, rubbery quality. Other problems occur at difficult ar-
eas, such as hips and the shoulder/neck region, where hand-tuned
weights could be made superior to those found by our algorithm.

5.3 Performance

Table 1 shows the fastest and slowest timings of Pinocchio rigging
the 16 models discussed in Section 5.1 on a 1.73 MHz Intel Core
Duo with 1GB of RAM. Pinocchio is single-threaded so only one
core was used. We did not run timing tests on denser models be-
cause someone wishing to create real-time animation is likely to
keep the triangle count low. Also, because of our volume-based ap-
proach, once the distance field has been computed, subsequent dis-
cretization and embedding steps do not depend on the given mesh
size.

For the majority of models, the running time is dominated by
the discretization stage, and that is dominated by computing the
distance field. Embedding refinement takes about 1.2 seconds for
all of these models, and the discrete optimization consumes the rest
of the embedding time.

6 Conclusion and Future Work

We have presented the first method for automatically rigging an
unfamiliar character for skeletal animation. In conjunction with ex-

isting techniques, it allows a user to go from a static mesh to an
animated character quickly and effortlessly. We have shown that
using this method, Pinocchio can animate a wide range of charac-
ters. We also believe that some of our techniques, such as finding
LBS weights and using examples to learn the weights of a linear
combination of penalty functions, can be useful in other contexts.

We have several ideas for improving Pinocchio that we have not
yet tried. Discretization could be improved by packing ellipsoids
instead of spheres. Although this is more difficult, we believe it
would greatly reduce the size of the graph, resulting in faster and
higher quality discrete embeddings. Animation quality can be im-
proved with a better skinning model [Kavan and Žára 2005] (al-
though possibly at the cost of performance). One approach would
be to use a technique [Wang et al. 2007] that corrects LBS errors by
using example meshes, which we could synthesize using slower, but
more accurate deformation techniques. A more involved approach
would be automatically building a tetrahedral mesh around the em-
bedded skeleton and applying the dynamic deformation method of
Capell et al. [2002]. Combining retargetting with joint limits should
eliminate some artifacts in the motion. A better retargetting scheme
could be used to make animations more physically plausible and
prevent global self-intersections. Finally, it would be nice to elim-
inate the assumption that the character must have a well-defined
interior.

Beyond Pinocchio’s current capabilities, an interesting problem
is dealing with hand animation to give animated characters the abil-
ity to grasp objects, type, or speak sign language. The variety of
types of hands makes this challenging (see, for example, Models 13,
5, 14, and 11 in Figure 9). Automatically rigging characters for fa-
cial animation is even more difficult, but a solution requiring a small
amount of user assistance may succeed. Combined with a system
for motion synthesis [Arikan et al. 2003], this would allow users to
begin interacting with their creations.
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