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ABSTRACT
Much prior work has studied processor cache replacement
policies, but a large gap remains between theory and practice.
The optimal policy (MIN) requires unobtainable knowledge
of the future, and prior theoretically-grounded policies use
reference models that do not match real programs. Mean-
while, practical policies are designed empirically. Lacking a
strong theoretical foundation, they do not make the best use
of the information available to them.

This paper bridges theory and practice. We propose that
practical policies should replace lines based on their economic
value added (EVA), the difference of their expected hits from
the average. We use Markov decision processes to show that
EVA is optimal under some reasonable simplifications.

We present an inexpensive, practical implementation of
EVA and evaluate it exhaustively over many cache sizes. EVA
outperforms prior practical policies and saves area at iso-
performance. These results show that formalizing cache
replacement yields practical benefits.

1. INTRODUCTION
Last-level caches consume significant resources, typically

over 50% of chip area [18], so it is crucial to manage them ef-
ficiently. Prior work has approached cache replacement from
both theoretical and practical standpoints. Unfortunately,
there is a large gap between theory and practice.

From a theoretical standpoint, the optimal replacement
policy is Belady’s MIN [6, 19], which evicts the candidate
referenced furthest in the future. But MIN’s requirement for
perfect knowledge of the future makes it impractical. In
practice, policies must cope with uncertainty, never knowing
exactly when candidates will be referenced.

Theoretically-grounded policies account for uncertainty by
using a simplified, statistical model of the reference stream in
which the optimal policy can be found analytically. We call
such policies statistically optimal. The key challenge is defin-
ing a statistical model that captures enough information about
the access stream to make good replacement decisions, yet is
simple enough to analyze. Unfortunately, prior statistically
optimal policies rely on the independent reference model
(IRM), which is inadequate for processor caches. The IRM
assumes that candidates are referenced independently with
static probabilities. The IRM-optimal policy is to evict the
candidate with the lowest reference probability [1]. Though
useful in other areas (e.g., web caches [3]), the IRM is inade-
quate for processor caches because it assumes that reference
probabilities do not change over time.

Instead, replacement policies for processor caches are de-
signed empirically, using heuristics based on observations of
common-case access patterns [10, 11, 12, 13, 26, 30, 33]. We
observe that, unlike the IRM, these policies do not assume

static reference probabilities. Instead, they exploit dynamic
behavior through various aging mechanisms. While often
effective, high-performance policies employ many different
heuristics and, lacking a theoretical foundation, it is unclear
if any are taking the right approach. Each policy performs
well on particular programs, yet no policy dominates overall,
suggesting that these policies are not making the best use of
available information.

In this paper, we seek to bridge theory and practice in
cache replacement with two key contributions. First, we
use planning theory to show that the correct approach is to
replace candidates by their economic value added (EVA); i.e.,
how many more hits one expects from each candidate vs. the
average. Second, we design a practical implementation of
this policy and show it outperforms existing policies.
Contributions: This paper contributes the following:
• We discuss the two main tradeoffs in cache replacement:

hit probability and cache space (Sec. 3), and describe how
EVA reconciles them with a single intuitive metric (Sec. 4).
• We formulate cache replacement as a Markov decision

process (MDP), and show that EVA follows from MDP theory,
though an exact solution is impractical. We describe a
simple memory reference model that we use to arrive at
our implementation (Sec. 5).
• We present a practical implementation of EVA, which we

have synthesized in a 65 nm commercial process. EVA adds
1.3% area overhead on a 1 MB cache vs. SHiP (Sec. 6).
• We evaluate EVA against prior high-performance policies

on SPEC CPU2006 and OMP2012 over many cache sizes (Sec. 7).
EVA reduces LLC misses over existing policies at equal area,
closing 57% of the gap from random replacement to MIN
vs. 47% for SHiP [33], 41% for DRRIP [11], and 42% for
PDP [10]. Fewer misses translate into large area savings—
EVA matches SHiP’s performance with gmean 8% less total
cache area.
• We show that EVA is a general principle of optimal replace-

ment through a case study on compressed caches, where
EVA also outperforms the best empirical policy (Sec. 8).
These contributions show that formalizing cache replace-

ment yields practical benefits. EVA is the first rigorous study
of cache replacement with dynamically changing reference
probabilities, and is consequently the first statistically optimal
policy to outperform empirical policies. Our implementation
is inspired by iterative MDP algorithms, and is the first adap-
tive policy that does not require set sampling or auxiliary
tagged monitors. Moreover, beyond our particular design,
we expect replacement by economic value added (EVA) to be
useful in the design of future high-performance policies.

2. BACKGROUND
In practice, replacement policies must cope with uncer-

tainty, never knowing precisely when a candidate will be



referenced. The challenge is uncertainty itself, since with
complete information the optimal policy is simple: evict the
candidate that is referenced furthest in the future (MIN [6,19]).

Broadly speaking, prior work has taken two approaches to
replacement under uncertainty. On the one hand, architects
can develop a probabilistic model of how programs reference
memory and then solve for the optimal replacement policy
within this reference model. On the other hand, architects can
observe programs’ behaviors and find best-effort heuristics
that perform well on common access patterns.

These two approaches are complementary: theory yields
insight into how to approach replacement, which is used in
practice to design policies that perform well on real appli-
cations at low overhead. For example, the most common
approach to replacement under uncertainty is to predict when
candidates will be referenced and evict the candidate that is
predicted to be referenced furthest in the future. This long-
standing approach takes inspiration from theory (i.e., MIN)
and has been implemented to great effect in recent empirical
policies [11, 13]. (Sec. 3 shows that this strategy is subop-
timal, however.) Yet despite the evident synergy between
theory and practice, the vast majority of research has been on
the empirical side; theory dates from the early 1970s [1].
Replacement theory: The challenge for statistically optimal
policies is to define a reference model that is simple enough
to analyze, yet sufficiently accurate to yield useful insights.
In 1971, Aho et al. [1] studied page replacement within the
independent reference model (IRM), which assumes that pages
are accessed non-uniformly with known probabilities. They
model cache replacement as a Markov decision process, and
show that the optimal policy, A0, is to evict the page with the
lowest reference probability.

Aho et al. is the work most closely related to ours, but we
observe that the independent reference model is a poor fit
for processor caches. Like Aho et al., we formalize cache
replacement as an MDP, but we use a reference model that
tractably captures dynamic behavior (Sec. 5). Capturing
dynamic behavior is crucial for good performance. Processor
caches are accessed by few threads, so their references tend to
be highly correlated. But the IRM assumes static, uncorrelated
references, losing this crucial information.

For example, consider a program that scans over a 100 K-
line array. Since each address is accessed once every 100 K
accesses, each has the same “reference probability”. Thus
the IRM-optimal policy, which evicts the candidate with the
lowest reference probability, cannot distinguish among lines
and would replace them at random. In fact, the optimal
replacement policy is to protect a fraction of the array so that
some lines age long enough to hit. Doing so can significantly
outperform random replacement, e.g. achieving 80% hit rate
with a 80 K-line cache. But protection works only because of
dynamic behavior: a line’s reference probability increases as
it ages. The independent reference model does not capture
such information. Clearly, a new model is needed.
Replacement policies: Many high-performance policies try
to emulate MIN through various heuristics. DIP [26] avoids
thrashing by inserting most lines at low priority. SDBP [15]
uses the PC to predict which lines are unlikely to be reused.
RRIP [11, 33] and IbRDP [13] try to predict candidates’ time
until reference. PDP [10] protects lines from eviction for a

fixed number of accesses. And IRGD [30] computes a statis-
tical cost function from sampled reuse distance histograms.
Without a theoretical foundation, it is unclear if any of these
policies takes the right approach. Indeed, no policy domi-
nates across benchmarks (Sec. 7), suggesting that they are
not making the best use of available information.

We observe two relevant trends in recent research. First,
most empirical policies exploit dynamic behavior by using
the candidate’s age (the time since it was last referenced) to
select a victim. For example, LRU prefers recently used lines
to capture temporal locality; RRIP [11, 33] predicts a longer
re-reference interval for older candidates; PDP [10] protects
candidates from eviction for a fixed number of accesses; and
IRGD [30] uses a heuristic function of ages.

Second, recent high-performance policies adapt themselves
to the access stream to varying degrees. DIP [26] detects
thrashing with set dueling. DRRIP [11] inserts lines at medium
priority, preferring lines that have been reused, and avoids
thrashing using the same mechanism as DIP. SHiP [33] ex-
tends DRRIP by adapting the insertion priority based on the
memory address, PC, or instruction sequence. PDP [10] and
IRGD [30] use auxiliary monitors to profile the access pattern
and periodically recompute their policy.

These two trends show that (i) on real access streams, aging
reveals information relevant to replacement; and (ii) adapting
the policy to the access stream improves performance. But
these policies do not make the best use of the information they
capture, and prior theory does not suggest the right policy.

We use planning theory to design a practical policy that
addresses these issues. EVA is intuitive and inexpensive to
implement. In contrast to most empirical policies, EVA does
not explicitly encode particular heuristics (e.g., preferring
recently-used lines). Rather, it is a general approach that aims
to make the best use of the limited information available, so
that prior heuristics arise naturally when appropriate.

3. REPLACEMENT UNDER UNCERTAINTY
All replacement policies have the same goal and face the

same constraints. Namely, they try to maximize the cache’s
hit rate subject to limited cache space. We can precisely
characterize these tradeoffs and develop the intuition behind
EVA by considering each of them in greater depth.

First, we introduce two random variables, H and L. H is
the age1 at which the line hits, undefined if it is evicted, and
L is the age at which the line’s lifetime2 ends, whether by hit
or eviction. For example, P[H = 8] is the probability the line
hits at age 8, and P[L = 8] is the probability that it either hits
or is evicted at age 8.

Policies try to maximize the cache’s hit rate, which neces-
sarily equals the average line’s hit probability:

Hit rate = P[hit] =
∞

∑
a=1

P[H = a] , (1)

but are constrained by limited cache space. Since every access
starts a new lifetime, the average lifetime equals the cache
1Age is the number of accesses since the line was last referenced.
2We break up time for each line into lifetimes, the idle periods
between hits or evictions. For example, an address that enters the
cache at access 1000, hits at access 1016, and is evicted at access
1064 has two lifetimes of lengths 16 and 48, respectively.



size, N [4, Eq. 1]:

N =
∞

∑
a=1

a ·P[L = a] (2)

Comparing these two equations, we see that hits are benefi-
cial irrespective of their age, yet the cost in space increases in
proportion to age (the factor of a in Eq. 2). So to maximize
the cache’s hit rate, the replacement policy must attempt to
both maximize hit probability and limit how long lines spend
in the cache. From these considerations, one can see why
MIN is optimal.

But how should one trade off between these competing,
incommensurable objectives under uncertainty? Obvious
generalizations of MIN like evicting the line with the highest
expected time until reference or the lowest expected hit prob-
ability are inadequate, since they only account for one side
of the tradeoff.
Example: Inspired by MIN, several empirical policies pre-
dict time until reference, and evict the line with the longest
predicted time until reference [11, 23, 30, 33]. We present a
simple counterexample that shows why predictions of time
until reference are inadequate. Although this example may
seem obvious to some readers, predicting time until reference
is in fact a commonly used replacement strategy.

Suppose the replacement policy has to choose a victim
from two candidates: A is referenced immediately with prob-
ability 9/10, and in 100 accesses with probability 1/10; and
B is always referenced in two accesses. In this case, the best
choice is to evict B, betting that A will hit immediately, and
then evict A if it does not. Doing so yields an expected hit
rate of 9/10, instead of 1/2 from evicting A. Yet A’s expected
time until reference is 1×9/10+100×1/10 = 10.9, and B’s
is 2. Thus, according to their predicted time until reference,
A should be evicted. This is wrong.

Predictions fail because they ignore the possibility of future
evictions. When behavior is uncertain and changes over time,
the replacement policy can learn more about candidates as
they age. This means it can afford to gamble that candidates
will hit quickly and evict them if they do not. But expected
time until reference ignores this insight, and is thus influenced
by large reuse distances that will never be reached in the
cache. In this example, it is skewed by reuse distance 100.
But the optimal policy never keeps lines this long. Indeed, the
value “100” plays no part in calculating the cache’s maximum
hit rate, so it is wrong for it to influence replacement decisions.
Such situations arise in practice and can be demonstrated on
analytical examples (see Appendix A).

4. EVA REPLACEMENT POLICY
Since it is inadequate to consider either hit probability or

time until reference in isolation, we must reconcile them in a
single metric. We resolve this problem by viewing time spent
in the cache as forgone hits, i.e. as the opportunity cost of
retaining lines. We thus rank candidates by their economic
value added (EVA), or how many hits the candidate yields
over the “average candidate”. Sec. 5 shows this intuitive
formulation follows from MDP theory, and in fact maximizes
the cache’s hit rate.

EVA essentially views retaining a line in the cache as an
investment, with the goal of retaining the candidates that yield

the highest profit (measured in hits). Since cache space is a
scarce resource, we need to account for how much space each
candidate consumes. We do so by “charging” each candidate
for the time it will spend in the cache (its remaining lifetime).
We charge candidates at a rate of a line’s average hit rate
(i.e., the cache’s hit rate divided by its size), since this is the
long-run opportunity cost of consuming cache space. Hence,
the EVA for a candidate of age a is:

EVA(a) = P
[
hit|age a

]− Hit rate
N

×E
[
L−a|age a

]
(3)

Example: To see how EVA works, suppose that a candidate
has a 20% chance of hitting in 10 accesses, 30% chance of
hitting in 20 accesses, and a 50% chance of being evicted in
32 accesses. We would expect to get 0.5 hits from this can-
didate, but these come at the cost of the candidate spending
an expected 24 accesses in the cache. If the cache’s hit rate
were 40% and it had 16 lines, then a line would yield 0.025
hits per access on average, so this candidate would cost an
expected 24×0.025 = 0.6 forgone hits. Altogether, the can-
didate yields an expected net 0.5−0.6 =−0.1 hits—its value
added over the average candidate is negative! In other words,
retaining this candidate would tend to lower the cache’s hit
rate, even though its chance of hitting (50%) is larger than
the cache’s hit rate (40%). It simply takes space for too much
time to be worth the investment.

Now suppose that the candidate was not evicted (maybe
there was an even less attractive candidate), and it appeared
again t = 16 accesses later. Since time has passed and it did
not hit at t = 10, its expected behavior changes. It now has a
30%/(100%−20%) = 37.5% chance of hitting in 20−16 =
4 accesses, and a 50%/(100%− 20%) = 62.5% chance of
being evicted in 32− 16 = 16 accesses. Hence we expect
0.375 hits, a lifetime of 13.5 accesses, and forgone hits of
13.5× 0.025 = 0.3375. In total, the candidate yields net
0.0375 hits over the average candidate—after not hitting at
t = 10, it has become more valuable!

This example shows that EVA can change over time, some-
times in unexpected ways. Our contribution is identifying
hit probability and expected lifetime as the two fundamental
tradeoffs, and reconciling them within a single metric, EVA.
Sec. 5 shows that EVA is indeed the right metric.

We have limited our consideration to the candidate’s cur-
rent lifetime in these examples. But conceptually there is no
reason for this, and we should also consider future lifetimes.
For simplicity, we assume for now that lines behave the same
following a reference. It follows that a candidate’s EVA (its
difference from the average candidate) is zero after its cur-
rent lifetime. In Sec. 4.2 we show how EVA can account for
future behavior at modest additional complexity by dividing
lines into classes with different expected behavior, and Sec. 5
formalizes these notions.

4.1 Computing EVA
We can generalize these examples using conditional prob-

ability and the random variables H and L introduced above.
(Sec. 6 discusses how we sample these distributions.) To
compute EVA, we compute the candidate’s expected current
lifetime and its probability of hitting in that lifetime.

Following conventions in MDP theory, we denote EVA at



age a as h(a) and the cache’s hit rate as g. Let r(a) be the
expected number of hits, or reward, and c(a) the forgone hits,
or cost. Then from Eq. 3:

EVA(a) = h(a) = r(a)− c(a) (4)

The reward r(a) is the expected number of hits for a line of
age a. This is simple conditional probability; age a restricts
the sample space to lifetimes at least a accesses long:

r(a) =
P[H > a]
P[L > a]

(5)

The forgone hits c(a) are g/N times the expected lifetime:

c(a) =
g
N
× ∑∞

x=1 x ·P[L = a+ x]
P[L > a]

(6)

To summarize, we select a victim by comparing each can-
didate’s EVA (Eq. 4) and evict the candidate with the lowest
EVA. Note that our implementation does not evaluate Eq. 4
during replacement, and instead precomputes ranks for each
age and updates them infrequently. Moreover, Eqs. 5 and 6 at
age a can each be computed incrementally from age a+1, so
EVA requires just a few arithmetic operations per age (Sec. 6).

4.2 EVA with classification
We now extend EVA to support distinct classes of refer-

ences, allowing it to distinguish future behavior between
candidates. Specifically, we discuss in detail how to extend
EVA to support reused/non-reused classification. That is, we
divide the cache into two classes: lines that have hit at least
once, and newly inserted lines that have not. This simple
scheme has proven effective in prior work [11,16], but unlike
prior work EVA does not assume reused lines are preferable to
non-reused. Instead, EVA adapts its policy based on observed
behavior, computing the EVA for lines of each class while
taking into account their expected future behavior.

We denote the EVA of reused lines as hR(a), and the EVA
of non-reused lines as hNR(a). We refer to class C whenever
either R or NR apply. With classification, the terms of EVA
are further conditioned upon a line’s class. For example, the
reward for a reused line is:

rR(a) =
P
[
H > a|reused

]
P
[
L > a|reused

] (7)

Forgone hits and non-reused lines are similarly conditioned.
Without classification, we were able to consider only the

current lifetime, assuming all lines behaved identically fol-
lowing a reference. When distinguishing among classes, this
is untenable, and we must consider all future lifetimes be-
cause each class may differ from the average. The EVA for a
single lifetime of class C is unchanged:

hC
ℓ (a) = rC(a)− cC(a), (8)

but the future lifetimes are now important. Specifically, if a
lifetime ends in a hit, then the next will be a reused lifetime.
Otherwise, if it ends in an eviction, then the next will be
non-reused. Thus if the miss rate of class C at age a is mC(a),
then the EVA (extending to infinity) is:

hC(a) =

Current lifetime︷ ︸︸ ︷
hC

ℓ (a)+

Hits→ Reused︷ ︸︸ ︷
(1−mC(a)) ·hR(0)+

Misses→ Non-reused︷ ︸︸ ︷
mC(a) ·hNR(0) (9)

Moreover, the average line’s EVA is zero by definition, and
reused lines are simply those that hit. So if the cache’s miss
rate is m, then:

0 = (1−m) ·hR(0)+m ·hNR(0) (10)

From Eq. 9 and Eq. 10, it follows that:

hR(a) = hR
ℓ (a)+

m−mR(a)
mR(0)

·hR
ℓ (0) (11)

hNR(a) = hNR
ℓ (a)+

m−mNR(a)
mR(0)

·hR
ℓ (0) (12)

These equations have simplified terms, so their interpretation
is not obvious. Essentially, these equations compare the rate
that a class is creating additional reused lines (m−mC(a)) to
the rate at which lines are leaving the reused class (mR(0)),
and their ratio is how similar the class is to reused lines.
Summary: Classification ultimately amounts to adding a
constant to the unclassified, per-lifetime EVA. If reused and
non-reused lines have the same miss rate, then the added
terms cancel and EVA reverts to Eq. 4. EVA thus incorpo-
rates classification without a fixed preference for either class,
instead adapting its policy based on observed behavior.

Although we have focused on reused/non-reused classifi-
cation, these ideas apply to other classification schemes as
well, so long as one is able to express how lines transition
between classes (e.g., Eq. 9).

5. CACHE REPLACEMENT AS AN MDP
We now formalize cache replacement as a Markov decision

process (MDP). We use the MDP to show that (i) EVA maxi-
mizes hit rate and, using a simple memory reference model,
that (ii) our implementation follows from a relaxation of the
MDP. Finally, we discuss some nice properties that follow
from this formulation, which allow us to build a simple and
efficient implementation.

5.1 Background on Markov decision processes
MDPs [24] are a popular framework to model decision-

making under uncertainty, and can yield optimal policies for
a wide variety of settings and optimization criteria.

As the name suggests, MDPs extend Markov chains to
model decision-making. An MDP consists of a set of states S.
In state s∈ S, an action α is taken from the set As, after which
the system transitions to state s′ with probability P(s′|s,α).
Finally, each action gives a reward r(s,α). � , : +

� , : +� , : � , :� ��
Figure 1: Example MDP with three states. Actions transi-
tion between states probabilistically (e.g., α1,1 to s2 or s3)
and produce a reward (adjacent to edge label). A state
may allow multiple actions (e.g., s2).

Fig. 1 illustrates the key elements of MDPs with a simple
example. This MDP has three states (si) and four actions
(action αi, j denotes the jth action in state si). Actions trigger
state transitions, which may be probabilistic and have an



associated reward. In this example, all actions except α1,1 are
deterministic, but α1,1 can cause a transition to either s2 or s3.
Actions α1,1 and α3,1 give a reward, while α2,1 and α2,2 do
not. To maximize rewards in the long run, the optimal policy
in this case is to take actions α1,1, α2,2, and α3,1 in states s1,
s2, and s3, respectively.

The goal of MDP theory is to find the best actions to take in
each state to achieve a given objective, e.g. to maximize the
total reward. After describing the cache replacement MDP,
we give the relevant background in MDP theory needed to
describe the optimal cache replacement policy.

5.2 Generalized cache replacement MDP
Fig. 2 shows a highly general MDP for cache replacement.

The states s consist of some information about candidates,
which will vary depending on the memory reference model.
For example, in the IRM the state is the reference probability
of each candidate, and in MIN it is the time until reference of
each candidate.

�′ �′…

�

Figure 2: Generalized cache replacement MDP. State s
consists of some information about candidates, and tran-
sitions to state s′ upon a cache access. Hits give reward 1;
evictions let the replacement policy choose a victim.

Upon every cache access, the state transitions to the state
s′ (which may be the same as the original state s). Misses
yield no reward, but the replacement policy now must choose
a victim to replace. The replacement policy can take one of N
actions α1 . . .αN , where αi means evicting the ith candidate.
Hits yield a reward of 1, and are independent of replacement
action. (The replacement policy is not invoked for hits.) Thus
the reward is the probability of having hit on any line:

r(s,α j) =
W

∑
i=1

P
[
hit i|s] (13)

To maximize the cache’s hit rate, we should optimize the
long-run average reward.

Given this general model of cache replacement, MDP theory
describes the optimal replacement policy. In Sec. 5.4, we will
specialize this MDP on a simple memory reference model to
show how we arrived at EVA.

5.3 Background in optimal MDP policies
This section gives a brief overview of MDP theory, narrowly

focused on our application of MDPs to cache replacement. For
a comprehensive treatment, see Puterman [24].

The optimal policy depends on the optimization criterion,
but the general procedure is common across criteria. Each
criterion has an associated optimality equation, which assigns
a value to each state based on actions taken. For example,

the optimality equation for the expected total reward after T
actions is vT(s):

vT(s) = max
α∈As

{
r(s,α)+ ∑

s′∈S
P(s′|s,α)vT+1(s′)

}
(14)

Eq. 14 says that the maximum total reward is achieved by
taking the action that maximizes the immediate reward plus
the expected total future reward. For an infinite horizon,
Eq. 14 drops the superscripts and becomes recursive on v.

The significance of the optimality equation is that any
v∗ that satisfies the optimality equation gives the maximum
value over all policies. Hence, a solution v∗ directly yields an
optimal policy: take the action chosen by the max operator in
Eq. 14. Optimality equations therefore summarize all relevant
information about present and future rewards.
Long-run average reward: The long-run average reward
can be intuitively described using the expected total reward.
If the expected total reward after T actions is vT(s), then the
expected average reward, or gain, is gT(s) = vT(s)/T . The
long-run average reward is just the limit as T goes to infinity.
However, since all states converge to the same average reward
in the limit, the gain is constant g(s) = g and does not suffice
to construct an optimal policy. That is, the cache converges
to the same hit rate from every initial state, so the long-run
hit rate cannot by itself distinguish among states.

To address this, MDP theory introduces the bias of each
state h(s), which represents how much the total reward from
state s differs from the mean. In other words, after T accesses
one would expect a total reward (i.e., cumulative hits) of T g;
the bias is the asymptotic difference between the expected
total reward from s and this value:

h(s) = lim
T→∞

vT(s)−T g (15)

In the limit, the bias is a finite but generally non-zero number.
The bias is also called the transient reward, since in the long
run, it becomes insignificant relative to the total reward vT (s)
once all states have converged to the average reward g.

Perhaps surprisingly, this transient reward indicates how
to achieve the best long-run average reward. Optimizing the
bias is equivalent to optimizing the expected total reward after
T actions, and choosing T large enough effectively optimizes
the long-run average reward (to within arbitrary precision).
For rigorous proofs, see [24, §8]. The optimality equation for
the long-run average reward is:

g+h(s) = max
α∈As

{
r(s,α)+ ∑

s′∈S
P(s′|s,α)h(s′)

}
(16)

Since solving Eq. 16 yields an optimal policy, the optimal
policy for long-run average reward MDPs is to take the action
that maximizes the immediate reward plus expected bias.

5.4 An MDP for dynamic behavior
We now show how to tractably model dynamically chang-

ing reference probabilities by specializing the MDP in Fig. 2.
We do so using a simple memory reference model, called the
iid reuse distance model. Rather than assuming cache lines
behave non-uniformly with static reference probabilities, this
model asserts they behave largely homogeneously and share
dynamic reference probabilities.



Memory reference model: The iid reuse distance model di-
vides references into a small number of classes, and models
that reuse distances3 are independent and identically dis-
tributed within each class. That is, we model that each refer-
ence belongs to some class c, with reuse distance d distributed
according to P[Dc = d].

This model is simple to analyze and captures the most
important features of dynamic program behavior: changing
reference probabilities, and time spent in the cache (Sec. 3).
It is reasonably accurate because the private cache levels filter
out successive references to the same line, so the LLC natu-
rally sees an access stream stripped of short-term temporal
locality [5, 14, 16]. The iid reuse distance model is not a
perfect description of programs, but the reference patterns it
models poorly are uncommon at the LLC. The iid model is
therefore a much better model of the LLC reference streams
than prior models. What matters is that the model is simple
enough that one can find the statistically optimal policy, and
accurate enough that it captures the important tradeoffs so
that this policy is competitive.

Ideally, we would validate these assumptions through a
statistical test against real applications. Unfortunately, there
is no robust statistical test for whether a dataset is iid that
does not itself depend on other assumptions on how the data
were generated. Instead, we justify the model by applying
it to problems. Prior work has used the iid model to predict
cache performance [4], and both PDP [10] and IRGD [30] use
a similar model (albeit informally, without studying the opti-
mal policy). Other work makes similar assumptions for other
purposes [5, 10, 25, 26]. Appendix B shows the error from as-
suming independence is small. And our results show that the
model yields a statistically optimal policy that outperforms
state-of-the-art empirical policies.
State space: Every line in the set has reuse distance that is
iid, letting us infer its time until reference. The probability
that a line of age a and class c has time until reference t is
the conditional probability:

P
[
Dc = t +a|age a

]
=

P[Dc = t +a]
P[Dc ≥ a]

(17)

With N lines, an MDP state s is a tuple:

s = (c1,a1,c2,a2 . . .cN ,aN), (18)

where each ai/ci is the age/class of the ith line. This state
space encodes the information directly observable to the re-
placement policy. Moreover, it is sufficient within our model
to encode all available information about each candidate.4
State transitions: Every access to the cache causes a state
transition. There are two possible outcomes to every cache
access (Fig. 3):
1. Hits: Each line hits with probability that its time until ref-

erence is zero (Eq. 17). Each line that hits then transitions
to age 1 and may transition to a new class (i.e., become
reused). Lines that do not hit age by one, i.e. ai ages to
a′i = ai +1.

3A reference’s reuse distance is the number of accesses between
references to the same address; contrast with stack distance, the
number of unique addresses referenced.
4Our MDP thus encodes the belief-states of a partially observable
MDP [20] using lines’ time until reference.
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Figure 3: Cache replacement MDP for a 2-line cache with
a single reference class. The state s = (a1,a2) is lines’
ages; each hit gives reward 1; a line’s age resets to 1 upon
hit or eviction.

2. Evictions: If no line hits, then the replacement policy must
choose a line to evict. To evict line j, it takes action α j. In
this case, line j transitions to age a′j = 1 and the incoming
reference’s class (i.e., non-reused), and all other lines age
by one as before.

It is unnecessary to explicitly compute the state transition
probabilities to describe the optimal policy. Although the
optimal policy can be solved for explicitly, doing so at run-
time is impractical. (Given a maximum reuse distance of dmax,
this MDP has dmax

W states. Even after compressing the state
space, it has intractably many states.) The MDP formulation
is useful for its insight, but not as a practical policy itself.
Instead, we show that EVA from Sec. 4 approximates the
optimal MDP policy.
A practical implementation of the MDP: Since the imme-
diate reward (Eq. 13) is independent of action, the optimal
replacement policy is to maximize the expected future bias
(Eq. 16). Bias is the expected reward minus the expected
average reward over the same number of actions—bias is
exactly EVA (Sec. 4). Moreover, MDP theory guarantees that
this approach maximizes the hit rate in the long run.

The main approximation in EVA is to decompose the policy
from MDP states to individual candidates. That is, rather than
selecting a victim by looking at all ages simultaneously, our
implementation ranks candidates individually and evicts the
one with highest rank. This approach is common in practical
policies [10, 11, 30, 33], and we believe it introduces little
error to the MDP solution because hits occur to individual
lines, not the entire set.

Informally, the idea is that (i) the cache’s EVA is simply
the sum of every line’s EVA; (ii) the cache’s EVA is thus maxi-
mized by retaining the lines with the highest EVA; and (iii) fol-
lowing MDP theory, this maximizes the cache’s hit rate. We
thus compute EVA for each candidate, conditioning upon its
age and class as suggested by the iid model.
Related work: Prior work has used MDPs to study replace-
ment within the IRM [1, 3]. Our MDP is similar, but with the
critical difference that we tractably model dynamic behav-
ior. This is essential to achieve good performance. Prior
approaches are too complex: Aho et al. [1] propose modeling
the reference history to capture dynamic behavior, but deem
this approach intractable and do not consider it in depth.

Since the IRM assumes static, heterogeneous reference
probabilities, their MDP states are the addresses cached. In
contrast, we use the iid reuse distance model, so we ignore
addresses. Instead, the MDP states are the ages and classes



cached. This lets us tractably capture dynamic behavior and
produce a high-performance policy.

5.5 Generalized optimal replacement
MDPs are capable of modeling a wide variety of memory

reference models and cache replacement problems. We have
presented an MDP for the iid reuse distance model, but it is
easy to extend MDPs to other contexts. For example, prior
work models the IRM with uniform [1] and non-uniform [3]
replacement costs. With small modifications, our MDP can
model a compressed cache [21], where candidates have dif-
ferent sizes and conventional prediction-based policies are
clearly inadequate (Appendix C). The above discussion ap-
plies equally to such problems, and shows that EVA is a gen-
eral principle of optimal replacement under uncertainty.

In particular, EVA subsumes prior optimal policies, i.e. MIN
and A0 (the IRM-optimal policy), in their respective memory
reference models. MIN operates on lines’ times until refer-
ence. Since all hits yield the same reward, EVA is maximized
by minimizing forgone hits, i.e. by minimizing time until
reference. In the IRM, A0 operates on lines’ reference proba-
bilities. Reward is proportional to hit probability and forgone
hits are inversely proportional to hit probability, so EVA is
maximized by evicting lines with the lowest hit probability.
EVA thus yields the optimal policy in both reference models.

The real contribution of the MDP framework, however, lies
in going beyond prior reference models. Unlike predicting
time until reference, the MDP approach does not ignore future
evictions. It therefore gives an accurate accounting of all
outcomes. In other words, EVA generalizes MIN.

5.6 Qualitative gains from planning theory
Convergence: MDPs are solved using iterative algorithms
that are guaranteed to converge to an optimal policy within ar-
bitrary precision. One such algorithm is policy iteration [17],
wherein the algorithm alternates between computing the value
vT for each state and updating the policy. Our implementation
uses an analogous procedure, alternatively monitoring the
cache’s behavior (i.e., “computing vT ”) and updating ranks.
Although this analogy is no strict guarantee of convergence,
it gives reason to believe that our implementation converges
on stable applications, as we have observed empirically.
Convexity: Beckmann and Sanchez [5] proved under sim-
ilar assumptions to the iid model that MIN is convex; i.e.,
it yields diminishing gains in hit rate with additional cache
space. Convexity is important to simplify cache management.
Their proof does not rely on any specific properties of MIN,
it only requires that (i) the policy is optimal in some model
and (ii) its miss rate can be computed for any arbitrary cache
size. Since EVA is iid-optimal and the MDP yields the miss
rate, the proof holds for EVA as well. Thus EVA is convex,
provided that the iid model and other assumptions hold. Em-
pirically, we observe convex performance with an idealized
implementation, and minor non-convexities with coarsened
ages (Sec. 6.1).

6. IMPLEMENTATION
One contribution of the MDP formulation is that it suggests

a simple implementation of EVA, shown in Fig. 4: (i) A small
table, called the eviction priority array, ranks candidates to
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Figure 4: An efficient implementation of EVA.

select a victim. (ii) Counters record the age distribution of
hits of evictions. And infrequently (iii) a lightweight software
runtime computes EVA from these counters, and then updates
the eviction priorities.

This implementation requires trivial hardware: narrow
comparisons and increments plus a small amount of state.
All of the analytical complexity is pushed to software, where
updates add small overheads. This hybrid design is broadly
similar to prior work in cache partitioning [5]; however, we
also describe a hardware-only implementation in Sec. 6.4.

Unlike prior policies, EVA does not devote a fraction of
sets to monitoring alternative policies (cf. [11, 26]), nor does
it require auxiliary tags to monitor properties independent
of the replacement policy (cf. [5, 10, 30]). This is possible
because of EVA’s analytical foundation: it converges to the
right policy simply by monitoring its own behavior (Sec. 5.6,
cf. [33]). As a result, our implementation makes full use of
the entire cache and eliminates overheads from monitors.

6.1 Hardware operations
Aging: We use per-set, coarsened ages [10]. Each cache
line has a k-bit age, and each set has a j-bit counter that is
incremented upon an access to the set (k = 7 and j = 4 in
our evaluation). When a set’s counter reaches a value A, it is
reset and every age in the set is incremented until saturating
at 2k−1. Software adapts A to the access pattern (Sec. 6.2).
Ranking: To rank candidates cheaply, we use a small evic-
tion priority array. We use each candidate’s age to index into
the priority array, and evict the candidate with the highest
eviction priority. We set priorities such that if age a is ranked
higher than age b, then h(a) < h(b) (Sec. 6.2). To ensure that
lines are eventually evicted, saturated ages always have the
highest eviction priority.

To work with classification, we add a reused bit to each
cache tag, and use two priority arrays to store the priorities
of reused and non-reused lines. Eviction priorities require
2k+1× (k +1) bits, or 256 B with k = 7.

The eviction priority array is dual ported to support peak
memory bandwidth. With 16 ways, we can sustain one evic-
tion every 8 cycles, for 19.2 GBps per LLC bank.
Event counters: To sample the hit and lifetime distributions,



we add two arrays of 16-bit counters (2k×16 b = 256 B per
array) that record the age histograms of hits and evictions.
When a line hits or is evicted, the cache controller increments
the counter in the corresponding array. These counters are
periodically read to update the eviction priorities. To support
classification, there are two arrays for both reused and non-
reused lines, or 1 KB total with k = 7.

6.2 Software updates
Periodically (every 256 K accesses), an OS runtime adapts

EVA to running applications by setting the aging granularity
and eviction priorities. First, we obtain the hit and lifetime
distributions (P[H = a] and P[L = a]) from the counters, and
average them with prior values to maintain a history of ap-
plication behavior. (We use an exponential moving average
with coefficient 0.8.)
Adaptive aging: To make a fair comparison with prior poli-
cies, we evaluate EVA using minimal tag state (Fig. 9). This
necessitates adapting the age granularity A because, with very
few age bits (<5 b), no single value for A works well across
all applications. The challenge is to set the granularity large
enough for the cache to observe relevant behavior, but small
enough that it can distinguish between behaviors at different
ages. We achieve this through the following heuristic: If the
cache has no hits or if more than 10% of hits and evictions oc-
cur at the maximum age, then increase A by one. Otherwise,
if less than 10% of hits occur in the second half of ages (ages
≥ 2k−1), then decrease A by one. We find that this simple
heuristic rapidly converges to the right age granularity across
all our evaluated applications.

Adaptive aging is a practical compromise to perform well
with minimal state. However, with larger tags (e.g., with 8 b
tags, as in most of our evaluation), adaptive aging can be
disabled with no performance loss.
Updating ranks: We compute EVA in a small number of
arithmetic operations per age, and sort the result to find the
eviction priority for each age and class.

Updates occur in four passes over ages, shown in Algo-

Algorithm 1. Algorithm to compute EVA and update ranks.
Inputs: hitCtrs, evictionCtrs — event counters, A — age granularity
Returns: rank — eviction priorities for all ages and classes

1: function UPDATE
2: for a← 2k to 1: ⊲ Miss rates from summing over counters.
3: for c ∈ {nonReused,reused}:
4: hitsc += hitCtrs[c,a]
5: missesc += evictionCtrs[c,a]
6: mR[a]←missesR/(hitsR +missesR)
7: mNR[a]←missesNR/(hitsNR +missesNR)
8: m← (hitsR +hitsNR)/(missesR +missesNR)
9: perAccessCost← (1−m)×A/S

10: for c ∈ {nonReused,reused}: ⊲ Compute EVA backwards over ages.
11: expLifetime, hits, events← 0
12: for a← 2k to 1:
13: expectedLifetime += events
14: eva[c,a]← (hits−perAccessCost×expectedLifetime)/events
15: hits += hitCtrs[c,a]
16: events += hitCtrs[c,a] + evictionCtrs[c,a]
17: evaReused← eva[reused,1]/mR[0] ⊲ Differentiate classes.
18: for c ∈ {nonReused,reused}:
19: for a← 2k to 1:
20: eva[c,a] += (m−mc[a])×evaReused

21: order← ARGSORT(eva) ⊲ Finally, rank ages by EVA.
22: for i← 1 to 2k+1 :
23: rank[order[i]]← 2k+1− i
24: return rank

rithm 1. In the first pass, we compute mR, mNR, and m = 1−g
by summing counters. Second, we compute lifetime EVA in-
crementally: Eq. 8 requires five additions, one multiplication,
and one division per age. Third, classification (e.g., Eq. 9)
adds one more addition and multiplication per age. Finally,
we sort EVA to find the final eviction priorities. Our C++
implementation takes just 123 lines of code and incurs negli-
gible runtime overheads (see below).

Area Energy
(mm2) (% 1 MB LLC) (nJ / LLC miss) (% 1 MB LLC)

Ranking 0.010 0.05% 0.014 0.6%
Counters 0.025 0.14% 0.010 0.4%

8-bit Tags 0.189 1.07% 0.012 0.5%

H/W Updates 0.052 0.30% 380 / 128 K 0.1%
(Optional, Sec. 6.4)

Table 1: Implementation overheads at 65 nm.

6.3 Overheads
Ranking and counters: Our implementation adds 1 KB for
counters and 256 B for priority arrays. We have synthesized
our design in a commercial process at 65 nm at 2 GHz. We
lack access to an SRAM compiler, so we use CACTI 5.3 [31]
for all SRAMs (using register files instead of SRAM for all
memories makes the circuit 4× larger). Table 1 shows the
area and energy for each component at 65 nm. Absolute
numbers should be scaled to reflect more recent technology
nodes. We compute overhead relative to a 1 MB LLC using
area from a 65 nm Intel E6750 [9] and energy from CACTI.
Overheads are small, totaling 0.2% area and 1.0% energy
over a 1 MB LLC. Total leakage power is 2 mW. Even with
one LLC access every 10 cycles, EVA adds just 7 mW at 65 nm,
or 0.01% of the E6750’s 65 W TDP [9].
Software updates: Updates complete in a few tens of K cycle.
Specifically, with k = 7 age bits, updates take 43 K cycle on an
Intel Xeon E5-2670, and at small k scale roughly in proportion
to the maximum age (2k). Because updates are infrequent,
the runtime and energy overhead is negligible: conservatively
assuming that updates are on the critical path, we observe
that updates take an average 0.1% of system cycles and a
maximum of 0.3% on SPEC CPU2006 apps.
Tags: Since the new components introduced by EVA add
negligible overheads, the main overhead is additional tag state.
Our implementation uses 8 bits per tag (vs. 2 bits for SHiP).
This is roughly 1% area overhead, 0.5% energy overhead,
and 20 mW leakage power. However, our evaluation shows
that EVA is competitive with prior policies when using fewer
age bits. So why do we use larger tags? We use larger
tags because doing so produces a more area-efficient design.
Unlike prior policies, EVA’s performance steadily improves
with more tag bits (Fig. 9). EVA trades off larger tags for
improved performance, making better use of the 99% of
cache area not devoted to replacement, and therefore saves
area at iso-performance.
Complexity: A common concern with analytical techniques
like EVA is their perceived complexity. However, we should
be careful to distinguish between conceptual complexity—
equations, MDPs, etc.—and implementation complexity. In
hardware, EVA adds only narrow increments and comparisons;
in software, EVA adds a short, low-overhead reconfiguration
procedure (Algorithm 1).



6.4 Alternative hardware-only implementation
Performing updates in software instead of hardware pro-

vides several benefits. Most importantly, software updates
reduce implementation complexity, since EVA’s implementa-
tion is otherwise trivial. Software updates may also be prefer-
able to integrate EVA with other system objectives (e.g., cache
partitioning [32]), or on systems with dedicated OS cores (e.g.,
the Kalray MPPA-256 [8] or Fujitsu Sparc64 XIfx [34]).

However, if software updates are undesirable, we have
also implemented and synthesized a custom microcontroller
that performs updates in hardware. In hardware, updates are
off the critical path and can thus afford to be simple. Our
microcontroller computes EVA using a single adder and a
small ROM microprogram. We use fixed-point arithmetic,
requiring 2k+1×32 bits to store the results plus seven 32-bit
registers, or 1052 B with k = 7. We have also implemented a
small FSM to compute the eviction priorities, which performs
an argsort using the merge sort algorithm, adding 2×2k+1×
(k +1) bits, or 512 B.

This microcontroller adds small overheads (Table 1)—
1.5 KB of state and simple logic—and is off the critical path.
It was fully implemented in Verilog by a non-expert in one
week, and its complexity is low compared to microcontrollers
shipping in commercial processors (e.g., Intel Turbo Boost [27]).
So though we believe software updates are a simpler design,
EVA can be implemented entirely in hardware if desired.

7. EVALUATION
We now evaluate EVA over diverse benchmark suites and

configurations. We show that EVA performs consistently
well across benchmarks, and consequently outperforms ex-
isting policies, closes the gap with MIN, and saves area at
iso-performance.

7.1 Methodology
We use zsim [28] to simulate systems with 1 and 8 OOO

cores with parameters shown in Table 2. We simulate LLCs
with sizes from 1 to 8 MB. The single-core chip runs single-
threaded SPEC CPU2006 apps, while the 8-core chip runs multi-
threaded apps from SPEC OMP2012. Our results hold across
different LLC sizes, benchmarks (e.g., PBBS [29]), and with
a strided prefetcher validated against real Westmere sys-
tems [28].
Policies: We evaluate how well policies use information by
comparing against random and MIN; these policies represent
the extremes of no information and perfect information, re-
spectively. We further compare EVA with LRU, RRIP variants
(DRRIP and SHiP), and PDP, which are implemented as pro-
posed. We sweep configurations for each policy and select
the one that is most area-efficient at iso-performance. DRRIP
uses M = 2 bits and ε = 1/32 [11]. SHiP uses M = 2 bits
and PC signatures with idealized, large history counter ta-
bles [33]. DRRIP is only presented in text because it performs
similarly to SHiP, but occasionally slightly worse. These poli-
cies’ performance degrades with larger M (Fig. 9). PDP uses
an idealized implementation with large timestamps.
Area: Except where clearly noted, our evaluation compares
policies’ performance against their total cache area at 65 nm,
including all replacement overheads. For each LLC size, we
use CACTI to model data and tag area, using the default tag

Cores Westmere-like OOO [28] at 4.2 GHz; 1 (ST) or 8 (MT)

L1 caches 32 KB, 8-way set-assoc, split D/I, 1-cycle
L2 caches Private, 256 KB, 8-way set-assoc, inclusive, 7-cycle

L3 cache Shared, 1 MB–8 MB, non-inclusive, 27-cycle; 16-way,
hashed set-assoc

Coherence MESI, 64 B lines, no silent drops; seq. consistency

Memory DDR-1333 MHz, 2 ranks/channel, 1 (ST) or 2 (MT)
channels

Table 2: Configuration of the simulated systems for
single- (ST) and multi-threaded (MT) experiments.

size of 45 b. We then add replacement tags and other over-
heads, taken from prior work. When overheads are unclear,
we use favorable numbers for other policies: DRRIP and SHiP
add 2-bit tags, and SHiP adds 1.875 KB for tables, or 0.1 mm2.
PDP adds 3-bit tags and 10 K NAND gates (0.02 mm2). LRU
uses 8-bit tags. Random adds no overhead. Since MIN is our
upper bound, we also grant it zero overhead. Finally, EVA
adds 8-bit tags and 0.04 mm2, as described in Sec. 6.
Workloads: We execute SPEC CPU2006 apps for 10 B instruc-
tions after fast-forwarding 10 B instructions. Since IPC is not
a valid measure of work in multi-threaded workloads [2], we
instrument SPEC OMP2012 apps with heartbeats. Each com-
pletes a region of interest (ROI) with heartbeats equal to those
completed in 1 B cycles with an 8 MB, LRU LLC (excluding
initialization).
Metrics: We report misses per thousand instructions (MPKI)
and end-to-end performance; for multi-threaded apps, we
report MPKI by normalizing misses by the instructions ex-
ecuted on an 8 MB, LRU LLC. We report speedup using IPC
(single-threaded) and ROI completion time (multi-threaded).
Results for EVA include overheads from software updates.

7.2 Single-threaded results
Fig. 5 plots MPKI vs. cache area for ten representative,

memory-intensive SPEC CPU2006 apps. Each point on each
curve represents increasing LLC sizes from 1 to 8 MB. First
note that the total cache area at the same LLC size (i.e., points
along x-axis) is hard to distinguish across policies. This is
because replacement overheads are small—less than 2% of
total cache area.

In most cases, MIN outperforms all practical policies by
a large margin. Excluding MIN, some apps are insensitive
to replacement policy. On others, random replacement and
LRU perform similarly; e.g., mcf and libquantum. In fact,
random often outperforms LRU.
EVA performs consistently well: SHiP and PDP improve per-
formance by correcting LRU’s flaws on particular access
patterns. Both perform well on libquantum (a scanning
benchmark), sphinx3, and xalancbmk. However, their per-
formance varies considerably across apps. For example,
SHiP performs particularly well on perlbench, mcf, and
cactusADM. PDP performs particularly well on GemsFDTD

and lbm, where SHiP exhibits pathologies and performs simi-
lar to random replacement.

EVA matches or outperforms SHiP and PDP on most apps
and cache sizes. This is because EVA employs a generally
optimal strategy within a model that accurately represents
memory references, so the right replacement strategies natu-
rally emerge from EVA where appropriate. As a result, EVA
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successfully captures the benefits of SHiP and PDP within a
common framework, and sometimes outperforms both. Since
EVA performs consistently well, but SHiP and PDP do not, EVA
achieves the lowest MPKI of all policies on average.

The cases where EVA performs slightly worse arise for two
reasons. First, in some cases (e.g., mcf at 1 MB), the access
pattern changes significantly between policy updates. EVA
can take several updates to adapt to the new pattern, during
which performance suffers. But in most cases the access
pattern changes slowly, and EVA performs well. Second,
our implementation coarsens ages, which can cause small
performance variability for some apps (e.g., libquantum).
Larger timestamps eliminate these variations.
EVA edges closer to optimal replacement: Fig. 6 com-
pares the practical policies against MIN, showing the aver-
age MPKI gap over MIN across the most memory-intensive
SPEC CPU2006 apps5—i.e., each policy’s MPKI minus MIN’s
at equal area. One would expect a practical policy to fall
somewhere between random replacement (no information)
and MIN (perfect information). But LRU actually performs
worse than random at many sizes because private caches
strip out most temporal locality before it reaches the LLC,

5All with ≥3 L2 MPKI; Fig. 5 plus bzip2, gcc, milc, gromacs,
leslie3d, gobmk, soplex, calculix, omnetpp, and astar.

leaving scanning patterns that are pathological in LRU. In
contrast, both SHiP and PDP significantly outperform random
replacement. Finally, EVA performs best at equal cache area.
On average, EVA closes 57% of the random-MIN MPKI gap.
In comparison, DRRIP (not shown) closes 41%, SHiP 47%,
PDP 42%, and LRU –9%. EVA is the first statistically optimal
policy to outperform state-of-the-art empirical policies.
EVA saves cache space: Because EVA improves performance,
it needs less cache space than other policies to achieve a given
level of performance. Fig. 7 shows the iso-MPKI total cache
area of each policy, i.e. the area required to match random
replacement’s average MPKI for different LLC sizes (lower
is better). For example, a 21.5 mm2 EVA cache achieves
the same MPKI as a 4 MB cache using random replacement,
whereas SHiP needs 23.6 mm2 to match this performance.

EVA is the most area efficient over the full range. On
average, EVA saves 8% total cache area over SHiP, the best
practical alternative. However, note that MIN saves 35% over
EVA, so there is still room for improvement.
EVA achieves the best end-to-end performance: Fig. 8
shows the IPC speedups over random replacement at 35 mm2,
the area of a 4 MB LLC with random replacement. Only bench-
marks that are sensitive to replacement are shown, i.e. bench-
marks whose IPC changes by at least 1% under some policy.



1 2 3 4 5 6 7 8 9 10

Replacement Tag Bits

8.5

9.0

9.5

10.0

10.5

11.0
A

v
g
 M

P
K

I

R
an

do
m

D
R
R
IP

PD
P
SH

iP
EVA

M
IN

8.5

9.0

9.5

10.0

10.5

11.0

B
e
s
t 
A

v
g
 M

P
K

I

Figure 9: Avg MPKI for different policies at 4 MB vs. tag
overheads (lower is better).

EVA achieves consistently good speedups across apps, while
prior policies do not. SHiP performs poorly on xalancbmk,
sphinx3, and lbm, and PDP performs poorly on mcf and
cactusADM. Consequently, EVA achieves the best speedup
overall. Gmean speedups on sensitive apps (those shown)
are for EVA 8.5%, DRRIP (not shown) 6.7%, SHiP 6.8%, PDP
4.5%, and LRU –2.3%.
EVA makes good use of additional state: Fig. 9 sweeps
the number of tag bits for different policies and plots their
average MPKI at 4 MB. (This experiment is not iso-area.) The
figure shows the best configuration on the right; EVA and PDP
use idealized, large timestamps. Prior policies achieve peak
performance with 2 or 3 bits, after which their performance
flattens or even degrades.

With 2 bits, EVA performs better than PDP, similar to DR-
RIP, and slightly worse than SHiP. Unlike prior policies, EVA’s
performance improves steadily with more state, and its peak
performance exceeds prior policies by a good margin. Com-
paring the best configurations, EVA’s improvement over SHiP
is 1.8× greater than SHiP’s improvement over DRRIP. EVA
with 8 b tags performs as well as an idealized implementation,
yet still adds small overheads. These overheads more than
pay for themselves, saving area at iso-performance (Fig. 7).
EVA outperforms predictions of time until reference: We
have also evaluated an analytical policy that monitors the
distribution of reuse distances and computes candidates’ time
until reference (Eq. 17). We use large, idealized monitors,
and references with immeasurably large reuse distances use
twice the maximum measurable distance.

This policy performs poorly compared to EVA and other
high-performance policies (graphs omitted due to space con-
straints). In fact, it often performs worse than random re-
placement, since predictions of time until reference lead to
pathologies like those discussed in Sec. 3. It closes just 29%
of the random-MIN MPKI gap, and its gmean IPC speedup
vs. random is just 1.4%. It handles simple, regular access
patterns well (e.g., libquantum), but fails on more com-
plex patterns. These results support the claim that EVA is the
correct generalization of MIN under uncertainty.

7.3 Multi-threaded results
Fig. 10 extends our evaluation to multi-threaded apps from

SPEC OMP2012. Working set sizes vary considerably, so we
consider LLCs from 1 to 32 MB, with area shown in log scale
on the x-axis. All qualitative claims from single-threaded
apps hold for multi-threaded apps. Many apps are streaming
or access the LLC infrequently; we discuss four representative
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Figure 10: Misses per thousand instructions (MPKI) vs.
total cache area across sizes (1 MB, 2 MB, 4 MB, 8 MB,
16 MB, and 32 MB) for random, LRU, SHiP, PDP, and EVA
on selected SPEC OMP2012 benchmarks. (Lower is better.)

benchmarks from the remainder.
As with single-threaded apps, SHiP and PDP improve perfor-

mance on different apps. SHiP outperforms PDP on some apps
(e.g., nab), and both perform well on others (e.g., smithwa).
Unlike in single-threaded apps, however, DRRIP and thread-
aware DRRIP (TADRRIP) outperform SHiP. This difference is
largely due to a single benchmark: smithwa at 8 MB.

EVA performs well in nearly all cases and achieves the
highest speedup. On the 7 OMP2012 apps that are sensitive
to replacement,6 the gmean speedup over random for EVA is
4.5%, DRRIP (not shown) 2.7%, TA-DRRIP 2.9%, SHiP 2.3%,
PDP 2.5%, and LRU 0.8%.

8. CASE STUDY: GENERALIZING EVA ON
COMPRESSED CACHES

To demonstrate that EVA generalizes to new contexts, we
evaluate EVA on compressed caches where candidates have
different sizes. We compare C-EVA (EVA extended to com-
pressed caches, Appendix C) against CAMP [21], the state-
of-the-art policy for compressed caches. C-EVA computes
opportunity cost per byte, not per cache block. CAMP extends
RRIP by adapting the insertion priority for different line sizes
and ranks candidates by dividing their RRIP priority by their
size. The cache uses BDI compression [22] and an idealized
tag directory that only evicts lines when a set runs out of
space in the data array.

Similar to above, Fig. 11 evaluates benchmarks that show
at least 1% performance improvement for some policy. Com-
pared to random replacement, C-EVA improves performance
by 7.9%, CAMP by 6.2%, DRRIP by 5.1%, and LRU by -1.9%.
C-EVA’s improvement over CAMP is 1.5× greater than CAMP’s
improvement over DRRIP. Thus, EVA generalizes to new con-
texts and still outperforms the state-of-the-art. Once again,
these results support the claim that EVA is the correct general-

6Fig. 10 plus md, botsspar, and kd.
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Figure 11: Performance across SPEC CPU2006 apps on a 4 MB LLC with BDI compression [22]. Only apps with >1%
performance difference shown.

ization of MIN under uncertainty.

9. CONCLUSION
We have argued for cache replacement by economic value

added (EVA). We showed that predicting time until refer-
ence, a common replacement strategy, is sub-optimal, and
we used first principles of caching and MDP theory to moti-
vate EVA as an alternative principle. We developed a prac-
tical implementation of EVA that outperforms existing high-
performance policies nearly uniformly on single- and multi-
threaded benchmarks. EVA thus gives a theoretical grounding
for practical policies, bridging the gap between theory and
practice.
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APPENDIX
A. COUNTEREXAMPLE TO PREDICTING

TIME UNTIL REFERENCE
Fig. 12 lays out a detailed example that shows evicting lines

based on their expected time until preference is suboptimal.
It shows a particular case where doing so lowers the cache’s
hit rate. This example demonstrates that cases given in Sec. 3
can arise in practice. It is somewhat contrived to make it
as simple as possible, but the central problem arises in real
programs as well.

We consider a cache consisting of a single line that has
the option of bypassing an incoming accesses. The replace-
ment policy always chooses between two candidates: (i) the
currently cached line at age a, or (ii) the incoming reference.
Hence all deterministic replacement policies degenerate to
choosing an age at which they evict lines, aE .

Moreover, it is trivial to compute the cache’s hit rate as a
function of aE . All reuse distances less than or equal to aE
hit, and all others are evicted. The hit rate is:7

P[hit] =
P[D≤ aE ]

aE ·P[D > aE ]+∑aE
a=1 aE ·P[D = a]

(19)

We consider Eq. 19 on an access stream with a trimodal
reuse distance distribution that takes three distinct values at
different probabilities. (Three values are needed to construct
a counterexample; predicting time until reference is optimal
on bimodal distributions.) The example we choose is shown
in Fig. 12a. This reuse distance distribution is:

P[D = d] =


0.25 If d = 4
0.25 If d = 8
0.5 If d = 32

The sensible age at which to evict lines are thus either 4,
8, or 32. Fig. 12b computes the hit rate for each. The best
choice is to evict lines after 8 accesses, i.e. aE = 8. Fig. 12c
shows the expected time until reference for new accesses and
those at age 4. Accesses have a lower expected time until
7 Eq. 19 is quite similar to the model PDP [10] uses to determine
protecting distances, but note that this formula does not generalize
well to caches with more than one line [4].

reference when new than at age 4, so predicted time until
reference would choose to evict at age 4 (i.e., aE = 4). This
choice degrades the hit rate.

The reason why predicting time until reference takes this
decision is that it incorrectly uses the long reuse distance
(i.e., 32) when considering candidates at age 4. This is in-
correct because if the cache does the right thing—evict lines
at aE = 8—then lines will never make it to age 32. Hence,
the replacement policy should ideally not even consider reuse
distance 32 when making decisions.

If the maximum age reached in the cache is 8, then only
events that occur before age 8 should be taken under con-
sideration. Our contribution is to produce a framework that
generalizes to these cases.

B. QUANTIFYING MODEL ERROR
The iid reuse distance model assumes each reference’s

reuse distance is distributed independently of the others, but
this is not so. We can get a sense for the magnitude of the
error through some simple calculations. We will focus on a
single set. The error arises because hits to different lines are
disjoint events, but the our model treats them as independent.
Hence the number of hits in the iid model follows a binomial
distribution [7], and multiple hits can occur on a single access.
Suppose the hit rate per line is a constant g, the cache size is
N, and the associativity is W . In reality, the miss probability
is 1−Wg and the hit probability for a single set is Wg. But
using a binomial distribution, the miss probability is (1−g)W

and single hit occurs with probability Wg(1−g)W−1. Hence,
the models do not agree on the probabilities of these events.
The error term is the “missing probability” in the binomial
model, i.e. the probability of more than one hit. To quantify
this error, consider the linear approximation of the binomial
distribution around g = 0:

(1−g)W = 1−Wg+O(g2)

Wg(1−g)W−1 = Wg+O(g2)

When g is small, O(g2) is negligible, and the binomial distri-
bution approximates the disjoint event probabilities. Since
the average per-line hit rate is small, at most 1/N ≪ 1/W ,
the error from assuming independence is negligible.

Figure 12: An example where replacing lines by their expected time until reference leads to sub-optimal hit rate.
(a) Reuse distance probability distribution. (b) Hit rate of different policies; retaining lines for 8 accesses is optimal.
(c) Expected time until reference for different lines; the informal principle says to evict lines after 4 accesses (since
25.33. . . > 19), and is not optimal.
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C. EVA ON COMPRESSED CACHES
EVA is easily extended to compressed caches, where can-

didates have different sizes. We call this policy C-EVA. The
basic idea is to compute the opportunity cost per byte, rather
than per line as in uncompressed caches. Hence, if B is the
size of the cache in bytes, the basic formula for EVA (Eq. 3)
is modified to:

h(a) = P
[
hit|age a

]− Hit rate
B

×E
[
L−a|age a

]×Line size

Additionally, CAMP [21], the state-of-the-art replacement
policy for compressed caches, adapts its policy to different
compressed block sizes. The intution behind this is that com-
pressed size is correlated with how the data is used, so classi-
fying by compressed size can help make better replacement
decisions.

We also extend EVA with classification by compressed
size. We classify compressed sizes logarithmically, so with
a line size of 64 B, C-EVA has six different size classes. For
simplicity, we assume that candidates’ size does not change,
although this is not always true (a line’s size can change when
it is written). With this modification, it is easy to compute
the per-class EVA, similar to Sec. 4.2.




