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ABSTRACT   

Many applications require GHz femtosecond pulses with the center wavelength tunable over a broad range. Recently we 

have demonstrated a 3-GHz, femtosecond Yb-fiber laser system with >12-W average power using the pre-chirp 

management method. Nonlinear wavelength conversion based on this powerful laser source has enabled us to derive 3-

GHz femtosecond sources at other useful wavelengths: using stimulated Raman scattering inside photonic crystal fibers, 

we have implemented a femtosecond Raman soliton source tunable between 1.06-1.35 μm; using fiber-optic Cherenkov 

radiation, we have demonstrated a 14-fs source centered at 850 nm with >300-mW average power.  

 

Keywords: Fiber-optic Cherenkov radiation, photonic crystal fiber, generalized nonlinear Schrödinger equation, 

coherence length, continuum generation 

 

 

1. INTRODUCTION 
 

Many applications require femtosecond lasers with high repetition rate. In the time domain, a higher repetition rate 

means more pulses in a fixed time period. For nonlinear bio-optical imaging [1] (e.g., two-photon fluorescence excitation 

microscopy) in which photoinduced damage is caused by pulse energy rather than average power, increasing pulse 

repetition-rate will improve signal-to-noise ratio and reduce data acquisition time [2,3]. In the frequency domain, a 

higher repetition rate means that the comb line spacing is larger. This permits access to and manipulation of each 

individual comb line. Such capabilities have opened numerous frequency-domain applications including optical arbitrary 

waveform generation [4–6], and high-resolution spectroscopy [7]. Furthermore, femtosecond optical sources in the 

optical spectral range between 0.7 μm and 1.55 μm have found many applications such as optical coherence tomography 

[8–10], high speed optical sampling [11,12], photonic analog-to-digital conversion [13], and multi-photon spectroscopy 

[14], to name a few. To date, femtosecond solid-state lasers are mainly employed in these applications. Figure 1 shows 

the wavelength coverage of different solid-state lasers and the wavelength range required for various applications. Take 

the two most common femtosecond solid-state lasers for example: a Ti:sapphire laser  [15–17] can cover 0.7–1.1 μm, 

useful for optical coherence tomography and multi-photon biological imaging. A Cr:forsterite laser  [18–20] can operate 

in the wavelength range from 1.15 to 1.35 μm, an important wavelength regime for multi-photon microscopy because 

light in this wavelength range experiences lower scattering loss and higher penetration depth for most biology samples. 

The generated two-photon and three-photon signals in the visible range facilitate the signal detection. Solid-state lasers 

are usually expensive, bulky, and prone to misalignment. The gain crystals often require water cooling. These 
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disadvantages prevent their wide usage outside a lab environment. The mentioned versatile applications can be even 

more practical if we are able to make the overall system less expensive, flexible, and easy to maintain. 

 

 

 
 

Fig. 1. Femtosecond sources and applications at djfferent optical spectral range. 

 

To solve the issues of cost, portability, and the cooling of the gain crystal in the wavelength range of 0.7 μm to 1.35 μm, 

we resort to fiber laser technology. Among the well-developed active fibers (e.g., Yb-fiber, Er-fiber, Tm-fiber, Ho-fiber, 

etc.), Yb-fiber excels for its excellent power scalability due to a low quantum defect. Yb-fiber lasers provide wavelength 

coverage of 1.01–1.08 μm, making them a good candidate to perform broadband frequency conversion to cover the 

wavelength range from 0.7 μm to 1.35 μm. Furthermore, we can also use difference frequency generation to develop an 

alternative source to Er-fiber lasers. 

 

 

 

2. 3-GHZ YB-FIBER BASED MODELOCKED OSCILLATOR 
 

Constructing fundamentally mode-locked Yb-fiber lasers with >1-GHz repetition rate [21] and femtosecond pulse 

duration demands two crucial elements: (1) a short (<10 cm), highly doped Yb-fiber to provide enough round-trip gain 

and self-phase modulation, and (2) a dispersion compensating device to provide enough negative group-delay dispersion 

(GDD) to compensate for the positive GDD from the Yb-fiber and other intra-cavity components (e.g., lens). In our 

experiment the Yb-doped phosphate glass fiber has the highest reported Yb
3+

 concentration of 15.2 wt% and exhibits 46-

dB/cm absorption at 976 nm. The net gain coefficient of the phosphate glass fiber was measured to be 5.7 dB/cm [22]. 

The 1-cm long fiber is encapsulated in a ceramic ferrule. The polished end of the fiber is directly attached to an output 

coupler. The cavity dispersion is compensated by a specially designed coating on the output coupler. It is customized to 

compensate the normal dispersion from a 7-cm long fused silica fiber and allows >97% pump transmission at 976 nm 

and 10% ± 2% signal transmission at 1010-1050 nm. It is designed to provide -1000 fs
2
 ± 200 fs

2
 GDD at 1010-1050 nm, 

when attached to fused silica (i.e. input medium: fused silica), in order to render a negative-dispersion laser cavity for 

soliton pulse formation. The thickness of the coating is ~10 um with alternating layers of Ta2O5 and SiO2. 
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Fig. 2. (Top) schematic setup of the 3-GHz Yb-fiber oscillator. PBC: polarization beam combiner, DM: dichroic mirror, OC: 

output coupler, and SBR: saturable Bragg reflector. (Bottom) Photos of the oscillator cavity. 
 

 

As shown in Fig. 2, the laser is configured as a linear cavity (indicated by the blue dotted circle) with a total length of 

~4.2 cm. Two fiber-coupled pump diodes are power combined using a fiber-based polarization beam combiner, 

providing up to 1.2-W average power centered at 976 nm. A 22.5° incident angle dichroic mirror inserted between the 

combiner and the laser cavity separates the output laser power from the pump. The polished end of the fiber is directly 

attached to an output coupler. The pump beam after the dichroic mirror will be focused first, propagate through the 

output coupler, and then coupled into the polished end of the fiber. The other end of the Yb-fiber is angle polished (~8 

degree) to avoid back reflection. Two aspheric lenses are used to re-image the fiber output onto a saturable absorber 

reflector (SBR) in order to initiate the mode-locking. The commercially available SBR has a non-saturable loss of 3%, a 

modulation depth of 5%, a saturation fluence of 40 µJ/cm
2
, and recovery time 1 ps.  

 

  
Fig. 3. (a) Optical spectrum of the output pulse with 1073-mW pump power. (b) The RF spectrum with a resolution bandwidth of 3 
kHz. (Adapted from Ref. [21].) 

 

Mode-locking self-starts as the pump power reaches ~800 mW. With increasing pump power from 800 mW to 1.15 W, 

the modelocked output power grows accordingly from 32 mW to 53 mW. We characterized the laser at 1073-mW input 

pump power, corresponding to a laser power of 49 mW. The measured optical spectrum, shown in Fig. 3(a), has 5.5-nm 
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bandwidth at full width at half maximum (FWHM). The RF spectrum recorded in Fig. 3(b) indicates a 3-GHz repetition 

rate with a signal to background ratio >60 dB. The output pulse duration is also measured by a background free 

autocorrelator; the resulting autocorrelation trace plotted in Fig. 4(a) shows a 319-fs FWHM duration (black line). As a 

comparison, the autocorrelation trace of the transform limited pulse calculated from the optical spectrum in Fig. 3(a) is 

plotted in Fig. 4(a) as the red dashed line. With a de-convolution factor of 1.54 (assuming a hyperbolic secant pulse 

profile), the pulse duration is estimated to be ~206 fs. It is about 56-fs longer than the calculated transform-limited 

duration shown in Fig. 4(b) (i.e. 150 fs), showing that the optical pulses are slightly chirped. 

 

 
Fig. 4. (a) The measured autocorrelation trace of the output pulse (black line) and the calculated autocorrelation trace of the 

transform-limited pulse (red dashed line). (b) The transform limited pulse. (Adapted from Ref. [21].) 

 

 

 

3. FIBER AMPLIFIER OPTIMIZATION ON HIGH-QUALITY PULSE 

COMPRESSION 
 

Yb-doped fiber amplifiers (YDFAs) feature superior power scalability, large single-pass gain (~30 dB), high electrical-

to-optical conversion efficiency, excellent beam quality, as well as compactness and robustness. To avoid detrimental 

effects from fiber nonlinearities when amplifying ultrashort pulses, YDFAs normally operate in a low-nonlinearity 

regime using chirped pulse amplification (CPA) [23,24], in which the spectral bandwidth of the amplified pulse only 

changes slightly during the amplification.  

 

For some applications, strong nonlinear effects are preferred in YDFAs such that the amplified pulse acquires substantial 

extra bandwidth, and therefore can be compressed to be much shorter than the pulse prior to the amplification. This 

operation regime is of particular importance for implementing high repetition-rate (>1 GHz) master-oscillator-power-

amplification (MOPA) systems Primarily limited by the available pump power (~1W) from single-mode laser diodes and 

low intra-cavity pulse energy, these multi-GHz fiber oscillators typically produce sub-picosecond/picosecond pulses with 

<100 mW average power. The poor performance on pulse duration and average power prevents multi-GHz fiber 

oscillators from most nonlinear optical applications that usually demand femtosecond (~100 fs) pulses of several nano-

joules for pulse energy. Such a limitation can be overcome by nonlinear amplification in YDFAs which broadens the 

input pulse spectrum. The spectrally-broadened, power amplified pulses are then de-chirped by a subsequent optical 

compressor to much shorter pulse duration. However, the relatively narrow gain bandwidth (~40 nm) of Yb-doped fibers 

and the gain narrowing effect during the power amplification usually generates compressed pulses >100-fs with 

considerable pedestal. We both numerically and experimentally study the dependence of the compressed pulse quality on 

the parameters of the fiber amplifier and the input pulse from the fiber oscillator) [25]. We find that the input pulse pre-

chirp—a quantity that can be easily tuned in experiments—is critical for optimizing the system to achieve high-quality 

compressed pulses [25].  
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Fig. 5. Optimum RMS duration of the compressed-pulse and the corresponding transform- limited RMS duration as a function of 

pre-chirping GDD for the input pulse. Insets: compressed pulses and transform-limited pulses for three different pre-chirp. 

(Adapted from Ref. [25].) 

 

 

 

 

 

 

Fig. 6. Spectral evolution for three different pre-chirping GDD: (I) -5×104 fs2, (II) 0 fs2, and (III) 1.9×104 fs2. 

We combine the steady-state propagation-rate equations and the GNLSE to model an ultrafast Yb-fiber amplifier 

configured in co-pumping scheme (i.e., pump and seed propagate in the same direction.). We use our model to 

investigate the effect of pre-chirping the signal pulse on pulse compression at a fixed Yb-fiber length of 1.8 m. As Fig. 5 

shows, the transform-limited RMS duration (green, dashed line) slightly varies within the pre-chirp ranging from -7×10
4
- 

2×10
4
 fs

2
. However the optimum RMS duration for the compressed pulse strongly depends on the pre-chirp. Insets of 

Fig. 5 plots the compressed pulse (blue, solid line) and transform-limited pulse (red, dashed line) for three different pre-

chirps: (I) -5×10
4
 fs

2
, (II) 0 fs

2
, and (III) 1.9×10

4
 fs

2
. Fig. 6 illustrates the spectral evolution along the Yb-fiber for these 

three pre-chirping cases. Note that for negatively pre-chirped input-pulse (e.g., case I), its spectrum (blue, solid line) 

experiences an initial spectral compression and then subsequent spectral broadening. While the case III generates the 

broadest spectrum, both the transform-limited pulse and the optimum compressed-pulse are longer than the other two 
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cases due to the existence of a strong pedestal. It suggests that varying input pulse’s pre-chirp leads to different spectra, 

some of which exhibit a considerable temporal pedestal that compromises the compressed-pulse quality. There exists an 

optimum pre-chirp that leads to a compressed pulse with the shortest duration close to its transform-limited duration (see 

case I inside Fig. 5) though the spectrum is compressed first and subsequently broadened. 

 

 
Fig. 7. Schematic setup of the 3-GHz high power femtosecond laser system. HW: half-wave plate; PBC: polarization beam combiner; BC: 
(6+1) x 1 beam combiner; SPF: short-wavelength-pass optical filter that only transmits wavelength components below 950 nm; and DCM: 

double-chirped mirror. 

We employ this pre-chirp management for building a high power 3 GHz femtosecond laser system. Such a laser system 

enables us to demonstrate an ultrafast few-cycle source at the Ti:Sa wavelength range (section 4) and a Watt-level 

femtosecond tunable Raman soliton source (section 5). Fig. 7 shows the schematic setup of the high power 3-GHz laser 

source, mainly consisting of: 1) a 3-GHz fundamentally mode-locked Yb-fiber oscillator, 2) a two-stage polarization-

maintaining (PM) fiber amplifier to pre-amplify the oscillator pulses, 3) a diffraction-grating pair for pre-chirp 

management prior to further power amplification, 4) a double-clad Yb-fiber power amplifier, 5) a transmission-grating 

pair to compress the amplified pulses. 

 

 
Fig. 8 Optical spectra at the output of the 3-GHz oscillator (blue line), pre-amplifier (red line), and power amplifier (green line), 

respectively. Inset: measured autocorrelation (AC) trace of the compressed pulses after the power-amplifier (solid line) and the calculated 

autocorrelation trace of the transform-limited pulse (dotted line). (Adapted from Ref. [28].) 

The 3-GHz Yb-fiber oscillator, centered at 1027 nm with 3.5 nm bandwidth (blue line in Fig. 8), produces 32 mW 
average power. The output pulses are amplified to 1.05 W by a two-stage pre-amplifier constructed from single-
mode PM fibers; the resulting optical spectrum is broadened to 7 nm (red line in Fig. 8). Before the pre-amplified 

Proc. of SPIE Vol. 9198  919806-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/21/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Output Spectrum Fitered Output Spectrum

CM .lD a a 1pm 11lD CO 1333
Winelenth(1

pulses enter the power amplifier, we employ the pre-chirp management method to achieve high-quality 
compressed pulses after the power amplifier. The pulses are pre-chirped by a diffraction-grating (600 line/mm) 
pair, and then amplified by a power amplifier constructed from 2.4-m double-clad Yb-fiber (10-μm core diameter) 
spliced to a PM (6+1) x 1 beam combiner. The amplified pulses are spectrally broadened to 30-nm bandwidth 
(green line in Fig. 8) during the amplification and are then compressed by a transmission-grating (1000 line/mm) 
pair. By properly pre-chirping the pre-amplified pulses, we achieve compressed pulses with 12-W average power 
and the measured autocorrelation trace is 140 fs in duration shown as the solid curve in the inset of Fig. 8. As a 
comparison, the autocorrelation trace of the transform-limited pulse calculated from the optical spectrum is 
plotted as the dotted curve, showing an autocorrelation duration of 95 fs. 

4. 3 GHZ YB-FIBER LASER BASED FEW-CYCLE SOURCE AT THE TI:SAPPHIRE 

WAVELENGTH 
 

Kerr-lens mode-locked Ti:sapphire lasers have become the workhorses in the field of ultrafast optics. Due to the 

remarkable gain bandwidth ranging from 650 to 1100 nm, Ti:sapphire lasers with precise cavity-dispersion management 

emit optical pulses as short as 5 fs—the record short optical pulses ever directly generated from mode-locked lasers [15]. 

Besides countless time-domain applications utilizing the extremely short pulses, the wavelength range covered by 

Ti:sapphire lasers is of particular importance for many applications. For example, ultrafast Ti:sapphire lasers are the 

dominant light source in the field of nonlinear optical microscopy largely because optical pulses with wavelength around 

800 nm are able to excite a wide range of important fluorophores via two-photon absorption [1]. Despite their extreme 

success, the lack of efficient and direct diode pumping has hampered the wide use of Ti:sapphire lasers outside research 

laboratories, which has spurred much research effort in developing alternative laser sources. 

 

Fig. 9. (a) Measured output spectra versus coupled pulse energy into 3.7-cm PCF NL-3.2-945. Spectral power is shown on a logarithm scale. (b) 

Measured output spectra after a short-wavelength-pass optical filter that blocks spectral components above 950 nm. Spectral power is shown on 

a linear scale. 

 

In this section, we demonstrate a compact ultrafast source centered at 850 nm with >200-nm bandwidth (full width at 

half maximum) based on the 3-GHz Yb-fiber master-oscillator-power-amplifier system discussed in the last section. The 

output pulses (with up to 13 W average power) from the laser system are coupled into a 37-mm PCF (NL-3.2-945). As 

the coupled pulses propagate in the PCF, dispersive waves at shorter wavelength are generated due to the perturbation of 

high-order fiber dispersion—a phenomenon known as fiber-optic Cherenkov radiation (FOCR). Figure 9(a) shows the 

measured spectra from the PCF’s output as a function of coupled pulse energy. To observe the evolution of FOCR 

spectra, we use a short-wavelength-pass optical filter to collect the spectral components below 950 nm, and plot them in 

Fig. 9(b), shown on a linear scale. It clearly shows that a spectral gap begins to form around 850 nm as pulse energy 

increases beyond 780 pJ, and an isolated FOCR spectrum appears with its center wavelength blue-shifted with the 

increased pulse energy. The curve in Fig. 10(a) denotes the average power of the filtered spectrum, which increases 

monotonically for higher coupled pulse energy. At 780-pJ coupled pulse energy, 184-mW average power (i.e., 61-pJ 

pulse energy) is achieved. It is noteworthy that the optimum pulse energy corresponding to the broadband, non-isolated 

FOCR depends on the PCF length: shorter PCF requires more input pulse energy [26, 27]. In addition to the 37-mm PCF, 

we have tested another two fiber lengths and found that the required input pulse energy to achieve a broadband FOCR is 
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about 440 pJ for 48-mm PCF and 1430 pJ for 28-mm PCF with similar spectral shapes. The average filtered power is 94 

mW and 384mW, respectively. 

 

 
Fig. 10. (a) Filtered spectra of broadband FOCR generated by the 37–mm PCF. (b) Black solid line: measured autocorrelation trace of the 

compressed FOCR pulse using DCMs to phase compensate for FOCR spectrum (the spectrum shown in (a)) generated from the 37-mm PCF 
with 780-pJ input pulse energy. Red dashed line: calculated autocorrelation trace of the transform-limited pulse given by the FOCR spectrum 

in (a). (Adapted from Ref. [28].) 

 

Since the FOCR is initiated by nonlinearity interacting with higher-order dispersion, the compressibility of the FOCR 

continuum remains questionable. To answer this, we use a 950-nm short-pass filter to slice out the FOCR continuum 

from the output spectrum of a 3.7-cm PCF. The filtered continuum, shown in Fig. 10(a), has >200-nm bandwidth 

(FWHM) with an average power 184 mW. The calculated transform-limited pulse duration is 8-fs. We then compensated 

for the spectral phase using double-chirped mirrors (DCM); each bounce provides a group-delay dispersion of -70 fs
2
. 

The corresponding pulses were measured by an autocorrelator. Figure 10(b) shows the measured shortest autocorrelation 

trace (black line); it has a duration (FWHM) of 19.5 fs. Also shown in this figure (red dotted curve) is the calculated 

autocorrelation trace of the transform-limited pulse (red dotted line); the autocorrelation duration is 11 fs. We estimated 

that the compressed pulses using 8 DCM bounces have a duration of ~14 fs [28].  

 

 

5. WATT-LEVEL, 3-GHZ FEMTOSECOND RAMAN SOLITON SOURCES 
 

In this section, we present a 3-GHz femtosecond Raman soliton source tunable from 1.15 μm to 1.35 μm, yielding 

ultrashort pulses with up to 0.9 W average power at 1.35 μm [29]. Such a Raman soliton source exhibits both the highest 

repetition rate and average power to the best of our knowledge.  

 
    
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Raman soliton generation as a function of input power for 87-cm PCF NL-3.2-945. (left)The average power coupled into 

the PCF is also shown for each spectrum. The spectra are normalized to the peak of the first Raman soliton spectrum respectively. 

(right) Measured autocorrelation trace of the Raman soliton pulse at 1.35 m. 
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The same pre-chirp managed pulses are launched into PCFs to generate Raman soliton pulses. We record the output 

spectra from 87-cm PCF NL-3.2-945 (NKT photonics) for different input average powers in Fig. 11(a). As the power 

increases, the Raman soliton peak wavelength (peak) is further red-shifted and a second Raman soliton starts to emerge. 

When the input power is 1.31-W, the 1st Raman soliton peak was generated at 1.35 m with 30-nm (FWHM) spectral 

bandwidth. We filtered out this Raman soliton spectrum and measured the autocorrelation trace in Fig. 11(b), which has 

210-fs (FWHM) in duration; it corresponds to a hyperbolic secant pulse of 136-fs with a de-convolution factor 1.54. 
 

We also measured the peak wavelength (peak) and average power of the 1st Raman soliton generated from PCF NL-3.2-

945 at three lengths: 87 cm, 54 cm, and 30 cm (Fig. 12). As Fig. 12(a) shows, when shorter PCFs are used to generate 

Raman solitons at the same wavelength higher input power is required. For example, the power requirement to produce a 

Raman soliton pulse at 1.35 m is 1.31-W, 1.91-W, and 4.90- W for PCF length of 87 cm, 54 cm, and 30 cm, 

respectively. Figure 12(b) plots the average power of the 1st Raman soliton as a function of its peak wavelength for the 

three PCF lengths. As expected, we observe that the average power monotonically increases with respect to the peak 

wavelength. At the same peak wavelength, using shorter PCF leads to stronger Raman soliton pulse; especially, the 

Raman soliton pulse peak at 1.35 m from 30-cm PCF NL-3.2-945 has an average power of 0.9 W.  

 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. (a) Peak wavelength of the first Raman soliton as a function of input power for PCF NL-3.2-945 at three different lengths; 

87cm, 54cm, and 30cm. (b) Average power of the first Raman soliton as a function of the first Raman soliton peak wavelength for 

PCF NL-3.2-945 at three different lengths. (Adapted from Ref. [29].) 

 

 

 

6. CONCLUSION 
 

We demonstrate a fundamentally mode-locked, femtosecond (~206 fs) Yb-fiber laser with the highest repetition-rate of 3 

GHz. With 1-cm heavily Yb-doped phosphate glass fiber as the gain medium and a high-dispersion (-1300 fs
2
) output 

coupler for dispersion compensation, the laser self-starts and produces up to 53-mW average power. With this oscillator 

seeding a chain of Yb-fiber amplifiers followed by a diffraction-grating based compressor, we obtain ~110-fs pulses with >12-W 

average power. we demonstrate that a combination of a high power 3-GHz Yb-fiber laser system and fiber-optic 

Cherenkov radiation provides new capabilities to ultrafast laser technology: generation of ~14 fs pulses with smooth 

spectra and broadband wavelength coverage overlapping with the Ti:sapphire lasers wavelength range. We also 

demonstrate a 3 GHz, femtosecond Raman soliton source tunable from 1.15 µm to 1.35 µm. Using 30-cm photonic 

crystal fiber, the resulting Raman soliton pulse at 1.35 µm has 0.9 W average power.  
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