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HOMOMORPHISMS OF TREES INTO A PATH*

PETER CSIKVARIT AND ZHICONG LIN%

Abstract. Let hom(G, H) denote the number of homomorphisms from a graph G to a graph
H. In this paper we study the number of homomorphisms of trees into a path, and prove that
hom (P, Pn) < hom(Tm, Pn) < hom(Sm, Prn), where Ty, is any tree on m vertices, and Py, and Sp,
denote the path and star on m vertices, respectively. This completes the study of extremal problems
concerning the number of homomorphisms between trees started in the paper Graph Homomorphisms
Between Trees [Electron. J. Combin., 21 (2014), 4.9] written by the authors of the current paper.

Key words. homomorphisms, adjacency matrix, extremal problems, KC-transformation, path,
star
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1. Introduction. There has been recent interest in enumerative and extremal
problems related to graph homomorphisms [4, 8, 9, 10]. This paper is the second part
of our systematic study of extremal problems on counting graph homomorphisms
between trees. For the first part, see [7].

All the graphs considered here are finite and undirected without multiple edges
and loops. Recall that a homomorphism from a graph G to a graph H is a mapping f :
V(G) — V(H) such that the images of adjacent vertices are adjacent. Let Hom(G, H)
be the set of homomorphisms from G to H and hom(G, H) := |Hom(G, H)|. Through-
out this article, we write P,, and S,, for the path and the star on n vertices, respectively.

In the paper [7], the authors started to study the extremal number of homomor-
phisms between trees. The current paper and paper [7] together give the following
relations between homomorphism numbers summarized in Figures 1 and 2 (the “X”
means that there is no inequality between the two expressions in general and the “?”
means that we do not know whether the statement is true or not).

In the paper [7] we studied mainly, but not exclusively, inequalities of type

hom(7,,,T) < hom(T,,, T").

In other words, we mainly studied the row inequalities. In the current paper, we study
the first columns in both tables and prove the corresponding inequalities. The main
difference between the current paper and [7] is in the methods. In [7] we developed
quite general methods to examine the number of homomorphisms between graphs.
Those methods were sufficient to give good results, but they never provided very
precise ones. In the current paper, we study only homomorphisms of trees into paths,
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hom(P,,, P,) < hom(P,,,T,) < hom(P,,,Sy)
Al X Al

()
hom(7),, P,) < hom(7T,,,T,) X hom(T,,,Sy)
N N N
hom (S, Pn) < hom(Sm,T,) < hom(Sy,,S»)

Fic. 1. The number of homomorphisms between trees of different sizes. The (x) means that
there are some well-determined (possible) counterexamples which should be excluded.

hom(P,, P,) < hom(P,,T,) < hom(F,,S,)

Al ? Al
hom(7,,, P,) < hom(T,,T,) X hom(T,,S,)
Al Al Al

hom(S,,, P,) < hom(S,,T,,) < hom(S,,S,)

FiG. 2. The number of homomorphisms between trees of the same size.

but the problem enables us to use much more subtle arguments which are unavailable
in general for arbitrary trees.

In [5, 6], a graph transformation defined on trees called KC-transformation (see
section 2.2 for its definition) or generalized tree shift was shown to be a powerful tool
in proving that a certain graph parameter attains its maximum at the star S,, and
its minimum at the path P, among the trees on n vertices. Furthermore, Bollobas
and Tyomkyn [2] showed that the KC-transformation increases the number of walks
of fixed length on trees, which implies the extremal property

(1.1) hom(P,,, P,) < hom(P,,,T;,) < hom(Py,,S,),

where T, is any tree on n vertices. Note that inequality (1.1) was generalized in [7]
from P, to trees with at most one vertex of degree greater than two. The main
result of this paper is the following dual of inequality (1.1), concerning the number of
homomorphisms of a tree into a path.

THEOREM 1.1. Let T, be a tree on m vertices. Furthermore, let diam(Ty,) denote
the diameter of Ty, .

(i) Let T), be obtained from T,, by a KC-transformation. If n is even, or n is

odd and diam(T,,) <n — 1, then

(1.2) hom(T},, P,,) < hom(T},, P,).
ii) For any m,n
(i) y m,n,
(1.3) hom(P,,, P,) < hom(T,,, P,) < hom(Sy,, P,).

Remark 1.2. The inequality (1.2) is not true in general when n is odd and
diam(T5,) is greater than n —1; see a counterexample in Figure 3. The first inequality
of (1.3) is an important step in the proof of [7, Theorem 1.8], and its proof needs
more tree transformations. The second inequality of (1.3) is a special case of a result
due to Sidorenko [11]:

(1.4) hom(T,,, G) < hom(Sy,, G),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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FI1G. 3. The trees Ts (left) and T} (right).

for any graph G. See also [7] for a neat proof of Sidorenko’s result using the Wiener
index of trees.

The rest of this paper is devoted to proving Theorem 1.1. As Theorem 1.1 sug-
gests the cases of n being even or odd are somewhat different. We treat part (i) of
Theorem 1.1 and the case of even n of part (ii) in section 3, while we treat the case of
odd n of part (ii) in section 4. Let us mention that in the case of odd n we will also
distinguish two cases according to m being even or odd. This paper is concluded with
some interesting open questions. The reader is referred to [1, 3] for any terminology
not defined herein.

2. Preliminaries.

2.1. Tree-walk algorithm. We will give an outline of the tree-walk algorithm
developed in [7] to compute the number of homomorphisms from trees.

Let a = (a1,a2,...,a,) and b = (b1,ba,...,b,) be two vectors. We usually
denote by ||alj; = a1 + a2 + -+ + a, the norm of a and by axb = (a1by,...,a,by)
the Hadamard product of a and b. Let G be a graph with n vertices. The adjacency
matriz of G is the n x n matrix Ag := (Quv)u,vev(c), Where ay, = 1 when uwv € E(G),
otherwise 0.

DEFINITION 2.1 (hom-vector). Let T be a tree and G be a graph with vertices
labeled by 1,2,...,n. Let v € V(T) be any vertex of T. The n-dimensional vector

h(T5 v, G) = (h‘lv h27 R hn)7
where
hi = |{f € Hom(T\,G) | f(v) = i}|,

is called the hom-vector at v from T to G or the hom-vector from the rooted tree
T(v) to G. Clearly, hom(T,G) = ||h(T,v,G)||1-
The tree-walk algorithm comprises the following two type of recursion steps.
Recursion 1. If we have a tree T' with a nonleaf root vertex v, then we can
decompose T to Th U Ty such that V(T1) N V(T3) = {v}, and T1 and T5 are strictly
smaller than T'. In this case

h(T,v,G) = h(T1,v,G) * h(Ts,v,G).

Recursion 2. If we have a tree T with a root vertex v which is a leaf with the
unique neighbor u, then

h(T,v,G) =h(T — v,u,G)A,

where A is the adjacency matrix of G.

2.2. KC-transformation on trees. The KC-transformation on trees was first
introduced in [5] under the name generalized tree shift. The reader can find many
applications of this transformation in [2, 5, 6, 7].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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A B

Fic. 4. The KC-transformation.

To define this transformation, let x and y be two vertices of a tree T such that
every interior vertex of the unique x—y path P in T has degree two, and write z for
the neighbor of y on this path. Denote by N(v) the set of neighbors of a vertex v. The
KC-transformation, KC(T, z,y), of the tree T' with respect to the path P is obtained
from T by deleting all edges between y and N(y) \ z and adding the edges between
x and N(y) \ z instead (see Figure 4). Note that KC(T,z,y) and KC(T,y,x) are
isomorphic.

The following property of KC-transformation was proved in [5].

ProPOSITION 2.2. The KC-transformation gives rise to a graded poset of trees
on n vertices (graded by the number of leaves) with the star S, as the largest and the
path P, as the smallest element.

3. The KC-transformation: Proof of Theorem 1.1(i). In this section we
will prove part (i) of Theorem 1.1 by making use of the KC-transformation on trees,
and we settle the case of even n in part (ii) of Theorem 1.1. First we need some new
definitions and lemmas.

DEFINITION 3.1. A wvector a = (a1,as,...,a,) is symmetric if a; = ap—;11 for
1<i<n-1, and unimodal if a1 < ay < --- < a; > aj41 > -+ > ay for some j.
Denote by R,, the set of symmetric positive integer vectors of dimension n. For any
a,b € R, define the dominance order on R,, by

n+l—k n+l—k
a<bs& Zaig Zbi for 1<k<[n/2].
i=k i=k

It is clear that Ry, is a poset with respect to this order and a < b implies ||al|1 < ||b||1.
Let U, be the set of all unimodal vectors in R,,.
LEMMA 3.2. Let c € U, and a,b € R,, such that a <b. Then axc < bx*c.
Proof. Tt is clear that both a x c and b * ¢ are in R,,. For 1 < k < [%], by the
symmetric property of a, b, and ¢, we have the identity

n+1—~k n+l—k (51 n+l—j
Yo bi—aei=crr Y (bi—ai)+ D (e =) Y (b —ai),
i=k i=k j=k i=j

where ¢ = 0. From ¢ € U,, and a < b, we see that ¢;—c;_1 > 0 and Z?jjl_j(bi—ai) >
n

0 for 1 < j < [%]. Thus the right-hand side of the above identity is nonnegative,
which is equivalent to axc < b xc. a

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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It is clear that if a € Us,, then aA* € Uy, for any positive integer k, where A is
the adjacency matrix of Ps,. But for the path with odd vertices, this is not true in
general. Let 1,, be the n-dimensional row vector with all entries equal to 1.

LEMMA 3.3. Let A be the adjacency matriz of P, and |l a positive integer. If
acU,, then aAl <ax (1,A).

Proof. Let a = (a1,...,a,), aA = (z1,...,2,), and a* (1,4") = (y1, 92, ., Yn)-
For 1 < j < n, the sum of coefficients of all a; (1 < i <n) in z; is the sum of the jth
column of A and the coefficient of a; in y; also equals the sum of the jth column of

Al Tt follows that the sum of coefficients of all a; (1 < < n) in Z?:kl_k x; equals the

sum of coefficients of all a; (1 <i <mn) in Z?:klfk yi. But for every i, the coefficient
of a; in ||aAl||; is the sum of ith row of A’ and the coefficient of a; in [Ja * 1,A!(|; is
the sum of ith column of A, which are equal. Thus Y7 % 2, < S % 4 follows
from the unimodality of a, which shows that aA! < a * (1,A4"). O

Before we prove part (i) of Theorem 1.1, we show that we only have to prove the
statement for the case of even n since the following lemma implies it for the case of
odd n if diam(T) < n — 1.

LEMMA 3.4. If diam(T) < n — 1, then

(3.1) hom(T, P,) = = (hom (T, P_1) + hom(T, P 1)).

1
2

Proof. Let the vertices of P, be labeled consecutively by 1,2,...,n. We can
decompose the set Hom(T', P,,) to the following two sets. The first set consists of those
homomorphisms which do not contain the vertex n in their image and the second set
consists of those homomorphisms which contain the vertex n in their image. Clearly,
the cardinality of the first set is hom(7T, P,,_1). The cardinality of the second set will
be denoted by hom(T’, P,,n € f(T)). So

(3.2) hom(T, P,) = hom(T, P,,—1) + hom(T, P,,,n € f(T)).
We can repeat this argument with the path P,y as well:
hom(7, P,41) = hom(T, P,) + hom(T, P,,y1,n + 1 € f(T)).
Rearranging this we obtain that
(3.3) hom(T, P,,) = hom(T, P,4+1) — hom(T, P,41,n + 1 € f(T)).
The crucial observation is that
hom(T, P,,n € f(T)) = hom(T, Ppy1,n+ 1 € f(T)).

Indeed, if n+ 1 € f(T), then 1 ¢ f(T) because diam(T") < diam(P, 1), so all these
homomorphisms go to the path {2,3,...,n + 1} and therefore there is a natural
correspondence between the two sets. Hence if diam(7) < diam(FP, ), then by adding
together (3.2) and (3.3) we obtain (3.1). O

Proof of Theorem 1.1(1). Let A be the adjacency matrix of P,. Let T =
KC(T,z,y) be the KC-transformation of the tree T}, with respect to an z—y path P.
Let B; and By be the components of y and z in the subgraph of T,,, by deleting all
the edges of P, respectively.

Consider first the case where n is even. It is easy to see that an element of U,
multiplied by A is still in U,, and the Hadamard product of two elements in U, is also

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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in U,. By the tree-walk algorithm, any hom-vector from a tree to P, is in U,,. Again
by the tree-walk algorithm, we have

h(T,,,z, P,) = (h(By,y, P,)A") « h(By, z, P,)
and
h(T! ,z,P,) = h(By,y, P,) * 1,AF « h(By, z, P,),
where k is the length of the path P. By Lemma 3.3, we have
h(B1,y, P,)A* < h(By,y, P,) * 1, A",

It follows from Lemma 3.2 that h(T, z, P,) < h(T’, z, P,), which implies hom(T’, P,,) <
hom(7”, Py,).

For the case of odd n we have already seen that Lemma 3.4 implies the state-
ment. o

Theorem 1.1(ii): n is even. Let n be even. Then for any tree Tj, on m vertices
we have

hom(T,,, P,,) > hom(P,,, P,,).

Proof. This statement immediately follows from part (i) of Theorem 1.1 and
Proposition 2.2. a

Remark 3.5. The KC-transformation does not always increase the number of
homomorphisms to the path P, when n is odd. For example, in Figure 3, we have
hom(T%, P3) = 20 > 16 = hom(T§, Ps).

4. More tree transformations: Case of odd n in Theorem 1.1(ii). By
Proposition 2.2, if n is even or n is odd and diam(7;,,) < n — 1, then Theorem 1.1(i)
implies part (ii). In this section, we will develop some more transformations on trees
to prove Theorem 1.1(ii) for odd n. So from now on in this section, n is odd.

For any u € V(T), denote by T'(u) the rooted tree with a root at w. As usual,
we will denote by h(T,u,G) the hom-vector of the rooted tree T'(u) into G. One
can easily check that the hom-vector of a rooted tree into P,, i.e., h(T,u, P,), is not
unimodal anymore. On the other hand, the situation is not as bad as one may think
at first sight.

DEFINITION 4.1 (symmetric and biunimodal). We say that (a1, as,...,a,) is
symmetric biunimodal if the sequence itself is symmetric and the two subsequences
(a1,as3,...,a,) and (az,aq4,...,a,_1) are unimodal.

PROPOSITION 4.2. Let T'(u) be a rooted tree and (a1, ...,an) be the hom-vector
of T(u) into P,,. Then (a1,...,ay) is symmetric biunimodal.

Proof. This statement follows from the tree-walk algorithm and the observa-
tion that if (a1, as,...,a,) and (b1,be,...,b,) are symmetric biunimodal, then the
sequences (a1b1,agbe, ..., anb,) and (a2,a1 + as,...,an—2 + an,an—1) are also sym-
metric biunimodal. d

The following is a very surprising theorem. In fact, it is not true for even n (see
Remark 4.4).

LEMMA 4.3 (correlation inequality). Let T1(u) be a rooted tree and To(u) be a
rooted subtree, i.e., Ty is a subtree of Ty and their roots are the same. Let (a1,...,a,)
(resp., (b1,...,by)) be the hom-vector of Th(u) (resp., To(u)) into P,, where n is odd.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/22/15 to 18.51.1.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1412 PETER CSIKVARI AND ZHICONG LIN

Assume that i = j (mod 2) and |23 —i| < |2 — j|, so0 i is closer to the center
than j. Then, a;b; > a;b;.

Proof. We need to prove that Z—J‘ > g—;’_. (From this form it is clear that if we
introduce the function f;; = Z—J‘ for rooted trees, then we need to prove that if T5(u)
is a rooted subtree of T1(u), then f;;(T1(u)) > fi;(T2(u)).) We prove this claim by
induction on the number of vertices of T (u). If |T1 (u)| < 2, then it is trivial to check
the statement.

If u is not a leaf in 77, then by induction this inequality holds for the branches
at v and then it is true for the Hadamard products. If w is a leaf in 77, then it is also
a leaf in T5. Let v be the unique neighbor of u and let us consider the rooted trees
(Th —u)(v) and (T —u)(v). Let (a},ab,...,a.) and (b}, ...,b.) be their hom-vectors.
Then,

!/ !/ / /
ai - al;l + a,i+1 and brL - b7171 + b1+1,

where af, = a;,; = b, = b}, = 0. Note that the numbers i — 1,4+ 1,5 — 1,5+ 1 are
still congruent modulo 2. Because of the symmetry we can assume that j < i < ”TH
If, in addition, i < 241, then we have j —1 < j+1<i—1<i+1 < 2 and we can
apply the induction hypothesis

Wiy Vjpy > ahpybigy
in all four cases, thus,
a;bj = (a;—l + a§+1)(b;-_1 + b;'+1) > (a’;‘—l + a;‘+1)(b;—1 + b;+1) = a;b;.

Ifi = ”T'H, then the above four inequalities are still true, because the {i — 1,7+ 1} are
still closer to 2! than the numbers {j — 1, + 1}. Hence we have proved the state-
ment. O

Remark 4.4. As we mentioned Lemma 4.3 is not true for even n. Indeed, let T3 (u)
be P3; with an end vertex being the root, and let T5(u) be Py. Then To(u) = Pa(u) is a
rooted subtree of T3 (u). Let us consider the homomorphisms of 77 and 75 going into
P;. The hom-vector of T} (u) is (2, 3, 3,2), while the hom-vector of Tx(u) is (1,2,2,1).
Now if we choose i = 3 and j = 1, then |4 — 3| <[4 — 1|, s0 3 is closer to the
center than 1. On the other hand, we clearly have 3 -1 < 2 -2 which shows that
Lemma 4.3 is not true for even n. Similar examples exist for larger even n’s.

LEMMA 4.5 (log-concavity of the hom-vector.). Let Ty (u) be a rooted tree and let
(a1,...,an) be the hom-vector of Ti(u) into P,, where n is odd. Assume that i < j
and i # j (mod 2). Then a;a; < aip1a;-1.

Proof. The proof is almost identical to the proof of the correlation inequality and
thus is omitted. O

DEFINITION 4.6. Let 11,15 be trees. Let u be an arbitrary vertex of T1 and let
A and B be the color classes of Ty considered as a bipartite graph. Let ha and hp be
the number of homomorphisms from Ty to Ts, where u goes to A and B, respectively.
Then let

g(Tl, Tz) = hAhB.

Note that g(T1,T5) is independent of the vertex u.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Let the wvertices of P, be labeled consecutively by 1,2,...,n. If Ty = P,, then
homg (T4 (u), P,) denotes the number of homomorphisms of Ty into P,, where the
image of u is a vertex of even indexr and hom;(Ti(u), P,) denotes the number of
homomorphisms of Ty into P,, where the image of u is a vertex of odd index. Thus
in this case

g(T1, P,) = homy(T1(u), P,,) - homy (71 (u), Py,).

Remark 4.7. Before we proceed let us motivate the definition of the function
g. Given two connected bipartite graphs G1 = (A1, B1, F1) and G2 = (As, Ba, E»),
the set of homomorphisms from G; to G2 naturally splits into two subsets according
to whether the image of the color class A; is a subset of Ay or Bs. It turns out
that these two subsets can have very different cardinalities. Assume that G is the
complete bipartite graph K, ; = (As, Bs, E), where |A3] = r and |Bz| = s. Then
the number of homomorphisms which maps A; to a subset of A is rl41lslB1l as any
map which maps any vertex of A; to any element of As and any vertex of B; to any
element of Bj is a proper homomorphism. Similarly, the number of homomorphisms
which maps A; to a subset of By is rIBtlsl41l If, say, |A;1| and r are large and |By|
and s are small, then these two numbers have really different sizes. On the other
hand, the function g(Gy,G2) = (rs)A1+IBil = (rs)IV(GI balances the two numbers
nicely. In the particular case when G is a tree T and r = 2,5 = 1, i.e., Gy = P3, we
get that g(T, P3) = 2/71.

The function g(G1,G2) might look a bit artificial. The authors are not aware
of the appearance of this function in the literature, nor is there a nice combinatorial
meaning of this function. Nevertheless, this function seems to behave very nicely
under tree transformations as, for instance, Theorem 4.8 shows.

We have the following crucial theorem on the function (7, P,).

THEOREM 4.8. Let T,, be a tree on m vertices. Then

9T, Pr) > g(Pm, P).

We will prove Theorem 4.8 by using two transformations: the LS-switch and
the so-called short-path shift. The LS-switch was first introduced in [7] and is a
generalization of the even-KC-transformation (i.e., k is even in Figure 4).

DEFINITION 4.9 (LS-switch). Let R(u,v) be a tree with specified vertices u and
v such that the distance of u and v is even and R has an automorphism of order 2
which exchanges the vertices u and v. Let Ty (x),To(x),T5(y), Ta(y) be rooted trees
such that Ta(x) is a rooted subtree of T1(x) and Ty(y) is a rooted subtree of T3(y). Let
the tree T' be obtained from the trees R(u,v),Ti(x),Ta(x),T5(y), Ta(y) by attaching
a copy of Ti(x),Tu(y) to R(u,v) at vertex w and a copy of Ta(x),T5(y) at vertex v.
Suppose that the tree T’ is obtained from the trees R(u,v),Ti(x),To(x), T5(y), Tu(y)
by attaching a copy of Ti(x),T5(y) to R(u,v) at vertex u and a copy of Ta(z), Ta(y)
at vertex v (see Figure 5). Then T' is called an LS-switch of T'. Observe that there
1s a natural bijection between the color classes of T and T.

This transformation seems to be quite general, but still the following result is
true.

LEMMA 4.10. Let T be a tree and T’ be an LS-switch of T. Then

homy, (T'(u), Py) > homy (T (u), Py,)
for k=0,1. In particular,
hom(7’, P,) > hom(T, P,) and g(T’,P,) > g(T, P,).
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Fic. 5. LS-switch.

Proof. Let the vertices of P, be labeled consecutively by 1,2, ..., n. For a rooted
tree T'(r) let h(T,4) denote the number of homomorphisms of T into P,, such that r
goes to the vertex i. So (h(T,1),h(T,2),...,h(T,n)) is the hom-vector of T'(r) into
P,. Let a;; be the number of homomorphisms of R(u,v) into P, such that u goes
to ¢ and v goes to j. Note that a;; = a;; because of the automorphism of order 2 of
R switching the vertices v and v. Also note that a;; = 0 if ¢ and j are incongruent

modulo 2 since the distance of w and v is even. Observe that for £ = 0,1 we have

hom (T (u), Po) = > aizh(Tv, 8)h(Ts, i) h(To, j)h(T4, )
ij=k (2)

and

homy (T(u), P) = > agh(Ty,i)h(Ty, i)h(Ty, j)h(Ts, j).
i,7=k (2)

Using a;; = aj; we can rewrite these equations as follows:

homk (T/(u), Pn) = Z aiih(Tl, i)h(Tg, i)h(TQ, i)h(T4, Z)

=k (2)
+ Y ag (AT, i)h(Ts, i)h(Ts, (T4, §)
i<j
i,j=k (2)

+ (T, j)W(T3, j)R(T2, i) (T4, 1)),
and

homy (T(u), P) = > agih(Ty,i)h(Ts,i)h(Ty, i)h(Ty, 1)
i=k (2)

+ > ai(h(Ty, i)h(Ta, i)h(T2, j)R(T5, 5)
i<j
i,j=k (2)

+ h(T1, 0)h(Ty, i)h(T, j) (T3, 5)).-
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Fia. 6. Short-path shift.

Hence

homy, (T"(u), P,) — homy (T (u), Py,)
= Y ay(W(Ty,i)h(Ta, §) = W(T1, )T, ) (W(Ts, (T4, ) = h(Ts, 5)P(T4, 1))

i<j
i,j=k (2)

By the correlation inequalities, the signs of
h(T1,0)h(T2, j) — h(T1, j) (T, i)
and
h(Ts, i)h(Ty, j) — h(Ts, j)h(T4, i)
only depend on the positions of ¢ and j, so they are the same. Hence
homy (T (u), P,) — homy (T (u), P,) > 0,

as desired. O

The main problem with the LS-switch is that it preserves the sizes of the color
classes of the tree (considered as a bipartite graph). So we need another transforma-
tion which can help us to compare trees with different color class sizes. For this reason
we introduce the following transformation called short-path shift, which is actually a
special case of the odd-KC-transformation (i.e., k is odd in Figure 4).

DEFINITION 4.11 (Short-path shift). Let T be obtained from the rooted tree
T1(u) by attaching it to the middle vertex of a path on 3 vertices. Let T be obtained
from T1(u) by attaching it to an end vertezx of a path on 3 vertices. Then we say that
T’ is obtained from T by a short-path shift (see Figure 6).

LEMMA 4.12. Let T" be a short-path shift of T. Then for any odd n > 5, we have

Q(Tlapn) > g(T, Pp).

Proof. Let (a1,aq,...,a,) be the hom-vector of T1(u). Then the hom-vector of
T(u) is

(2a1,3a2,4as,4ay, . ..,4an_2,3a,-1, 2a,)
and the hom-vector of T"(u) is

(a1,4a2,4a3,4a4, ... ,4a,_2,4a,_1,0y).
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Hence

g(T’,Pn) =4 Z a; —3a; — 3a, +4 a; |,
i=0 (2) i=1 (2)

while

g(T,P,) = | —a2 —ap_o+4 Z a; —2a1 — 2a, +4 Z a;
i=0 (2) i=1 (2)

Using the symmetry a; = a,41—; we get that

g(T/, Pn) — g(T, Pn) =8 Z (agai — alai+1).
sSienls
By the log-concavity of the hom-vector, all asa; —aja;+1 > 0fori =1 (mod 2). Hence
g(T', P,) = g(T. P,),

as desired. O

Observe that both transformations decrease the Wiener index (sum of the dis-
tances of every pair of vertices in T') strictly: W(T") < W(T) if T” is obtained from
T by an LS-switch or short-path shift and 77 is not isomorphic to 7.

Proof of Theorem 4.8. For n = 3 we have g(T, P3) = 2/TI as we mentioned in
Remark 4.7, so there is nothing to prove. Hence we can assume that n > 5. We shall
use Lemmas 4.10 and 4.12.

Let us consider the tree T, on m vertices for which ¢(T7%, P,) is minimal and
among these trees it has the largest Wiener index. We show that T is P,,,. Assume
for contradiction that T} is not P,,. Let v be an end vertex of a longest path of 7% .
Clearly, v is a leaf; let u be its unique neighbor. We distinguish two cases.

If deg(u) > 3, then T can be decomposed into two branches, one of which is a
star on at least 3 vertices. (Otherwise, v cannot be an end vertex of a longest path.)
Hence u has another neighbor w which is a leaf. In this case, T); is an image of a tree
T by a short-path shift with respect to the path vuw. Hence ¢(T, P,) < g(T%, Py)
and W (T) > W(T}%). This contradicts the choice of T7%,.

If deg(u) = 2, then let w be the closest vertex to v having degree at least 3. (Such
a w must exist, because T}, is not P,,.) Note that d(v,w) > 2. Let us decompose the
tree T% into branches P(v,w), T1(w), and T3(w) at the vertex w, where T7(w) and
Ts(w) are nontrivial trees. If d(v,w) is even, then T}, is an image of a tree T by an
LS-switch, where To(v) = Ty(v) are one-vertex trees. If d(v,w) is odd (consequently
d(u,w) is even), then T is an image of a tree T by an LS-switch, where Th(u) is a
one-vertex tree and Ty(u) is the rooted tree on the vertex set {u,v}. In both cases
g(T,P,) < g(T}, P,) and W(T) > W(T%). In the first case, the second inequality is
strict contradicting the choice of T7%. In the second case, it may occur that T5(w) is
also an edge implying that 7*, = T. By changing the role of T3(v) and Ty(v), we can
ensure that 73 (w) is also an edge (otherwise we get the same contradiction as before).
Hence in this case T}, is a path with an edge attached on the second vertex. In this
case we can realize that it is a short-path shift of a path at the vertex w. Hence we
get a contradiction in this case too, which finishes the proof of the theorem. O

To prove Theorem 1.1(ii), we will distinguish two cases according to the parity of
m.
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4.1. Trees on even number of vertices. Theorem 1.1(ii): n is an odd,
m is an even positive integer. Let m be odd and n be even. Then for any tree
T,, on m vertices we have

hom(T,,, P,,) > hom(P,,, P,,).

Proof. 1If m is even, then g(P,,P,) = %hom(Pm,Pn)2 since hy = hg =
$hom(P,,, P,). (The color classes of P, are not symmetric, but the color classes
of P, are symmetric so it is equally likely which color class goes to which.) Hence by
Theorem 4.8 we have

hom(T},, P) > 29(Tom, Pu)/? > 29(P,,, Py)'/? = hom(P,,, P,). O

If m is odd, then we still need to work a bit.

4.2. Trees on odd number of vertices. From now on n and m are odd. Since
m is odd, it makes sense to speak about the large and small color classes of the tree
considered as a bipartite graph. If T, is a tree on m vertices, then S will denote

the color class of size at most % and L will denote the color class of size at least

mtl S and L stand for small and large. The notation homg(7'(S), P,) denotes
homg(T'(u), P,), where u € S. Hence it means that the small color class goes to the
even-indexed vertices of the path. We can similarly define hom; (7'(S), P,).

The following is a simple observation, which asserts that the small class of the
path P,, “likes” to go the small class of the path P,.

LEMMA 4.13. Let m be odd. Then,

homg (P (S), P) = homy (P (S), Py).

Proof. Let u be a leaf of P,,. Note that w € L. Let v be its neighbor, and
let (a1, as,...,a,) be the hom-vector of P,,_1(v). Then the hom-vector of P,,(v) is
(a1,2a2,...,2an-1,a,). Note that

homg (P (), Pn) = homg (P (v), P) =2 > ay,
=0 (2)

while

homy (P (S), P,) = homy (P (v), Pr) = =201 +2 Y aj.
=1 (2)

Note that
dou= D
J=0 (2) J=1(2)
since P,,_1 has an even number of vertices. Hence

homg (P (S), Py) > homy (P (S), Py). O

The following theorem is the main result of this part of the proof. It will imply
the minimality of the path.
THEOREM 4.14. Let m be odd. Then for any tree T,, on m vertices we have

homg (77, (S), Pp,) > homg (P, (S), Pp).
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Before the proof of Theorem 4.14, we show how it can be applied to complete our
proof of Theorem 1.1(ii).

Theorem 1.1(ii): n,m are odd positive integers. Let n and m be odd. For any
tree T}, on m vertices we have

hom(T,,, P,,) > hom(P,,, P,,).
Proof. We need to show that
(4.1) hom(T,,, P,,) > hom(P,,, P,)

for any tree T}, on m vertices.
From Theorem 4.8 we know that

9T, Pr) > g(Pm, Pr).
In other words,
homg (T, (S), Pp,) hom; (T,,,(S), P,) > homg (P, (S), P,) hom; (P, (S), Pp).
By Theorem 4.14 and Lemma 4.13 we have
homo (7', (S), Pn) = homo (P (S), Pr) > homy (P (S), ).

These inequalities together imply (4.1), which completes the proof of Theo-
rem 1.1(ii). O

4.3. Proof of Theorem 4.14. Now we start to prove Theorem 4.14. We need
a few lemmas. The first one is trivial, but crucial.

LEMMA 4.15. Let Ty be a tree on m vertices, and let uw € L be a leaf. Letv € S be
an arbitrary vertex of the small class. Let T be a tree obtained from T by deleting the
vertex u from Ty and attaching a leaf u' to v. (So we simply move a leaf of the large
class to another place, but we take care not to change the sizes of the color classes.)
Then

hOHl()(Tl(S), Pn) = homO(Tg(S), Pn)
Proof. Let T* =T; —u =Ty — u’. Note that
homg (T4 (S), P,,) = 2homg(T*(S), P,,)

since any homomorphism of 7% into P,,, where the small class goes to even-indexed
vertices, can be extended into a similar homomorphism of 77 in exactly two ways.
Similarly,

homg (T2(S), P,,) = 2homo(T(S), Pp).
Hence
hom (71 (S), P) = homo(T>(S), P,). O

We will use the following transformation too.
DEFINITION 4.16 (claw-deletion). Let T" be a tree which contains a claw, three
leaves attached to the same vertex. Let T be obtained from T’ by deleting the three

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/22/15 to 18.51.1.3. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

HOMOMORPHISMS OF TREES INTO A PATH 1419

Fig. 7. Claw-deletion.

leaves and attaching a path of length 3 to the common neighbor of the leaves (see
Figure 7). We call this transformation claw-deletion.

Note that the claw-deletion changes the sizes of the color classes. We have to be
careful when we apply it, because it may occur that claw-deletion changes the small
class into the large one.

We need the following property of the claw-deletion.

LEMMA 4.17. Let T’ be a tree on m vertices with color classes S’ and L'. Assume
that |L'| —|S’| > 3 and T’ contains a claw. Let T be obtained from T by a claw-
deletion, where we assume that the center v of the claw is in the class S’. Then

hOHlQ(T/(S/), Pn) > hOmo(T(S), Pn)

Proof. Note that the condition |L'| — |S’| > 3 guarantees that the small class
cannot become the large one in T'. Let uy, us, us be the leaves of T', and let v be their
common neighbor. Let T* =T — {uy, us,us}. Let (a1, as,...,a,) be the hom-vector
of T*(v). Then the hom-vector of T'(v) is

(a1,8as2,...,8an-1,an),
and the hom-vector of T'(v) is
(3ay,6a2,7as3,8ay4, . ..,6an,_1,3an)

if n > 7. If n = 5, then the hom-vector of T"(v) is (a1, 8asg, 8as, 8as, as), while the
hom-vector of T'(v) is (3a1, 6as, 6as, 6a4,3as). In both cases

homo (T'(S"), Py) — homo(T(S), P,) = 4az. O

Our strategy will be the following. We transform a tree into a path by moving
leaves and using the LS-switch and claw-deletion repeatedly. If we want to apply
this last operation, we need to be sure that the condition |L'| —|S’| > 3 holds. The
following lemma will be useful.

LEMMA 4.18. Let T be a tree with color classes A and B. Assume that all leaves
of T belong to the color class A. Then |A| > |B.

Proof. We prove the statement by induction on the number of vertices. If T' has
at most 3 vertices, the claim is trivial. Assume that 7" has n vertices and we have
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proved the statement for trees on at most n — 1 vertices. Let u be a leaf of T', and let
v be its unique neighbor. Note that u € A and v € B. Erase u from T, and let T*
be the obtained tree. If v is a leaf in the obtained tree, then erase it as well and let
us denote the resulting tree by T**, otherwise T** = T*. (It may occur that T** is
the empty graph, but it is not a problem.) For T** it is still true that one color class,
A**, contains all leaves. Thus by induction |A**| > |B**|. Then

Al = [A™|+1 > |B™[+1>|B],

as desired. O

Remark 4.19. Let T” be a tree on m vertices with color classes L and S. Assume
that 7" contains a claw, and all leaves belong to L. Then |L| — |S| > 3. Indeed, if
we delete two leaves from the claw, then it is still true for the resulting tree 7 that
all leaves belong to one color class, and it must be the larger one. Hence |L*| > |S*|,
and since m is odd, we have |L*| > |S*| + 1. Thus for the original tree 7" we have
|L| —|S| > 3.

Proof of Theorem 4.14. Let T, be the set of trees on m vertices which minimizes
homg(T'(S), P,). From Ty, let us choose the tree T, which has the smallest number
of leaves and among these trees it has the largest Wiener index. We show that T,
must be P,,. Suppose for the sake of contradiction that T, # P,.

First of all, T',,, cannot be an image of an LS-switch, because if T',, can be obtained
from a tree F' by an LS-switch, then by Lemma 4.10 we have

homg(F(S), P,) < homo(T(S), Py),
and F has at most as many leaves as Tp,, and W(F) > W(T,,). Hence it would
contradict the choice of T,.

Let S and L be the small and large class of T,,, respectively. Note that L must
contain a leaf by Lemma 4.18. We will distinguish two cases according to whether S
also contains a leaf or not.

Case 1. S contains a leaf v. Let x be the unique neighbor of v. First, we show
that = has degree at least 3. If deg(z) = 2, then let w be the closest vertex to v having
degree at least 3. Such a w must exist, because T, is not P,,. Note that d(v,w) > 2.
Let us decompose the tree T',,, into branches P(v,w), T} (w), and T3(w) at the vertex
w, where Ty (w) and T3(w) are nontrivial trees. If d(v, w) is even, then T}, is an image
of a tree F' by an LS-switch, where T5(v) = T4(v) are one-vertex trees. If d(v,w) is
odd (consequently d(x,w) is even), then T,, is an image of a tree F' by an LS-switch,
where Th(z) is a one-vertex tree and Ty(x) is the rooted tree on the vertex set {z,v}.
In the second case, it may occur that T3(w) is also an edge implying that T, = F.
By changing the role of Th(v) and Ty(v), we can ensure that T (w) is also an edge
(otherwise we get the same contradiction as before). Hence in this case T',, is a path
with an edge attached on the second vertex. In this case we can realize that it is an
LS-switch of a path since m is odd. Hence we get a contradiction in this case too.

Now let u € L be a leaf. Let us delete it, and attach u’ to v. This way we get a
tree T'. By Lemma 4.15 we know that

homg (T, (S), P,) = homg(T"(S), P,,).

Furthermore, 7" is an LS-switch (in fact, an even-KC-transformation) of a tree F.
Indeed, let us decompose the tree T' at = to Ty (z), T2(x), and the path zvu'. Thus if
we move Th(z) from x to v, we get a tree F for which

homg(F(S), P,) < homo(T"(S), P,).
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Note that v’ and v are not a leaf in F' anymore. Possibly, the original neighbor of u
became a leaf in F', but still the number of leaves of F' is strictly less than the number
of leaves of T,,,. This contradicts the choice of T,,. Hence we are done in this case.

Case 2. S contains no leaf. Hence all leaves belong to the class L. Let ujPuso
be the longest path of T,,. As in the previous case, the unique neighbors z; and
o of u; and wus, respectively, have degree at least 3. We can assume that z; # xa,
otherwise T, is a star and it contains a claw and we can do claw-deletion, which
strictly decreases homg(7T'(S), P,,). Since 1 and z2 have degree at least 3, and uj Pug
was the longest path, the only possible way it can occur is that x; and x2 have other
neighbors us and uy, respectively, which are leaves. Now let us delete ug and add a
new neighbor u} to z2. Let T” be the obtained tree. Then by Lemma 4.15

homg (T, (S), P,) = homg (T (S), P,,).

On the other hand, it is still true that all leaves of T" belong to its large class.
Moreover, it contains a claw: {x2,us,us, us}. By Remark 4.19 the conditions of
Lemma 4.17 are satisfied, and we can do a claw-deletion. Then we get a tree F for
which

homg (T, (S), P,,) = homg(T"(S), P,) > homg(F(S), Py).

This contradicts the choice of T,,.
Hence we get contradictions in all cases. 0

5. Final remarks, open problems. The main achievement of this paper is the
inequality

hom(P,,, P,) < hom(T,,, P,) for any m,n.

Though this result is not unexpected, its proof turns out to be delicate, especially in
the case when m > n. In view of Sidorenko’s inequality (1.4), one may wonder if for
any graph G

hom(Py,, G) < hom(T,,, G)

holds for any tree T, on m vertices. This is not true even if one restricts G to be a
tree; see [7, Remark 4.13] for counterexamples.

There is an open problem left in Figure 2, which if true, would provide an alter-
native approach to [7, Theorem 1.8], which asserts the path has the fewest number of
endomorphisms among all trees with fixed number of vertices.

PRrROBLEM 5.1. Is it true that

hom(P,,T,) < hom(T,,T,)

for every tree T,, on n vertices?
PROBLEM 5.2. Let T, be a tree on m wvertices with at least 4 leaves. Is it true
that for any graph G we have

hom(P,,, G) < hom(T,,,G)?

If it is not true, then what is the smallest f(m) such that if a tree T,, on m vertices
has at least f(m) leaves, then

hom(P,,, G) < hom(T,,, G)

for any graph G?
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The KC-transformation on trees seems quite natural, which has many applica-
tions in various extremal problems concerning trees. We are also interested in the
topological aspects of the poset induced by the KC-transformation on trees. Let P be
a grated poset with 0 and 1. We say that the Mdbius function (see [12, Chapter 3])
of P alternates in sign if

(=14 (s,t) >0, forall s <tin P.

Let KC,, denote the graded poset on all trees with n vertices that is induced by the
KC-transformation. We have the following conjecture, which has been verified for
n < 8.

CONJECTURE 5.3. The Mébius function of KC,, alternates in sign for each n >

It would be interesting to see if XC,, is EL-Shellable (see [13, section 3.2] for the
definition), a property that implies alternating signs.
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