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Bumpy Pyramid Folding

Zachary R. Abel∗ Erik D. Demaine† Martin L. Demaine‡

Hiro Ito§ Jack Snoeyink¶ Ryuhei Uehara‖

Abstract

We investigate folding problems for a class of petal poly-
gons P , which have an n-polygonal base B surrounded
by a sequence of triangles. We give linear time algo-
rithms using constant precision to determine if P can
fold to a pyramid with flat base B, and to determine a
triangulation of B (crease pattern) that allows folding
into a convex (triangulated) polyhedron. By Alexan-
drov’s theorem, the crease pattern is unique if it exists,
but the general algorithm known for this theorem is
pseudo-polynomial, with very large running time; ours
is the first efficient algorithm for Alexandrov’s theorem
for a special class of polyhedra. We also give a polyno-
mial time algorithm that finds the crease pattern to pro-
duce the maximum volume triangulated polyhedron.

1 Introduction

In 1525, the German painter Albrecht Dürer published
his masterwork on geometry [7], whose title translates
as, “On Teaching Measurement with a Compass and
Straightedge for lines, planes, and whole bodies.” In
the book, he presented each polyhedron by drawing a
net for it: an unfolding of the surface to a planar lay-
out. To this day it remains a big open problem whether
every convex polyhedron has a (non-overlapping) net.
Several strategies and algorithms for unfolding a poly-
hedron have been investigated. One, called star unfold-
ing, is produced by cutting along every shortest path to
each vertex1.

To understand unfolding, it is interesting to look at
the inverse: one folding problem asks what polyhedra
can be folded from a given polygonal sheet of paper. For
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1In this paper, we only concern with starting and final config-

urations. In other word, we do not insist that if there is crossing
throughout the folding motion or not.
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Figure 1: A petal polygon and resulting pyramid.

example, the Latin cross, which is a typical unfolding
of a cube, can form 23 polyhedra by 85 distinct ways of
folding. Comprehensive surveys of folding and unfolding
can be found in [6, 9].

In this paper, we investigate a folding problem for a
class of polygons that can come from star unfolding, or
from unfolding pyramids by cutting all edges incident
on an apex. A polygon P = (p1, c1, p2, c2, . . . , pn, cn) is
a petal polygon if and only if it satisfies two conditions.

1. The subpolygon B = (p1, p2, . . . , pn), called the
base of the polygon P , is convex and each point
ci is outside of B.

2. The pairs of edges incident on each pi have equal
length. (That is, for each i = 1, 2, . . . , n, lengths
|pici| = |ci−1pi| = `i

2.)

We investigate the petal folding problem: determine
if some specific polyhedra can be folded from a petal
polygon P by gluing the pairs of edges incident on each
pi (all vertices ci meet at the apex c). We investigate
three specific variations of the petal folding problem.

First we consider the conditions under which the n-
gon base B can be kept flat. This petal pyramid folding
problem asks whether we can obtain the pyramid from
a given petal polygon. This problem can be solved in
linear time.

Theorem 1 Let P be a petal polygon. Then the petal
pyramid folding problem can be solved in linear time.

2In this paper, all indices are computed modn.
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When we cannot fold a petal polygon P into a pyra-
mid, we may still be able to fold P into a polyhedron,
collecting the vertices ci to an apex c, by triangulat-
ing the base B to make a pattern of creases. A crease
pattern is a planar straight-line graph with an assign-
ment of mountain or valley to each edge. From the per-
spective of an observer, a valley fold has dihedral angle
< 180◦, and a mountain fold has dihedral angle > 180◦.

A bumpy pyramid is a polyhedron obtained by folding
of a petal polygon P that collects the vertices ci to an
apex c by folding the base B according to some crease
pattern on a triangulation of B (if it exists). We will
show later that once we fix a triangulation of the base B,
its feasible crease pattern (i.e., mountain/valley assign-
ments on the triangulation) to fold a bumpy pyramid is
uniquely determined if it exists. However, finding some
specific triangulation with its feasible crease pattern can
be surprisingly complex. Even for n = 4, a petal poly-
gon P typically folds into two different bumpy pyramids
(one convex and one non-convex), but sometimes can
fold to only one or even to no bumpy pyramid.

Thus, for the second problem, we add the condition
of convexity and define convex bumpy pyramid folding:
find a crease pattern to fold a convex bumpy pyramid,
or determine that no such crease pattern exists. Here
the crease pattern is a triangulation of the base B with
all creases assigned to be mountain folds. Through a
connection to power diagrams [3], every P can fold into
a unique convex polyhedron if the lengths `i are suffi-
ciently long, and the corresponding crease pattern (tri-
angulation) on B can be found in linear time using con-
stant precision:

Theorem 2 Let P be a petal polygon with 2n vertices.
Then the convex bumpy pyramid folding problem can be
solved in linear time.

Two things suggested by the wording of this theo-
rem help us. First, once the triangulation is chosen,
there is little further choice for the crease pattern — all
creases must be flat or mountain folds for the result to
be convex. Second, Alexandrov’s theorem implies that,
if a petal polygon P can fold into a convex polyhedron,
then that folding is unique. Thus, the problem is to
find the unique crease pattern on B — in other words,
the triangulation of B — so that P folds into a convex
polyhedron by mountain folding on the creases.

Let us elaborate on this, and its related results.
Alexandrov’s theorem states that every metric with the
global topology and local geometry required of a convex
polyhedron is in fact the intrinsic metric of some con-
vex polyhedron. Thus, if P is a net of a convex bumpy
pyramid, then the shape (as a convex polyhedron) is
uniquely determined. Alexandrov’s theorem was stated
in 1942, and a constructive proof was given by Bobenko
and Izmestiev in 2008 [4]. A pseudo-polynomial algo-
rithm for Alexandrov’s theorem, given by Kane et al. in

2009, runs in O(n456.5r1891/ε121) time, where r is the
ratio of the largest and smallest distances between ver-
tices, and ε is the coordinate relative accuracy [8]. The
exponents in the time bound of the result are remark-
ably huge. As far as the authors know, Theorems 1
and 2 are the first efficient algorithms for Alexandrov’s
theorem for a family of nontrivial convex polyhedra.

Aronov and O’Rourke used a Voronoi diagram to
prove that the star unfolding has no overlap in the
plane [2]. In star unfolding, a base face remains flat and
flaps are obtained by straightening cuts along geodesic
paths that cross several faces to reach the same point c.
The sites for this Voronoi diagram are the copies of c,
which would be the cis, and the metric is Euclidean dis-
tance in the plane. In convex bumpy pyramid folding,
as we will see, the triangular flaps remain flat, while the
base is folded along diagonals. These diagonals will form
a triangulation dual to the power diagram, which is a
Voronoi diagram of sites pi using the power distance.

Finally, we turn to the third problem, which is to find
a crease pattern of B such that P folds into the bumpy
pyramid of maximum volume. At first glance, it may
seem that the convex bumpy pyramid should achieve
the maximum volume, but this is not true in general. In
this paper, we give counterexamples: two petal polygons
whose non-convex bumpy pyramids have larger volumes
than their convex ones. We here note that, if the crease
pattern of B is fixed, then its volume can be computed
by decomposing the polyhedron into tetrahedra by cuts
from the apex to the creases and summing the volumes
of the tetrahedra. Even though the number of possi-
ble triangulations of the base B can be exponential, we
can find the bumpy pyramid of maximum volume by
nontrivial dynamic programming in O(n3) time:

Theorem 3 Let P be a petal polygon whose base B has
n vertices. The crease pattern (triangulation of B) that
gives the bumpy pyramid with maximum volume can be
found in O(n3) time.

2 Preliminaries

We sometimes discuss the convexity of a polyhedron
folded from a petal polygon P . We may have a special
case that the polyhedron is concave at its apex c. We
first consider this special case. When the total sum of
interior angles at the ci is greater than 360◦ and n > 3,
the apex will be a point of negative curvature, and must
be a saddle in any folded polyhedron. A simple example
is drawn in Figure 2: by mountain folding around the
edges of B and p1p3, we have a polyhedron that is a
saddle at the apex c. The case n = 3 is exceptional;
when the total sum of interior angles at the ci is greater
than 360◦, `is are too short to make a polyhedron.

In our first two problems, the solutions require that
the result be a convex folded polyhedron, which is pos-
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sible only if the curvature at the apex is positive. Since
it can be checked in linear time, we basically eliminate
the case to make our arguments clear. We need a little
more notation to describe folding processes. We sup-
pose initially that P is on the xy plane, and that each
point p of P is given by Cartesian coordinates in the
plane, namely (x(p), y(p)). When we consider the fold-
ing of P in general, we put P into an xyz space, and
then each point p of P is described by three coordinates,
(x(p), y(p), z(p)). For two points p and q in the plane
or in space, the line that contains the line segment pq is
denoted by pq.

Let Ti denote the triangle formed by the three points
pipi+1ci. Consider a folding of the triangle Ti onto B
along the line pipi+1. In the plane this would be a re-
flection or flip across the line; in space the movement is
described as the function of time, rotating the triangle
about pipi+1 from the initial position at t = 0 back into
the plane at t = 1 (Figure 3). That is, when we flip
the triangle Ti, the point ci moves from ci(0) to ci(1);
If ci stops at apex c and is glued to form a (bumpy)
pyramid, we have c = ci(t) for some 0 < t < 1.

We can also watch the projection c′(i) of the mo-
tion of ci back in the xy plane. That is, for ci =
(x(ci), y(ci), z(ci)), the projection c′i = (x(ci), y(ci), 0).
We define τi, the trace of ci, as the locus of all projec-
tions c′i as ci moves from ci(0) to ci(1) through space.
In fact, τi is simply the segment ci(0)ci(1), which lies
in the xy plane; we will use τi when we are focusing on
the plane, and ci(0)ci(1) when we are thinking of this
as the limits of motion of ci in space.

Observation 1 We suppose that we mountain fold the
triangle Ti onto B by flipping it. The trace τi of ci(t)
is the chord between the intersections of the two circles,

Ci and Ci+1, centered at pi and pi+1 and with radius
|pici| and |pi+1ci|, respectively. The line through τi is
perpendicular to the line pipi+1.

Note that the trace is easily constructed by reflection
about a line in the plane.

3 Folding to Pyramids

In this section, we suppose that the base B is on an xy
plane, and each point ci moves to the positive side of B,
and generates a trace τi on the xy plane. (We observe
from outside, so this folding is mountain folding along
the line pipi+1 for some i. That is, we always have
pi = (x(pi), y(pi), 0) and ci = (x(ci), y(ci), z(ci)) with
z(ci) ≥ 0. The opposite folding is valley folding.)

The ci can meet at a common apex c if and only if
the corresponding traces, τi, meet at a common point
in the plane. In fact, it is enough if n − 1 of the traces
meet at a common point, because then the nth will do
as well.

Lemma 4 Let P be a petal polygon whose base B has
n sides. Then P can fold to a pyramid if and only if the
n − 1 traces τi intersect at the same point c′.

Proof. Suppose that the points pi lie in the xy plane
in three dimensions. Consider spheres Si centered at
pi of radius `i, which makes Si pass through ci−1 and
ci. Each trace τi is the projection onto the xy plane of
the disk bounded by the intersection Si ∩Si+1. If n− 1
traces intersect in a common point c′, then all spheres
contain c′, so it is in the remaining trace as well.

Now, if P folds to a pyramid, then all cis must meet
at a common apex c. That is, for all i ∈ [1..n], there
exists an αi ∈ (0, 1) with ci(αi) = c. By Observation 1,
the projection c′ will lie on all traces τi.

For the reverse, if a point c′ lies on trace τi, then
there is a unique αi ∈ (0, 1) with projection c′i(αi) = c′.
Thus, ci(αi) on the intersection Si ∩ Si+1, which have
the same height above c′. Similarly, ci−1(αi−1) lies on
the intersection Si−1∩Si, so these two spheres have the
same height above c′. By transitivity, all spheres have
the same height above c′, so all ci(αi) meet at the same
point c, which is the apex c of a folded pyramid. �

Now, to prove Theorem 1, it is sufficient to show that
we can check for a common intersection c′ of traces in
linear time. The candidate position is the solution to
simultaneous linear equations (c′ − ci) · (pi − pi+1) = 0.
By Lemma 4, it is enough to look at n − 1 equations,
so for n = 3 always has a unique candidate; for n > 3
we check that the solution for 2 independent equations
satisfies the rest. Once we have the candidate c′, we
simply check that its distance to the line pipi+1 is less
than that of ci. Using (x, y)⊥ = (−y, x), this is∣∣(pi − pi+1)⊥ · (c′ − pi)

∣∣ ≤ (pi − pi+1)⊥ · (ci − pi).
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Using Cramer’s rule to find c′ shows that the inequalities
can be evaluated with four times the input precision,
so constant time apiece, and O(n) time overall. This
completes the proof of Theorem 1.

We note that for any base B and chosen origin o,
both in the xy plane, by making the triangle flaps to
the ci sufficiently long, it is always possible to fold a
pyramid that has its apex above o. (Actually, you only
get to choose the length of one flap, because then all the
other edge lengths, as well as the height of the apex are
determined.) In proving this we introduce the power
distance.

Theorem 5 Let B = (p1, p2, . . . , pn) be a convex poly-
gon in a Cartesian plane with origin o. If we choose
any one length li > |pio|, it is possible to construct the
points (c1, c2, . . . , cn) for a petal polygon that folds to a
pyramid with apex c projecting onto the origin o.

Proof. Define a distance function on points for each

i ∈ [1..n] as di(q) =
√
|q − pi|2 − |o − pi|2 =

√
q · q − 2q · pi. This is a form of the power distance de-

fined for circles [3] in which all the circles pass through
the origin. The level sets Li(α) = {q ∈ R2 | di(q) = α}
are circles centered at pi; for α > 0 they are circles that
contain the origin o.

Place ci(α) at the intersection Li(α) ∩ Li+1(α) that
lies to the right of ⇀pipi+1. We observe that all such
ci(α) lie on the line through the origin perpendicular to
pipi+1, because this line contains all points q for which
di(q)2 − di+1(q)2 = 2q · (pi+1 − pi) = 0.

If we choose an α > 0, therefore, for each i ∈ [1..n],
the trace of ci(α) goes through the origin, and Lemma 4
says that we can fold to a pyramid with apex projecting
to the origin. �

4 Folding to Bumpy Pyramids with 4 Vertices

We consider the bumpy pyramid, where we allow to fold
the base along diagonals that join two vertices pipj . To
simplify the discussion, we assume that no four points
on the base are on the same plane in the resulting poly-
hedron, so the base is completely triangulated. When
n = 3, we have the lengths of six edges of a tetrahedron.
By Alexandrov’s theorem, if the tetrahedron exists, then
it is uniquely determined. Its volume can be computed
in a constant time using the equation in [10]. Indeed,
this could be used instead of Theorem 1 to test foldabil-
ity when n = 3: P folds to a unique tetrahedron iff it
has a positive volume computed by the equation. Now
we turn to the special case n = 4. This case is already
not so obvious, and the results in this section are helpful
for the general case.

Let P = (p1, c1, p2, c2, p3, c3, p4, c4) be a petal poly-
gon. There are two candidates for diagonals to fold,

p1p3 or p2p4, to make bumpy pyramids from P . For
these two candidates, we have the following theorem.

Theorem 6 For a petal polygon P of 8 points, either
(1) no bumpy pyramid can be folded, (2) one convex
bumpy pyramid can be folded, or (3) one convex bumpy
pyramid and one concave bumpy pyramid can be folded.

Proof. Suppose that we have a bumpy pyramid by fold-
ing along the line p2p4; this pyramid consists of two
tetrahedra cp1p2p4 and cp3p2p4 that share a common
triangle cp2p4. We can fold it if and only if the three
edges, |p2p4|, |cp2| = `2, and |cp4| = `4, satisfy the tri-
angle inequality. For each i, let Ci be a circle of radius
`i centered at pi. The triangle inequality is satisfied if
and only if C2 and C4 intersect. For the circles C1 and
C3, we can use the same argument. Therefore, we have
three cases.
Case 1: No pair of (C1, C3) and (C2, C4) intersect, as in
Figure 4(1). In this case, the four triangles are so short
that no pyramid can be folded.
Case 2: One of (C1, C3) and (C2, C4) intersects. With-
out loss of generality, we assume that C1 and C3 inter-
sect as in Figure 4(2). In this case, we cannot make a
triangle cp2p4 since three edges do not satisfy the tri-
angle inequality. Therefore, only one pyramid can be
folded by folding along p1p3.

Now we show that the resulting pyramid is convex.
To derive a contradiction, we suppose that the pyramid
is concave by valley folding along p1p3. Consider its
intersection with the plane through triangle p2cp4: we
see that the length of the path from p2 to p4 through
the apex c is greater than the length of path p2hp4 for
a point h on p1p3. This contradicts that C2 and C4 do
not intersect. Therefore, to obtain a bumpy pyramid,
we must mountain fold along p1p3.
Case 3: Both of (C1, C3) and (C2, C4) intersect, as in
Figure 4(3). By Alexandrov’s theorem we cannot obtain
two convex bumpy pyramids; so we show that one must
be convex and the other concave.

We first consider folding along p1p3 (Figure 5). The
resulting polyhedron can be split into two tetrahedra
cp1p2p3 and cp1p4p3 by cutting the shared triangle
T = (p1, p3, c). This T can be depicted twice by joining
p1p3 and two intersections of C1 and C3 (thick lines in
Figure 5). Let t1 and t2 be the intersection points.

Now we consider two more intersection points; c1,2

is of c1(0)c1(1) and c2(0)c2(1), and c3,4 is of c3(0)c3(1)
and c4(0)c4(1). Then, by Lemma 4, c1,2 and c3,4 are
both on the line t1t2. When c1,2 is closer to p2 than
c3,4 as in the figure, we have to mountain fold along the
line p1p3 to make the resulting polyhedron. Thus, we
assume that c3,4 is closer to p2. In this case, we have
to valley fold along the line p1p3 to glue two tetrahedra
cp1p2p3 and cp1p4p3. However, in this case, when we
consider the line p2p4, we can conclude that we have to
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mountain fold along the line p2p4 to obtain the result-
ing bumpy pyramid. Therefore, we obtain one convex
bumpy pyramid and one concave bumpy pyramid. �

5 Folding a Convex Bumpy Pyramid

We now turn to the general convex bumpy pyramid
problem. A power diagram is a partition of the Eu-
clidean plane into polygonal cells defined from a set of
circles, where the cell for a given circle C consists of all
the points for which the power distance to C is smaller
than the power distance to the other circles (see, e.g., [3]
for the details). From the cases in the proof of Theorem
6 that created convex bumpy pyramids, we observed
that the projections of the ci as the come together at
an apex are sweeping out a power diagram of the ver-
tices of the base B. We first show that this is true in
general — that to obtain a convex bumpy pyramid when
one exists, we can fold the diagonals of B that are dual
to the power diagram edges. Then we show that the

power diagram of the vertices of a convex polygon can
be computed in linear time by extending the Voronoi
algorithm of Aggarwal et al. [1].

Theorem 7 Let P = (p1, c1, p2, c2, . . . , pn, cn) be a
petal polygon with base B = (p1, . . . , pn). Let D be the
set of diagonals of B that are dual to the power diagram
of B with weights `i = |pici|. If P can fold into a convex
bumpy pyramid, then it can do so by mountain folding
the diagonals of D.

Proof. The uniqueness of the convex bumpy pyramid
follows from Alexandrov’s theorem, so we focus on show-
ing the relation to the power diagram, which is a well-
known variation of a Voronoi diagram [3]. For com-
pleteness, we include brief sketches of the properties we
need; see the literature (e.g., [3]) for more details.

A special form of the power distance was defined for
Theorem 5; the general power distance for point pi with

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014
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weight `i is

di(q) =
√
|q − pi|2 − `2i .

This is often depicted by drawing the 0-level set, which
is a circle Ci centered at pi of radius `i.

Use the power distance for the vertices of B to define a
Voronoi diagram, which is a decomposition of the plane
into maximally connected regions with the same set of
closest neighbors. In particular the edges Ei,j are the
non-empty sets defined by pairs of vertices i and j with
i 6= j as follows:

Ei,j ={q ∈ R2 | di(q) = dj(q)
and ∀k ∈ [1..n] dk(q) ≤ di(q) −→ k ∈ {i, j}}.

Edges are easily seen to be line segments by expanding
di(q)− dj(q) = 2q(pi − pj)+ p2

i − p2
j − (`2i − `2j ); the line

of Ei,j contains the intersection points of the circles,
Ci ∩ Cj .

The intersection of halfplanes containing pi defined
by all edges Ei,k is the convex cell of pi, so the edges
define a partition of the plane into convex cells, edges,
and vertices, which is the power diagram. The dual of
the power diagram of B tells us which diagonals to use
to fold our convex bumpy pyramid: use a diagonal pipj

iff Ei,j is non-empty.
Because B is convex, we can show that, for all i ∈

[1..n], power diagram edge Ei,i+1 goes to infinity. Con-
sider any pj not an endpoint of the B-edge pipi+1; both
vectors pi−pj and pi+1−pj have positive projection on
the normal vector (pi−pi+1)⊥, so if we move far enough
in that direction, we eventually cross the Ei,j and Ei+1,j

power diagram edges from the pj side. This completes
the characterization of the properties we need from the
power diagram.

Now, because the power diagram of vertices of B de-
composes the plane into a cell for each pi, and edges
Ei,i+1 go to infinity, each cell is unbounded and the
edges form an acyclic and connected graph. We have
a tree, and can consider the infinite edges to be exter-
nal nodes. A leaf is a tree node that is incident on two
external nodes.

This tree gives our folding order. Intuitively, each
ci traces along the edges from corresponding leaf of the
power diagram toward the center of the tree. When two
leaves meet at their common parent, the corresponding
two flaps meet there, and replaced by merged flap. For
example, in Figure 6, each ci starts at a leaf and traces
the bold line, which is the power diagram. Then c4

meets c3 before c5, and c1 meets c2 before c5. When
c4 meets c3, they are glued and two flaps p4p5c4 and
p3p4c3 are replaced by a new “flap” p3p5c

′, where c′

is the meeting point of c3 and c4. In other words, we
discard the point p4 from B and proceed recursively
with a new P that has a triangle flap p3p5c

′ instead of
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p5
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Figure 6: Power diagram (bold tree) gives the order of
gluing the petals.

two flaps p4p5c4 and p3p4c3. In the time, all flaps are
already partially folded, but no other pair meet with
each other.

Then, it is clear that we have to make a mountain
fold along p3p5 to fold the new flap toward the next
meeting point. The recursive folding ends with a base
at which all flaps can meet, completing a convex bumpy
pyramid.

For each leaf, fold a flap that corresponds to the infi-
nite edge. Suppose that the vertices of P for these flaps
are pi−1, ci−1, pi, ci, and pi+1. If the traces τi−1 and
τi are long enough to include the power diagram vertex
equidistant to pi−1, pi, and pi+1, then the flaps for ci−1

and ci will meet at an apex c that projects to the vertex.
We then discard the point pi from B and the leaf from
the power diagram, and proceed recursively with a new
P that has a triangle flap pi−1, c,pi+1. This flap is al-
ready partially folded, but will continue folding forward
according to the power diagram edge Ei−1,i+1, so we
may safely fold it back to the plane before continuing.

If each `i is sufficiently long, it is clear that this proce-
dure certainly fold P into a convex bumpy pyramid. �

Lemma 8 The power diagram of B can be computed in
linear time.

Proof. This is a straightforward application of the not-
so-straightforward ideas in the Voronoi algorithm of Ag-
garwal et al. [1] to the case of the power diagram. Since
we have not found it in the literature, we include a de-
tailed sketch.

The basic algorithm is incremental construction,
which can be made to run in time proportional to the
number of edges of the cell of an inserted vertex in our



case, since we can always know where to begin. First,
imagine deleting a site p from a power diagram of B:
the neighbors of p’s cell will steal back the area that
belonged to the cell. To reinsert p, one can simply walk
over the portions of the diagram that will lie in p’s cell,
starting from the infinite edge defined by the neighbors
of p.

By the way, we could make a randomized incremen-
tal construction that runs in two stages: First, randomly
delete vertices from B, keeping track of neighbors at the
time of deletion. Second, in reverse order, insert vertices
incrementally into the power diagram, starting from the
infinite edge between the neighbors. This would run in
expected linear time, since it is only the point location
that necessitates Θ(n log n) expected time in random-
ized incremental construction [5].

For a deterministic algorithm, Aggarwal et al. [1]
identify a constant fraction of the Voronoi cells that
are not adjacent to each other, so that they could
be inserted simultaneously in time proportional to the
Voronoi size. The same idea works for the power dia-
gram of the vertices of B.

Mark the vertices pi red or blue to satisfy three rules:
1) No two adjacent sites are marked red.
2) No three adjacent sites are marked blue.
3) If there is a point in the plane q for which di−1(q) and
di−1(q) are the two smallest elements of the five element
set {di−2(q), di−1(q), di(q), di+1(q), di+2(q)} (equiva-
lently, Ei−1,i+1 is an edge in the power diagram of these
five vertices), then pi is red.

Marking is easy to do in linear time: Initially mark
red vertices forced by rule 3, and the rest blue, then
while there exists three consecutive blue, change the
center to red. The only trouble would be if rule 3 applied
to consecutive vertices, but this is not possible due to
the structure of power diagrams.

In fact, consecutive red sites cannot have power dia-
gram cells that are adjacent: If cells for pi and pj touch
and there is a single vertex between them, then that
vertex must be red and pi, pj are both blue. But there
cannot be more than two vertices between consecutive
reds, and in such a case the Ei,j bisector must run into
one of the cells, making the vertex for the other red, so
at least one of pi and pj are blue.

Aggarwal et al. [1] prove a combinatorial lemma that
exploits this condition.

Lemma 9 (Aggarwal et al. [1]) Let T be a binary
tree embedded in the plane. Each leaf of T has an as-
sociated “neighborhood,” which is a connected subtree
rooted at that leaf, and leaves adjacent in the topolog-
ical order around the tree have disjoint neighborhoods.
Then there are a fixed fraction of the leaves with dis-
joint, constant-size neighborhoods, and such leaves can
be found in linear time (assuming that neighborhoods
can be traced out in breadth-first order).

Now, we can sketch the divide and conquer of Ag-
garwal et al. [1]: Mark the vertices, and compute the
power diagram of the blue by recursion, giving a tree
where leaves will be edges that go to infinity between
blue vertices that have a red between them. The neigh-
borhood of such a leaf is the region closer to this red
vertex than either blue vertex. Lemma 9 says that a
constant fraction of the red sites with disjoint, constant-
size neighborhoods can be found. These red sites can
be merged into the blue power diagram in constant time
apiece.

Finally, a constant fraction of the sites remain red;
we again compute their power diagram recursively and
merge it into the blue power diagram — we can do this
in linear total time if we merge connected portions start-
ing and ending with the infinite edges. As Aggarwal et
al. [1] show, the total time is O(n). �

With these Lemmas, we prove Theorem 2:

Lemma 10 If a petal polygon P of 2n points folds to
a bumpy pyramid, then it folds into a unique convex
bumpy pyramid. Moreover, the triangulation of B for
folding to the convex bumpy pyramid can be found in
linear time using constant precision.

Proof. By Theorem 7 the power diagram is a tree that
gives the folding order, if it is possible. It is easy to
follow this tree and perform the folding; since all re-
cursive steps can be phrased in terms of a subpolygon
of B with original lengths determining the triangular
flaps, the precision does not increase. By Lemma 8,
the tree can be computed in linear time and constant
precision. �

6 Bumpy Pyramid of Maximum Volume

We here give two nontrivial examples of petal polygons
such that concave ones have larger volumes than convex
ones in Figure 7. Using the results by Sabitov [10],
we can directly compute their volumes and obtain the
claim, but here we give more expressive explanations
to reveal the hidden ideas of the polygons. The petal
polygon in Figure 7(1) folds to a convex polyhedron
of almost zero volume by mountain folding along the
line p1p3. On the other hand, it folds to a concave
polyhedron of larger volume when we valley fold along
the line p2p4 (like a fortune cookie). For the other petal
polygon in Figure 7(2), when we mountain fold along the
line p2p4, we obtain almost a pyramid with a triangular
base p1p2p4, and the point p3 is almost on the inner
point of the triangle p2cp4. On the other hand, when we
valley fold along the line p1p3, although it is skewer and
its height is bit reduced, the resulting concave bumpy
pyramid has almost a square base, and hence it has a
larger volume.
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Figure 7: Petal polygons that can fold to form convex or
non-convex bumpy pyramids, but the non-convex ones
have larger volume than the convex ones.

Therefore, we can conclude that sometimes a non-
convex bumpy pyramid has a larger volume than con-
vex one folded from the same petal polygon. This fact
motivates us to find a crease pattern of B such that P
folds into the bumpy pyramid of maximum volume.

By the following proof, we obtain Theorem 3, as
stated in Introduction.

Proof. (of Theorem 3) We use dynamic programming
in which each subproblem S(i, k) is a sequence of 1 ≤
k < n consecutive edges of B, using k + 1 vertices pi

to pi+k. The weight of a subproblem, w(i, k), is the
maximum volume of the bumpy pyramid folded from
the petal polygon with vertices pi, ci, . . . , ci+k−1, pi+k,
c′, where c′ is the point with lengths |c′pi| = `i and
|c′pi+1| = `i+1. Thus, when k = 1 we have two flaps
that fold together, w(i, 1) = 0, and when k = n − 1,
we have P back again and w(1, n − 1) is the maximum
volume that we seek.

We say that (i, j, k), with 1 ≤ i ≤ n, 1 ≤ j < k < n is
valid if a six-vertex petal polygon with base 4pipi+jpi+k

and flaps with corresponding lengths `i, `i+j and `i+k

can be folded to a tetrahedron; let V (i, j, k) denote the
volume of this tetrahedron. For 1 < k < n,

w(i, k) =

 max1≤j<k V (i, j, k) + w(i, j) + w(i + j, k)
if (i, j, k) is valid,

−∞ otherwise.

Thus, we have n2 subproblems, and the computation
for each can be performed in O(n) time if we assume

a Real RAM model. By storing with each subproblem
the index j at which the maximum occurred, we can
recover the crease pattern that gives the maximum. �

We note that the dynamic programming in the proof
of Theorem 3 can be modified to count the number of
valid bumpy pyramids. Therefore we have the following
corollary:

Corollary 11 Let P be a petal polygon whose base B
has n vertices. The number of the valid bumpy pyramids
folded from P (by triangulations of B) can be computed
in O(n3) time.

7 Concluding Remarks

In this paper, we consider polyhedra folded from a petal
polygon P . Although the complete characterization of
the property is still open, we give the first nontrivial
steps to the new problem. Especially, we give the first
nontrivial and efficient algorithms for Alexandrov’s the-
orem of finding a unique crease pattern if it exists, by
restricting our attention to the special case of petal poly-
gons.

We close by mentioning the potential relationship be-
tween this problem and the big open problem that asks
whether every convex polyhedron has a non-overlapping
net. When we attempt to unfold a general triangulated
convex polyhedron onto the plane, one natural way is
to first cut and open at a vertex of the convex poly-
hedron. In the case, we cut all edges incident to the
vertex, and open the triangle flaps (as long as faces are
triangulated). After that, the natural reduction process
would remove the triangle flaps and attach a bumpy
(triangulated) face along the open area. This process
can be regarded as removing a bumpy pyramid from
the polyhedron to reduce the number of vertices. If we
have a complete characterization of bumpy pyramids, it
may give us the first step of the induction.

The last author thanks Teruo Nishiyama, who intro-
duced the petal pyramid folding problem for n = 4.
His question led us to this rich vein of problems about
bumpy pyramids.
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