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Abstract

The Clock Drawing Test – a simple pencil and paper test – has been used for more than 50
years as a screening tool to differentiate normal elderly individuals from those with cognitive
impairment, and has proven useful in helping to diagnose dementias, such as Alzheimer’s disease,
Parkinson’s disease, and other conditions.

A group of hospitals and clinics have been administering the test using a digitizing ballpoint
pen that reports its position with considerable spatial and temporal precision, making avail-
able far more detailed data about the subject’s performance. Using categorized stroke data
from these drawings, we designed and computed a large collection of features, then explored
the tradeoffs in performance and interpretability in classifiers built using a number of different
subsets of these features and a variety of different machine learning techniques. We used tra-
ditional machine learning methods to build prediction models that achieve high accuracy. We
operationalized widely used existing scoring algorithms so that we could use them as bench-
marks for our models. We worked with clinicians to define guidelines for model interpretability,
and constructed sparse linear models and decision lists designed to be as easy to use as scoring
algorithms currently used by clinicians, but more accurate. We also extract insights from the
data about the behavioral aspect of these conditions on patients.

While our models will require additional testing with subjects for validation, they offer the
possibility of substantial improvement in detecting cognitive impairment earlier than currently
possible, a development with considerable potential impact in practice.

Thesis Supervisor: Randall Davis
Title: Professor
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Chapter 1

Introduction

1.1 Cognitive Conditions and the Clock Drawing Test

With increasing progress of medicine extending life expectancy, populations world wide are

“greying,” producing a new set of healthcare challenges. As one example, recent estimates

suggest that 13.9 percent of people above the age of 70 currently have some form of dementia

[37], while the Alzheimer’s Association projects that by 2050 the number of Americans with

Alzheimer’s will grow to some 13.8 million and the number worldwide will grow to 135 million

[39]. As populations age there will clearly be huge financial, caregiver, and social burdens on our

healthcare system and on society as we work to care for patients with cognitive impairments.

Research is underway on many fronts, including pharmaceuticals, but there is as yet no cure

for cognitive impairments such as Alzheimer’s and Parkinson’s disease, and drugs often take 12

years from discovery to clinical approval. There is however the potential to slow the progress of

some forms of cognitive decline, if caught early enough. Hence one important focus of research

is early detection.

A variety of tests are used to screen for and assist with differential diagnosis of cognitive

decline. One of the simplest and most widely used is called the Clock Drawing Test (CDT).

In use for more than 50 years, it has been a widely accepted cognitive screening tool used in

subjects with various dementias and other neurological disorders. The test asks the subject to

draw a clock showing 10 minutes after 11 (called the Command clock), then asks them to copy

a pre-drawn clock showing that time (the Copy clock).
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As a simple paper and pencil test, it is quick and easy to administer, non-invasive and

inexpensive, yet provides valuable clinical and diagnostic information. It is, for example, useful

as a screening tool to differentiate normal elderly individuals from those with cognitive im-

pairment, and has proven useful in helping to diagnose dementias, such as Alzheimer’s disease,

Parkinson’s disease, and other conditions [14, 16]. The CDT is also used by neuropsychologists,

neurologists and primary care physicians as part of a general screening for cognitive change in

addition to dementia [46].

But there are drawbacks in the current use of the test. While there are a variety of well-

regarded scoring systems designed for use by clinicians, these systems often rely on a clinician’s

subjective judgment of under-specified properties of the drawing. One current scoring system

[29], for instance, calls for judging whether the clock circle has “only minor distortion,” and

whether the hour hand is “clearly shorter” than the minute hand, without providing quantitative

definitions of those terms, leading to variability in scoring and analysis [38]. Other scoring

system [30] specify more precise measures but are far too labor-intensive for routine use.

1.2 Digital Clock Drawing Test (dCDT)

For the past 7 years, a group of hospitals and clinics (The ClockSketch Consortium) has been

administering the Clock Drawing Test using a digitizing pen (the DP-201 from Anoto, Inc.)

that while functioning as an ordinary ballpoint also records its position on the page with

considerable spatial (+- 0.005 cm) and temporal (12ms) accuracy. We then analyze the data

using novel software developed for this task [10, 7, 11]. The resulting test is called the digital

Clock Drawing Test (dCDT).

Administering the test using a digitizing pen enables a number of unique capabilities. The

pen’s spatial precision permits the software to do an unprecedented level of geometric analysis

of the drawing, with no effort by the user. Because the data points are time-stamped, they

capture the entire sequence of behaviors (every stroke, pause or hesitation), rather than just

the final result (the drawing). Having time-stamped data means that the software can measure

that behavior as well, including informative time intervals, as for example the delay between

finishing numbering the clock and starting to draw the hands.

Processing raw data from the pen starts with sketch interpretation, i.e., classifying each
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Figure 1-1: Example of a classified clock output by the ClockSketch software. An ellipse is fit to the clockface,
with the major and minor axis shown; bounding box for each digits are computed; arrows show the overall
direction of the hands; the lines on digits 5, 10, and 12 show the direction of hooklets, and the “x"s the start of
the next stroke after each hooklet. The system adds the colored overlays as a way of making stroke classification
visually obvious.

pen stroke as one or another component of the clock, e.g., as a minute hand, hour hand, as a

specific digit, etc. This process is described by [10], and resulted in the Clocksketch software.

The Clocksketch software analyzes the raw data from the pen, automatically classifying strokes

as part of the clock face circle, hands, numbers, etc. It also permits assistance from the user,

needed in difficult cases (e.g., for clocks by more impaired subjects). Figure 1-1 below shows a

screenshot of the system after the strokes in a clock have been classified, showing the starting

point for the work reported here.

Stroke classification is a key first step, as it enables appropriate measurement of clock

features, e.g., the average size of the numerals, how accurately the hands show the time, the

latency between finishing drawing the numerals and starting to draw the hands, etc. [8]. The

spatial and temporal accuracy of the pen data permits the system to make precise measurements

that are implausibly difficult with ordinary ink on paper.

From a user perspective, a significant advantage of the program is that all measurements

are operationally defined in the software, hence free of user bias. They are also carried out in

real time, with no additional burden to the user, a significant advantage in a clinical setting,

where time is limited.

The next step is clinical interpretation: what does the drawing and the behavior that

produced it tell us about the subject’s cognitive state? This thesis reports on what light a
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variety of machine learning techniques shed on answering this question. We describe our work

on constructing features that are informative diagnostically, on building classifiers that predict

a subject’s condition, and on creating classifiers that are both accurate and comprehensible to

clinical users.

1.3 Contributions

As a focus for this thesis we chose three categories of cognitive impairment based on their

importance clinically and because they represent three of the most common diagnoses in our

data: memory impairment disorders (MID) consisting of Alzheimer’s and amnestic mild cogni-

tive impairment (aMCI); vascular cognitive disorders (VCD) consisting of vascular dementia,

mixed MCI and vascular/cognitive MCI; and Parkinson’s disease (PD).

There are two forms of prediction we want to make. Screening distinguishes between healthy

and one of the three categories. For each cognitive impairment category we built models that

make a binary-choice prediction: whether someone has that condition or is healthy. We also

do a group screening for these three conditions together, i.e., whether a subject has any one

of the three condition or is healthy. The second task is the diagnosis-like task of clinical group

classification – distinguishing one of the three conditions from every other of the 43 conditions

in our data set, including healthy.

We define the following types of features, detailed in Section 3, on which our work is based:

• Digital-pen features are the features that we create from the data of the digital pen.

• Clinician features are the features used in the existing manual scoring systems created by

and used by clinicians;

• Operationalized clinician features (op-clinician features) are rigorously defined and com-

puted versions of the clinician features.

• Simplest features is a subset of all the features chosen because we believe they are partic-

ularly easy to evaluate by hand, hence less subject to inter-rater variance and usable in

the pen-and-paper version of the test.
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• The set of all features is the union of the digital-pen features, op-clinician features, and

simplest features.

• MRMR subset of all features is the first 200 selected by Minimum-Redundancy-Maximum-

Relevance [31] filtering from the set of all the features.

We began by using off-the-shelf machine learning methods for their ability to produce ac-

curate predictive models when trained on large amounts of data. Section 4 describes the work

and reports on the performance of six classification methods - Gaussian SVM, random forests,

CART, C4.5, boosted decision trees, and regularized logistic regression - each of which had

access to all features.

These classifiers performed very well in absolute terms, but determining the significance of

their performance results requires a baseline to use as a point of comparison. While data are

available on the performance of some of the scoring systems used by clinicians to score the

traditional clock drawing test [49, 44, 45, 25], these are imperfect measures due to variations

in the way the test is given (e.g., whether only one clock is to be drawn, whether the clock face

circle is pre-drawn, etc.) and variations in the clinical populations used in evaluation.

To provide a more closely comparable measure of performance, we evaluated our clock

data using seven of the most widely used existing manual scoring systems, selected after a

careful review of the literature. Prompted by the impossibility of applying so many manual

systems to our large collection of test, we created automated versions of these scoring systems.

One challenge in doing this is that the scoring systems are designed for use by people, and

often contain under-specified measures (e.g. deciding whether a clock circle has “only minor

distortions.”) We thus had to operationalize these algorithms, i.e., specify the computations

to be done in enough detail that they could be expressed unambiguously in code. We refer to

these as operationalized scoring systems.

One disadvantage of off-the-shelf machine learning classifiers is that they produce black box

predictive models that may be impossible to understand as anything other than a numerical

calculation. In response, another focus of our work has been on exploring the tradeoff between

accuracy and interpretability. In Section 6.2, we provide a definition of interpretability for

our problem. We then use a recently developed framework, Supersparse Linear Integer Models

(SLIM) [51], and introduce a simple metric to prioritize more understandable features, enabling
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us to build interpretable linear models.

In Section 6.3, we move to a second class of models consisting of rules and decision lists.

We mine association rules from the data. Some of these rules turned out to confirm existing

knowledge about correlations between pen-based features and diagnoses, while others appear

novel, revealing correlations that had not been reported previously. In a further step in this

direction, we constructed decision lists by employing a recently-developed machine learning

technique called Bayesian Rule Lists (BRL) [22], which combines associations to create accurate-

yet-interpretable predictive models.

Based on the framework outlined above, we carried out a number of experiments which

resulted in the eight primary contributions of this thesis:

(i) Starting from a collection of novel clock test features created over the years (see e.g.

[33, 34, 21, 32]), we create additional single-clock features, as well as features taking

advantage of aggregate properties of the clocks and differences between the command and

copy clocks. In addition, we operationalize the features used in existing scoring systems,

producing the operationalized clinician features, and select a set of simplest features that

we believe to be most easily and reliably measured by clinicians by eye.

(ii) We show that six state-of-the-art machine learning methods applied to the set of all fea-

tures produce classifiers with AUC performance ranging from 0.89 to 0.93 for screening

and 0.79 to 0.83 for clinical group classification. Published AUCs of existing clinician

scoring systems [49, 44, 45, 25], which typically only attempt to distinguish healthy vs.

cognitively impaired, range from 0.66 to 0.79 depending on the dataset. Our methods are

thus not only significantly more accurate on this task, they are also capable of detect-

ing more fine-grained classes of cognitive impairments for both screening and cognitive

impairment classification.

(iii) We created operationalizations of seven widely used CDT scoring systems, to provide the

most direct baseline for evaluating our models. Any free parameters in our operationalized

scoring systems were chosen so as to maximize performance of the system, providing an

upper bound on the performance of these systems on our data.

(iv) The classifiers produced by the state-of-the-art machine learning methods greatly outper-

18



formed the optimized operationalized scoring algorithms for both screening and clinical

group classification. Where the machine learning methods produced AUCs from 0.89 to

0.93 for screening and 0.79 to 0.83 for group classification, the best operationalized scor-

ing algorithms have AUCs of between 0.70 and 0.73 for screening and 0.65 and 0.69 for

group classification. Thus, using the digital version of the CDT with our machine learning

models would lead to more accurate predictions.

(v) We show that applying the machine learning methods to the clinician features leads to

models with AUCs from 0.82 to 0.86 for screening and 0.70 to 0.73 for group classifica-

tion, which is more accurate than the operationalized scoring algorithms. We also show

that using the simplest features results in better performance than the operationalized

scoring algorithms, with AUCs from 0.82 to 0.83 for screening and 0.72 to 0.73 for group

classification. This opens up the possibility of clinicians recording these features and in-

putting them into our machine learning models, producing more accurate predictions of

their patients’ conditions, without changing what they attend to in evaluating the test.

(vi) We created Supersparse Linear Integer Models using simplest features, op-clinician fea-

tures, and the MRMR subset of all features, that are all more accurate than existing

scoring systems on the screening task, with AUCs from 0.73 to 0.83 depending on the fea-

ture set, and at least as accurate (and often better) on the group classification task, with

AUCs from 0.66 to 0.77. These models contain very few features and prioritize under-

standable ones, leading to models that are at least as interpretable as existing algorithms

and can be used reliably by clinicians.

(vii) We mined association rules and found many that were consistent with existing knowledge

about connections between clock features and cognitive conditions, and found some that

suggested plausible but previously unknown connections.

(viii) We created highly interpretable decision lists using simplest features, op-clinician features,

and the MRMR subset of all features, resulting in classifiers with AUCs ranging from 0.78

to 0.85 for screening and 0.69 to 0.74 for clinical group classification, depending on the

feature set and condition. As above, these models might be usable by clinicians at least

as easily, and possibly more reliably and accurately, than existing scoring systems.
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Figure 1-2: Summary of results for screening.

Figures 1-2 and 1-3 summarizes the results described above, showing the range of accuracies

achieved by our different models for screening and clinical group classification, respectively,

ordered left to right by decreasing upper bound. Each model category is a pairing of a class of

model (traditional machine learning models, Supersparse Linear Integer Models, or Bayesian

Rule Lists) with a feature set (simplest features, clinician features, or all features/MRMR subset

of all features). Each bar shows the range of the AUC’s across test folds for each condition,

for the best algorithm in each category. For example, on the screening plot, “ML All features”

indicates the range of accuracies of the best machine learning algorithms using all features, over

the four possible screening tasks.

1.4 Related work

Machine learning, and more generally, artificial intelligence, have been a subject of interest to

medicine as they offer potential for improving the detection and diagnosis of medical conditions

and diseases, while at the same time increasing objectivity of the decision-making process.
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Figure 1-3: Summary of results for clinical group classification.

Successful applications date back to expert systems, for example tasked with selecting antibiotic

therapy for bacteremia [9]. More recently, examples of successful machine learning medical

applications include the detection and classification of tumors via X-ray and CRT images [36, 3];

the classification of malignancies from proteomic and genomic (microarray) assays [59, 12, 53];

heartbeat classification from electrocardiogram [56]; the creation of patient risk stratification

models for Clostridium difficile [55].

At the same time, however, the goal of creating interpretable models – which was emphasized

during the expert system years – has had considerably less attention over the last two decades.

Recent research in statistics and machine learning has primarily focused on the accuracy of the

models and the scalability of the algorithms, often sacrificing interpretability in the optimization

process (e.g. by using proxy measures, such as the ℓ1-norm instead of ℓ0-norm). Some methods

can be tailored to be more interpretable, such as decisions tree algorithms by restricting the

height of possible trees. This is often at a high cost to accuracy, as those methods were not

designed with interpretability in mind.

In many applications, but particularly medicine, the ease with which a model is used and
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understood is very important. As we observed when reviewing existing scoring systems for the

clock drawing test, the majority are short and use simple features combined linearly to arrive

at a decision, a common pattern in medical scoring systems. Some work in applied machine

learning has aimed to create such interpretable models. For example, a novel decision list

construction algorithm [22] was used to generate a new scoring criterion to predict stroke in

patients with atrial fibrillation, significantly outperforming the CHADS2 [15] scoring system

currently in use by doctors, while remaining equally interpretable; another work focuses on

creating interpretable clinical decision support systems for gynecology [52].

There have been some attempts to create novel versions of the clock drawing test. The

closest work [19, 18] builds a tablet-based clock drawing test that allows the collection of data

along with some statistics about user behavior. However, the work focuses primarily on the

user-interface aspects of the application, trying to ensure that it is usable by both subjects

and clinicians, but not on automatically assessing the test or creating new data-driven machine

learning classifiers to detect cognitive conditions.

Numerous papers in the clinical literature describe a variety of scoring systems for the clock

test, but no work that we know of - and certainly none used in practice - has used state-of-

the-art machine learning methods to create these systems or has reported levels of accuracy

comparable to those obtained in this work. In addition, no work that we know of has tackled

the problem of understanding the tradeoff between accuracy of prediction and interpretability

for the clock drawing test.
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Chapter 2

Data

Over the past seven years, the ClockSketch Consortium has accumulated a collection of 3541

digital clock tests whose strokes have been carefully classified and independently reviewed for

accuracy. Some subjects have been tested multiple times over the years; to avoid issues that

might arise from repeated exposure to the test, we selected only the first test for each subject,

leaving us with 2169 tests (each of which has both a Command and Copy clock, yielding 4338

distinct drawings). The anonymized IDs of all the tests used can be found in Appendix B.

Each test has up to three diagnoses associated with it, each with a level of certainty ranging

from 1 to 3. These diagnoses are often subclasses of major conditions. We decided to focus

on four groups due to their importance clinically and because they represent three of the most

common groups of diagnoses in our data, along with a group of healthy subjects.

• The memory impairment disorders (MID) group consists of 206 subjects diagnosed by

consensus to have Alzheimer’s or amnestic MCI. Alzheimer’s is the most common form

of dementia, accounting for 60 to 70 percent of dementia cases [35]. MCI (mild cognitive

impairment) can present with a variety of symptoms; when memory loss is the predomi-

nant symptom it is termed “amnestic MCI" and is frequently seen as a transitional stage

between normal aging Alzheimer’s disease [1]. We would expect memory problems on

the clock test but do not expect significant motor slowing during the early stages of the

disease. In our sample, subjects with amnestic MCI meet criteria established by [35] and

have circumscribed memory loss in the context of otherwise intact cognition and no report

of functional problems. Our subjects with Alzheimer’s disease are primarily at an early
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stage of the disease.

• The vascular cognitive disorders (VCD) consisted of 121 subjects diagnosed with vascular

dementia, mixed MCI, or vascular MCI. Vascular dementia is widely considered the second

most common cause of dementia after Alzheimer’s disease, accounting for 10 percent of

cases [2], and is often preceded by vascular MCI. Many experts believe that vascular

dementia and MCI remain under-diagnosed – like Alzheimer’s disease – even though they

are recognized as common. Early detection and accurate diagnosis are important, as risk

factors for vascular dementia are important targets for medical intervention. We expect

motor and cognitive slowing effects on the test performance.

• Parkinson’s Disease (PD). There were 126 subjects diagnosed with Parkinson’s disease.

Early in the course of the disease the most obvious symptoms are movement-related

and may include tremor, rigidity, slowness of movement and difficulty with gait. Later,

thinking and behavioral problems may arise, with dementia most often occurring in the

advanced stages of the disease. There is no cure yet, but medical and surgical treatments

are effective at managing the motor symptoms of the disease.

The tests that we use for the healthy set consist of “Healthy Control” subjects, who

are non-patients (e.g. family members of patients who agree to be tested), as well as

“Not demented” subjects, who have been longitudinally studied and evaluated by the

Framingham Heart Study 1 and are judged with high confidence to be healthy. In order

to ensure appropriate age matching in comparisons, the following sets of healthy patients

were defined for each condition group:

– Memory impairment disorders and vascular cognitive disorders subjects: “Healthy

Control” and “Not demented” with confidence of 3 and age greater than 55, for a

total of 406 healthy tests.

– Parkinson’s disease: “Healthy Control” and “Not demented” with confidence of 3 and

age greater than 45, for a total of 587 healthy tests.
1The Framingham Heart Study began in 1948 with the goal of life-long physical examinations and lifestyle

interviews of their participants every two to four years, to look for patterns related to heart disease. Their focus
has since broadened to other diseases, but their methodology – recruiting and life-long examination of a large
cohort of subjects – means that many of their subjects are healthy. The Study has been using the dCDT as
part of its test suite for the past two years.

24



The remainder of the tests have other neurological, psychiatric, and medical conditions;

their distribution is shown in Figure 2-1.
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Figure 2-1: Frequency of each condition in the dataset.
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Chapter 3

Feature construction

This section describes the clock drawing features we constructed, a process that involved con-

ferencing with clinicians and examining intermediate results.

3.1 Example clocks

Figure 3-1 illustrates representative clock drawings from our dataset from a healthy control, a

subject in the memory group impairment and a subject diagnosed with Parkinson’s. As the

figure suggests, clocks by healthy subjects are typically reasonably round, have all 12 digits

present and spaced regularly around the clock, and have hands pointing towards digit 11 and

digit 2. Hands often have arrowheads, and the minute hand is often but not invariably longer

than the hour hand, following the traditional clock format. A center dot is also common.

There are many possible variations found in both healthy and impaired subjects.

• Clocks vary significantly in size, with some subjects drawing them much smaller (Figure

3-1c).

• There may be a gap between the start and the stop of the clockface (Figure 3-1c).

• Digits maybe be missing, crossed-out, repeated, or with poor angular spacing (Figure

3-1b).

• Digits greater than 12 are sometimes drawn.
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(a) Healthy

(b) Alzheimer’s

(c) Parkinson’s

Figure 3-1: Example clocks from our data set for healthy, Alzheimer’s disease, and Parkinson’s disease, with
command clock on the left and copy clock on the right
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• Hands can be missing (Figure 3-1b), crossed-out, or repeated, with arrowheads sometime

pointing toward the clock center.

• Some clocks contain stokes used by subjects for spatial arrangement, and tickmarks used

as replacement for digits.

• Subjects sometime use additional text in their drawings, for example to write the time as

a memory aid or in lieu of a number.

• We have defined “noise” as strokes that are not part of the representation of defined clock

elements (e.g. hand, digit) but are clearly produced during the drawing process and are

intentional (i.e. not random pen drops) [33]. They vary from tiny dots to longer lines

(Figure 3-1c).

• A more subtle feature, hooklets [21, 32], can also be observed. These are abrupt changes

in the direction at the end of a stroke that head toward the beginning of the next stroke.

For example, when drawing the numbers on a clock, subjects may leave a “tail” on the

end of one digit stroke that points toward the start of the first stroke of the next digit.

Starting from these observations, and iterating using results and doctor feedback, we con-

structed five sets of features to be used with our algorithms to obtain models that have specific

characteristics. We detail the feature sets and their objectives below.

3.2 Digital-pen features

These are the features that we create from the data of the digital pen. They fall into the

following four categories below:

3.2.1 Single-Clock-Measurements

These are measurements of geometric or temporal properties of components of a single clock.

For example:

• For each component (e.g. the clockface, all digits, and all hands), the number of strokes,

the total ink length, the time it took to draw, and the speed.
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• The length of the major and minor axis of the fitted ellipse as well as the distance and

angular difference between starting and ending points of the clock face (Figure 3-2A).

• Digits that are missing or repeated, the height and width of their bounding boxes (Figure

3-2B).

• Hands are checked for omissions or repetitions, the size ratio of hour hand to minute

hand, the presence and direction of arrowheads, and angular error from their correct

angle (Figure 3-2C).

• Whether the minute hand points to digit 10 instead of digit 2, which can happen as a

consequence of the instruction to set the time to “10 past 11".

• The presence, length, and direction of hooklets are measured (Figure 3-2D).

• The presence of tick marks, spokes, any text (often used as a reminder of the time), or a

center dot for the hands.

• The number and length of noise strokes.

• Timing information is used to measure how quickly different parts of the clock were drawn.

One particularly interesting latency feature is one called the pre-firsthand latency, the time

that elapsed between the first stroke of the first hand drawn and whatever was drawn

previously [34].

3.2.2 Single-Clock-Aggregates

These are aggregates of geometric or temporal properties of a single clock. For example:

• The total time to draw the clock and the total number of strokes used.

• The average height, average width, and average length of all digits present.

• The number of digits missing or repeated.

• Measures of the distribution of digits around the clock. For example, one feature counts

the number of digits in the clock that have fewer than 3 other digits within 45𝑜 on either
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Figure 3-2: Example features. A: the distance between starting and ending point of the clockface, as well
as the angular difference; B: digit repetition; width and height of the bounding box; C: the difference in angle
between a hand and its correct angle; D: hooklet presence, length, and direction.

side; another feature reports whether all non-anchor digits are in their correct eighth; yet

another the variance in the distance of digits from the clockface.

• The percentage of time spent drawing vs. thinking (holding the pen off the paper) for

one clock.

3.2.3 Both-Clock-Aggregates

These are aggregates over both the command and the copy clock. For example:

• The total time to draw both clocks.

• The total number of strokes used.

• The average height, average width, and average length of all digits present in both clocks.

• The number of digits missing in both clocks.

• The percentage of time spent drawing vs. thinking for both clocks.

3.2.4 Clock Differences

We compute the difference in value of a feature across the command clock and the copy clock

e.g, difference in the total time to draw each clock. This follows the intuition that because the

command and copy clocks engage different cognitive functions, differences between them may

be revealing.
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3.3 Clinician features and operationalized-clinician features

(op-clinician features)

These are computable versions of features found in existing manual scoring systems. Some of

the clinician features are quantitative, such as checking for the presence of a digit or a hand.

Others are less well defined: for example, one feature calls for determining whether the minute

hand is “obviously longer" than the hour hand, while another checks whether there are “slight

errors in the placement of the hands." These can be estimated by a clinician, but it is not

immediately obvious how to compute them in a program in a way that captures the original

intent. Section 5 describes our efforts to create the operationalized versions of these features.

The operationalized features then allow us to create operationalizations of the existing

scoring systems, providing a baseline against which to compare the classifiers we build. In

addition, we use these features with the machine learning algorithms in order to measure how

predictive these features can be in models of other forms.

3.4 Simplest features

This is a subset of the features available in the traditional pen-and-paper version of the test,

selecting those for which we believe there would be little variance in their measurement across

clinicians. We expect, for example, that there would be wide agreement on whether a number

is present, whether hands have arrowheads on them, whether there are easily noticeable noise

strokes, etc.

Models created using this set of features would be applicable to the traditional pen-and-

paper version of the test (i.e. without the digitizing pen), with clinicians able to measure the

features more easily and consistently than for existing scoring systems.

3.5 All features

This set is a union of the three feature sets described above (i.e. digital-pen features, op-clinician

features, simplest features). Our intent here is to build the best model possible, without regard

to the number of features, their interpretability, etc., in order to get the maximum benefit from
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the precise data by the digital pen. This is discussed in Section 4. Models built using this set

of features can of course only be used with tests administered with the digital pen.

3.6 MRMR subset of all features

From among all of the features, we created a subset from the first 200 selected by Minimum-

Redundancy-Maximum-Relevance [31] filtering. We use this set of features when using the set

of all features is computationally too expensive.
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Chapter 4

Traditional Machine Learning Models

Our aim in this section is to establish a measurement of the the highest accuracy attainable

from our data, by applying state-of-the-art machine learning methods to the set of all features.

4.1 Machine Learning Methods

We constructed classifiers using a variety of machine learning methods, starting with filtering

methods to get an initial idea of which features have high predictive power, and then moving

on to decision trees, logistic regression, support vector machines, bagged decision trees, and

boosted decision trees.

For each algorithm, we used stratified cross-validation to divide the data into 5 folds to

obtain training and testing sets. For algorithms that had parameters to optimize, we further

cross-validated each training set into 5 folds to optimize the parameters of each algorithm using

grid search over a set of ranges.

4.1.1 Feature filtering

We ran different filters on our data to rank our features and get an idea of which ones had higher

predictive power. Using [58], we ranked them according to Gini index and Information Gain. We

also used Minimum-Redundancy-Maximum-Relevance (MRMR) [31] filtering to select features

that are mutually far away from each other, while still highly correlated with the classification

variable, to create a subset of all features as described in Section 3.
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4.1.2 Decision Trees

We used the two most popular decision tree algorithms, CART and C4.5, to create classification

models. For CART, we used the R library “rpart" with default parameters; for C4.5, we used

the R library “RWeka" with default settings.

4.1.3 Random Forest

We used the MATLAB class TreeBagger with parameter “NVarToSample" set to the square

root of the total number of variables and the variable “NTrees" for the number of trees set to

1000. This gave sufficient trees for the accuracy to converge to its asymptote for all of our

classification problems.

4.1.4 Regularized logistic regression

We used the LIBLINEAR [13] implementation of logistic regression with 𝑙1 regularization. We

selected the regularization parameter 𝐶𝐿𝑅 from {2−8, 2−6, ..., 28}, choosing the one with the

best 5-fold cross-validation performance.

4.1.5 Support vector machines

We used three different algorithms.

• SVM with linear kernel: it performed significantly worse than the others.

• SVM with recursive feature elimination: it allowed us to construct linear SVM models

with fewer features than the SVM with a linear kernel. However, we ended up using other

models tailored for more interpretability, as detailed in Section 6.

• SVM with Gaussian kernel: performed very well on our data. We used SVMlight [17]

with a radial basis function kernel. We selected the slack parameter 𝐶𝑆𝑉𝑀 and the

kernel parameter 𝛾 using a grid search over the ranges 𝐶𝑆𝑉𝑀 ∈ {2−4, 2−2, ..., 214} and

𝛾 ∈ {2−6, 2−1, ..., 210}
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4.1.6 Boosting

• Boosted splines: considerably lower performance than boosted decision trees.

• Boosted decision trees: performed very well across the different classification problems.

We used the MATLAB class “fitensemble" with 500 trees and parameter “LearnRate" set

to 0.05.

4.2 Results for Machine Learning Methods

We present results for the machine learning methods described above that performed best:

CART, C4.5, SVM with gaussian kernels, random forests, boosted decision trees, and regular-

ized logistic regression.

We began with the screening task, seeking to develop classifiers able to distinguish healthy

subjects from those with one of the conditions listed earlier: memory impairment disorders,

vascular cognitive disorders, and Parkinson’s, as well as whether the subject is healthy or has

any of the three conditions.

Table 4.1 shows the prediction quality for all of the machine learning algorithms we used,

reported as the mean and standard deviation of performance over the test folds. We chose to

measure quality using area under the receiver operator characteristic curve (AUC) as a single,

concise statistic; we display full ROC curves in Figure 4-1. Each curve is a mean over the 5

folds, with 95% confidence intervals displayed as bars along the curves. We assessed statistical

significance for the experiments in Table 4.1 using matched pairs t-tests; bold indicates algo-

rithms whose result was not statistically significantly different from the best algorithm.1. Note

that no single machine learning method can be declared the winner across all experiments.

The best classifiers achieve AUC measures from the high 80s to the low 90s. With this level

of prediction quality, these methods can be immediately helpful as decision aids for physicians.

For our sample of subjects, these results are superior to published accuracies of existing

scoring systems, even where those scoring systems focused on the simpler screening task of dis-

tinguishing demented from non-demented subjects instead of the more fine-grained categories.

1These hypothesis tests are problematic because experiments between folds are not independent, but there
is apparently no good alternative for testing (see, for instance, [27])
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The published results reported AUC levels ranging from 0.60 to 0.79 [49, 44, 45, 25], with

variance in the performance across reports. As an example of the ranges and variance, AUC

accuracy for two widely used scoring systems have been reported from 0.66 [45] to 0.79 [44] for

Shulman [42], and from 0.7 [45] to 0.78 [44] for Mendez [28].

Full ROC curves are show in Figure 4-1. To produce these curves for a particular model

(machine learning model, or scoring system), we rank subjects according to their score in the

model and build the curve from the left (subjects with the highest score) to right (subjects with

the lowest score). This way, the left part of the curve represents subjects most likely to have

an impairment.

Algorithm MID VCD Parkinson’s All three
vs. Healthy vs. Healthy vs. Healthy vs. Healthy

C4.5 0.75 (0.08) 0.72 (0.07) 0.75 (0.06) 0.78 (0.08)
CART 0.78 (0.07) 0.75 (0.13) 0.76 (0.10) 0.76 (0.10)
SVM Gaussian 0.89 (0.06) 0.84 (0.08) 0.86 (0.08) 0.91 (0.09)
Random Forest 0.89 (0.10) 0.88 (0.09) 0.91 (0.11) 0.89 (0.06)
Boosted Decision Trees 0.93 (0.09) 0.88 (0.11) 0.87 (0.08) 0.90 (0.12)
Regularized Logistic Regression 0.88 (0.11) 0.85 (0.07) 0.91 (0.08) 0.89 (0.09)

Table 4.1: Classification results for the screening task: distinguishing clinical group from healthy. Each entry
in the table shows the mean and standard deviation AUC of a machine learning algorithm across 5 folds. The
first column is for the task of distinguishing memory impairment disorders vs. healthy, the second column is for
vascular cognitive disorders vs. healthy, the third column is for Parkinson’s vs. healthy, and the last column is
for any of the three cognitive impairments vs. healthy.

The second set of experiments aimed at clinical group classification, i.e., distinguishing

subjects in one of our clinical groups from subjects who have any other medical, neurological,

or psychological condition. Table 4.2 shows comparative accuracy results; Figure 4-2 shows

the associated ROC curves. As expected, clinical group classification is a more difficult task,

leading to the best algorithms having AUC’s within the high 70’s to low 80’s.

Having established performance for machine learning classifiers, we would like to know how

they compare to the models currently in use by clinicians. Ideally, we would determine this

by having a large number of our clock tests manually evaluated by clinicians using the scoring

systems in current use, but this was not pragmatically possible. We were, however, able to

establish a useful baseline by creating computational models of the existing scoring systems,

resulting in models which we call operationalized scoring systems.
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(a) Memory impairment disorders vs. Healthy (b) Vascular cognitive disorders vs. Healthy

(c) Parkinson’s vs. Healthy (d) All three vs. Healthy

Figure 4-1: ROC curves for screening task (Table 4.1).

Algorithm MID VCD Parkinson’s All three
vs. All Others vs. All Others vs. All Others vs. All Others

C4.5 0.71 (0.10) 0.67 (0.06) 0.71 (0.09) 0.66 (0.09)
CART 0.72 (0.06) 0.69 (0.09) 0.68 (0.09) 0.64 (0.04)
SVM Gaussian 0.79 (0.07) 0.77 (0.13) 0.81 (0.11) 0.72 (0.06)
Random Forest 0.83 (0.06) 0.79 (0.10) 0.81 (0.07) 0.73 (0.04)
Boosted Decision Trees 0.80 (0.09) 0.77 (0.08) 0.77 (0.09) 0.82 (0.05)
Regularized Logistic Regression 0.78 (0.06) 0.79 (0.05) 0.82 (0.05) 0.79 (0.07)

Table 4.2: Classification results for the clinical group classification task: distinguishing one cognitive im-
pairment group from all other diagnoses. Each entry in the table shows the AUC and standard deviation of
a machine learning algorithm for distinguishing one disease from the others. For instance, the entry in the
table corresponding to memory impairment disorders and C4.5 indicates the accuracy in distinguishing memory
impairment disorders from every other condition.
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(a) Memory impairment disorders vs. All others (b) Vascular cognitive disorders vs. All others

(c) Parkinson’s vs. All others (d) All three vs. All others

Figure 4-2: ROC curves for the clinical group classification task (Table 4.2).
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Chapter 5

Operationalized scoring system

To evaluate the quality of our results with respect to the manual scoring systems currently in

use for the CDT, we worked to reproduce the judgements made by clinicians when they apply

one of the current scoring systems, creating fully automated versions of the scoring systems.

5.1 Existing scoring algorithms

There are a variety of scoring systems for the clock test, varying in complexity and the types

of features they use. In each of the systems, points are added and subtracted based on features

of the clock, such as whether clock hands are present, digits are missing, or the correct time is

shown. A threshold is then used to decide whether the test gives evidence of impairment.

We reviewed the literature of existing scoring system for the clock test and worked with

doctors to decide which to operationalize. The result is shown in Table 5.1.

5.2 Operationalizations

We were left with eight scoring algorithms to operationalize: Manos [26], Royall [41], Shulman

[42], Libon [23], Rouleau [40], Mendez [28], MiniCog [6], and Watson [54]. Table 5.2 shows the

Rouleau scoring criterion; we focus on it as an example of the operationalization process.

To operationalize these systems, we had to transform relatively vague terms, such as “slight

errors in the placement of the hands" and “clockface present without gross distortion", into
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Existing scoring system Decision

Manos [26] operationalized.
Royall [41] operationalized.
Shulman (1986) [43] not operationalized due to very similar newer version available; Shulman (1993)

used instead.
Shulman (1993) [42] operationalized.
Libon [23] operationalized.
Rouleau [40] operationalized.
Mendez [28] operationalized.
MiniCog [6] operationalized.
Watson [54] operationalized.
Sunderland [47] not operationalized; very similar to Libon.
Cahn [5] not operationalized; very similar to Rouleau.
Wolf-Klein [57] not operationalized; very similar to Watson and Shulman.
Tuokko [48] not operationalized; not widely used according to doctors.
Lam [20] not operationalized; not widely used according to doctors.
Lin [24] not operationalized; almost identical to Royall and less widely used according

to doctors.

Table 5.1: Summary of decisions for each existing scoring system found in the literature

precise rules that can be programmed. We conferred with clinicians for guidance on what was

meant by the vague terms.

As one example, we translated “slight errors in the placement of the hands" to “exactly two

hands present AND at most one hand with a pointing error of between 𝜖1 and 𝜖2 degrees",

where the 𝜖𝑖 are parameters in the form of thresholds. Similarly, “clock face present without

gross distortion" became “eccentricity of the clockface ≤ 𝜖3 AND clock face closed percentage

≥ 𝜖4".

Table 5.3 shows the non-obvious features used in the Rouleau scoring system (e.g. “digit

missing" is obvious), while Table 5.4 shows the resulting operationalized scoring system. Op-

erationalized scoring systems for all the other manual scoring systems are given in Appendix

A.

The clinicians on our team confirmed the form and content of these operationalized scoring

systems and provided initial values for the thresholds which they believed made the operational-

izations capture the intent of the original manual scoring systems. For instance, the initial hand

pointing thresholds were 15𝑜 and 30𝑜.

42



maximum: 10 points

1. Integrity of the clockface (maximum: 2 points)

2: Present without gross distortion
1: Incomplete or some distortion
0: Absent or totally inappropriate

2. Presence and sequencing of the numbers (maximum: 4 points)

4: All present in the right order and at most minimal error in the spatial arrangement
3: All present but errors in spatial arrangement
2: Numbers missing or added but no gross distortions of the remaining numbers

Numbers placed in counterclockwise direction
Numbers all present but gross distortion in spatial layout

1: Missing or added numbers and gross spatial distortions
0: Absence or poor representation of numbers

3. Presence and placement of the hands (maximum: 4 points)

4: Hands are in correct position and the size difference is respected
3: Sight errors in the placement of the hands or no representation of size difference between

the hands
2: Major errors in the placement of the hands (significantly out of course including 10 to 11)
1: Only one hand or poor representation of two hands
0: No hands or perseveration on hands

Table 5.2: Original Rouleau scoring system [40]

Variable Description

Eccentricity of fitted ellipse
√︁
(1− ( 𝑏𝑎 )

2) where a and b are half the major and minor axes respectively. A
perfect circle has value 0, the value increases toward 1 as it gets flatter.

ClockfaceClosedPercentage The percentage of the angle of the clockface that is closed.
DigitsAngleError The average angle error of digits from their correct angle. A measure of the

distribution of digits angularly.
DigitNeighborsTest A count of the number of digits in the clock with fewer than 3 other digits

within ±45𝑜. A second measure of the distribution of the digits angularly.
HandAngleError The difference in angle between the hand and the digit it should point to.
HandRatio The ratio: length of the hour hand / length of minute hand.

Table 5.3: Operationalized non-obvious features for Rouleau.
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maximum: 10 points

1. Integrity of the clockface (maximum: 2 points)

2: eccentricity ≤ 𝜖1 AND clockface closed percentage ≥ 𝜖2
1: eccentricity > 𝜖1 OR clockface closed percentage < 𝜖2
No clockface strokes OR normed residual > 𝜖3

2. Presence and sequencing of the numbers (maximum: 4 points)

4: If all numbers present AND correct angular sequence AND DigitsAngleError ≤ 𝜖4
3: If all numbers present AND correct angular sequence AND 𝜖4 ≤ DigitsAngleError ≤ 𝜖5
2: (At least one number missing OR at least one number repeated OR digits greater than 12

present)
AND DigitNeighborsTest = 0)
OR numbers counterclockwise
OR All number present AND (at least one number outside the clock OR DigitNeigh-

borsTest ≥ 𝜖6)
1: At least one number missing OR at least one number repeated OR digits greater than 12

present)
AND DigitNeighborsTest ≥ 𝜖6)

0: No numbers

3. Presence and placement of the hands (maximum: 4 points)

4: Exactly two hands AND both HandAngleError ≤ 𝜖7 AND HandRatio ≤ 𝜖8
3: Exactly two hands AND (at least one hand has 𝜖7 < HandAngleError ≤ 𝜖9 OR HandRatio

> 𝜖8)
2: Exactly two hands AND at least one hand has HandAngleError > 𝜖9

OR minute hand within 𝜖10 of “10"
1: One hand or more than two hands present
0: No hands present

Table 5.4: Operationalization of Rouleau scoring system
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5.3 Results of Operationalizations

Starting from these initial values, we created a range of possible values for each parameter

(Table 5.5), such as {0𝑜, 3𝑜, ..., 42𝑜, 45𝑜} for the hand pointing error. We then selected parameter

values via a 5-fold stratified cross-validation that maximized AUC. This maximization of the

AUC ensures that our operationalized versions of the manual scoring systems provide an upper

bound on the performance the scoring system is capable of.

Variable Threshold values

Eccentricity of fitted ellipse {0.45, 0.5, ..., 0.8, 0.85}
ClockfaceClosedPercentage {70, 73..., 97, 100}
ClockfaceGap {0, 2, ...28, 30}
DigitsAngleError {0, 3, ..., 27, 30}
DigitNeighborsTest {0, 1, 2, 3}
DigitClockfaceDistanceVariance {0, 2, ...28, 30}
HandAngleError {6, 9, ..., 27, 30}
HandRatio {0.71, 0.73, ..., 1.03, 1.05}

Table 5.5: Parameter search values for operationalizations

Table 5.6 and Figure 5-1 show the performance for each operationalized scoring system on

the screening task.

Some of the manual scoring systems we operationalized have been evaluated on the task of

screening for general dementia. Results reported for Shulman ranged from 0.66 [45] to 0.79 [44],

while our operationalization of Shulman yielded 0.67 on memory impairment disorders and 0.71

on vascular cognitive disorders. Results reported for Mendez ranged from 0.70 [45] to 0.78 [44],

while our operationalization of Mendez gave us 0.72 on memory impairment disorders and 0.70

on vascular cognitive disorders. Manos achieved 0.67 [25], while our operationalization gave us

0.73 on memory impairment disorders and 0.69 on vascular cognitive disorders. Thus, while

there is a range of accuracies reported for these algorithms due in part to their being evaluated

on different datasets and for different groupings of conditions (general dementia vs. memory

impairment disorders/vascular cognitive disorders), our operationalized scoring systems achieve

similar accuracies, providing a check on our operationalization process.

We then used a variety of machine learning methods on the op-clinician features and the

simplest features. The lower part of Table 5.6 shows AUCs for the best machine learning

algorithm on these two feature sets, followed by the AUCs of the best machine learning algorithm
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Algorithm MID VCD Parkinson’s All three
vs. Healthy vs. Healthy vs. Healthy vs. Healthy

Manos 0.73 (0.08) 0.69 (0.13) 0.70 (0.11) 0.70 (0.07)
Royall 0.73 (0.14) 0.67 (0.13) 0.73 (0.09) 0.70 (0.06)
Shulman 0.67 (0.05) 0.71 (0.07) 0.66 (0.07) 0.67 (0.05)
Libon 0.67 (0.09) 0.72 (0.09) 0.68 (0.10) 0.68 (0.12)
Rouleau 0.61 (0.16) 0.68 (0.15) 0.59 (0.13) 0.61 (0.08)
Mendez 0.72 (0.11) 0.70 (0.12) 0.69 (0.07) 0.69 (0.06)
MiniCog 0.57 (0.08) 0.55 (0.13) 0.54 (0.15) 0.58 (0.12)

Best ML with op-clinician features 0.83 (0.09) 0.83 (0.11) 0.86 (0.08) 0.82 (0.10)
Best ML with simplest features 0.83 (0.06) 0.82 (0.07) 0.83 (0.08) 0.83 (0.07)
Best ML with all features 0.93 (0.09) 0.88 (0.11) 0.91 (0.11) 0.91 (0.09)

Table 5.6: Operationalized scoring system AUCs for screening task, together with AUCs of the best machine
learning model on the op-clinician features, simplest features, and the set of all features.

(a) Memory impairment disorders vs. Healthy (b) Vascular cognitive disorders vs. Healthy

(c) Parkinson’s vs. Healthy (d) All three vs. Healthy

Figure 5-1: ROC curves for the experiments in Table 5.6.
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Algorithm MID VCD Parkinson’s All three
vs. All Others vs. All Others vs. All Others vs. All Others

Manos 0.69 (0.07) 0.63 (0.08) 0.62 (0.07) 0.64 (0.06)
Royall 0.68 (0.08) 0.62 (0.07) 0.65 (0.07) 0.63 (0.09)
Shulman 0.62 (0.07) 0.65 (0.05) 0.59 (0.06) 0.63 (0.04)
Libon 0.60 (0.08) 0.65 (0.12) 0.60 (0.14) 0.64 (0.05)
Rouleau 0.59 (0.13) 0.64 (0.09) 0.53 (0.09) 0.60 (0.06)
Mendez 0.68 (0.06) 0.65 (0.05) 0.61 (0.07) 0.61 (0.07)
MiniCog 0.55 (0.07) 0.56 (0.07) 0.53 (0.05) 0.54 (0.07)

Best ML with op-clinician features 0.73 (0.06) 0.71 (0.08) 0.71 (0.05) 0.70 (0.06)
Best ML with simplest features 0.72 (0.05) 0.73 (0.07) 0.74 (0.08) 0.72 (0.05)
Best ML with all features 0.83 (0.06) 0.79 (0.05) 0.82 (0.05) 0.82 (0.05)

Table 5.7: Operationalized scoring system AUCs for clinical group classification task, together with AUCs of
the best machine learning model on the op-clinician features, simplest features, and the set of all features.

on all features (reproduced from Section 4 for comparison). We can see that all three machine

learning models are much more accurate than the operationalized scoring systems, even when

using identical features (the op-clinician features), or ones that are even easier to measure (the

simplest features).

Table 5.7 and Figure 5-2 show corresponding accuracy results for the operationalized scoring

systems on the clinical group classification task. Again, the machine learning classifiers created

from all three feature sets are much more accurate than the operationalized scoring systems,

which scored mostly in the low 60s. We were unable to find any published accuracies for these

existing scoring systems on a comparable clinical group classification task. We can see that

with these higher accuracies from the machine learning models, the dCDT could be considered

not only as a general screening tool, but might also be able to guide diagnosis.
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(a) Memory impairment disorders vs. All others (b) Vascular cognitive disorders vs. All others

(c) Parkinson’s vs. All others (d) All three vs. All others

Figure 5-2: ROC curves for the experiments in Table 5.7.
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Chapter 6

Interpretable Models

We have found that state-of-the-art machine learning methods on simplest features, clinician

features, and the set of all features outperform existing scoring criteria; however, the existing

scoring systems remain more interpretable. Interpretability is crucial if domain experts are to

accept and use the model. We turn next to finding models that are more transparent and hence

more likely to be accepted in practice, yet still outperform existing models.

6.1 Defining Interpretability for our task

The interpretability of a model is domain specific. To ensure that we produce models that can

be used and accepted in a clinical context, we obtained guidelines from clinicians. This lead

us to focus on three components: ease of feature measurements and their reliability, model

computational complexity, and model understandability.

1. Ease of feature measurements and reliability: Some features can be measured quickly

by eye (e.g. is there a minute hand present) while others would require a digital pen

(time to draw the hand). In addition, some have a greater inter-clinician variance in

measurements. This led us to focus on features that we believed would have the lowest

variance, which, as noted, we call the simplest features. Models produced using these

features could easily be used without a digital pen or other digitizing mechanism.

2. Computational complexity: the models should be relatively easy to compute, requiring a

number of simple operations similar to the existing manual scoring systems. The existing
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scoring systems discussed above have on average 8 to 15 rules, with each rule containing

on average one or two features. We thus focus on models that use fewer than 20 features,

and have a simple form, which in our case means either addition or subtraction of feature

scores (i.e., a linear model), or an ordered sequence of if-then statements (a decision list).

Clinicians should be able to evaluate these types of models rapidly.

3. Understandability: the rationale for a decision made by the model should be easily under-

standable, so that the user can understand why the prediction was made and can easily

explain it. Thus if several features are roughly equally useful in the model, the most un-

derstandable one should be used. As one example of what we mean by “understandable,”

note that our feature set includes 3 measures of test taking time: the total time to draw

the command clock, the total time to draw the copy clock, and the aggregate of the two,

the total time to draw both. If using total time to draw both clocks produces the most

accurate model, but almost all of the predictive power comes from only one of the com-

ponents, say the total time to draw the command clock, it would be reasonable to trade

some small amount of accuracy in order to use the simpler feature, the command clock

drawing time. The form of the model is also important for understandability, leading us

to focus on linear models and decision lists.

Our goal in the remainder of this thesis is to build classifiers that are at least as interpretable

as existing scoring systems (according to the criteria mentioned above), but that are more

accurate. While our focus will be on using the simplest features, we will also create interpretable

models using op-clinician features and the MRMR subset of all features. These latter two

might not be as practical to use manually, and may not be as interpretable, but exploring them

allows us to test the predictive power of these more complex features. In addition, if these

models achieve high accuracy, they could also be used for automatic scoring while providing

interpretability for each prediction.

6.2 Interpretable Linear Models

We begin by using a recently developed framework, Supersparse Linear Interpretable Models

(SLIM) [50, 51], designed to create sparse linear models that have integer coefficients and
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constraints on the range of coefficients. To improve model understandability, we added feature

preferences, where certain features would be preferred over others if performance is similar.

Given a dataset of 𝑁 examples 𝐷𝑁 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, each with 𝐹 features, and a constant

term, we want to build models of the form 𝑦 = sign(𝜆𝑇𝑥), where 𝜆 ⊆ Z𝐹+1 is a vector of

integer coefficients. The framework determines the coefficients of the models by solving an

optimization problem of the form:

min
𝜆

Loss(𝜆;𝐷𝑛) + 𝐶 · Φ(𝜆)

s.t. 𝜆 ∈ ℒ.

The Loss function Loss(𝜆;𝐷𝑛) penalizes misclassifications. The interpretability penalty func-

tion Φ(𝜆) : R𝐹+1 → R allows for a tradeoff between desired interpretability qualities and accu-

racy, with the regularization parameter 𝐶 controlling the balance. The framework also allows

interpretability constraints by limiting 𝜆 to a user-defined set ℒ, to restrict coefficients to a

particular set of values.

The framework allows for many of our interpretability goals. Integer coefficients allow for

models that are more easily computable, have greater expository power, and have the same

form as the scoring systems already in use; hard constraints on the coefficients allow us to

set a hard limit on the number of variables used in the model, thus reducing computational

complexity for evaluation of the model on a new patient.

We defined our own interpretability penalty function Φ(𝜆) to allow us to prioritize certain

features, to ensure that the most understandable features appear in the model. We defined

an understandability penalty 𝑢𝑖 for each feature 𝑖 by organizing our features into trees such

that the children of each feature are those it depends on. For instance “total time to draw

both clocks" has as children “total time to draw command clock" and “total time to draw copy

clock." We define

𝑢𝑖 = height(i) ∀𝑖

which produces a bias toward simpler features, i.e., those lower in the tree.

Given that we want to regulate both the model complexity and the model understandability,
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Features MID VCD Parkinson’s All three
vs. Healthy vs. Healthy vs. Healthy vs. Healthy

SLIM with simplest features 0.78 (0.08) 0.75 (0.05) 0.78 (0.07) 0.74 (0.05)
SLIM with op-clinician features 0.75 (0.10) 0.74 (0.07) 0.73 (0.11) 0.74 (0.06)
SLIM with MRMR subset 0.83 (0.09) 0.81 (0.13) 0.81 (0.10) 0.83 (0.09)

Best operationalized scoring system 0.73 (0.08) 0.72 (0.09) 0.73 (0.09) 0.70 (0.06)
Best ML with all features 0.93 (0.09) 0.88 (0.11) 0.91 (0.11) 0.91 (0.09)
Best ML with op-clinician features 0.83 (0.09) 0.83 (0.11) 0.86 (0.08) 0.82 (0.10)
Best ML with simplest features 0.83 (0.06) 0.82 (0.07) 0.83 (0.08) 0.83 (0.07)

Table 6.1: Results for Supersparse Linear Integer Models on screening task

we define our interpretability penalty function Φ(𝜆) as

Φ(𝜆) = computational complexity penalty + understandability penalty

= 𝐶0

𝐹∑︁
𝑖=1

1[𝜆𝑖 ̸= 0] + 𝐶1

𝐹∑︁
𝑖=1

𝑢𝑖 · 1[𝜆𝑖 ̸= 0].
(6.1)

The first term simply computes the ℓ0 semi-norm of Φ(𝜆), which is the count of the number

of nonzero features. This term encourages the model to use fewer features. The second term

adds our feature-based understandability penalty 𝑢𝑖 for each feature used, which, while very

simple, allows the optimization to potentially sacrifice a little accuracy for features lower in the

tree, which we believe will be more understandable.

We ran our optimization problem on the set of simplest features and the clinician features,

with a hard upper bound of 10 features, to keep them interpretable, and on the MRMR subset

of all features with an upper bound of 20 features. Tables 6.1 and 6.2 present the AUCs for

screening and clinical group classification, respectively. For screening, all the SLIM models

outperformed the operationalized scoring systems, the best of which performed in the 0.70 to

0.73 range (Table 5.6). For clinical group classification, only the SLIM models with the MRMR

subset of all features significantly outperforms the operationalized scoring systems, while the

others perform similarly, the best of which performed in the 0.64 to 0.69 range (Table 5.7).

Table 6.3 shows a SLIM model containing only 9 binary features, yet achieving an AUC

score of 0.78. Pushed by the understandability penalty, the model uses mostly simple features

composed of a single property, except for the first line which consists of an aggregate of multiple

simpler features, chosen by the optimization despite its complexity because of its high screening

power. This model contains only elements from the simplest feature set, which means they do
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Features MID VCD Parkinson’s All three
vs. All others vs. All others vs. All others vs. All others

SLIM with simplest features 0.68 (0.12) 0.66 (0.10) 0.66 (0.07) 0.69 (0.05)
SLIM with op-clinician features 0.67 (0.09) 0.66 (0.07) 0.66 (0.10) 0.70 (0.04)
SLIM with MRMR subset 0.75 (0.04) 0.72 (0.06) 0.77 (0.06) 0.76 (0.08)

Best operationalized scoring system 0.69 (0.07) 0.65 (0.05) 0.65 (0.07) 0.64 (0.05)
Best ML with all features 0.83 (0.06) 0.79 (0.05) 0.82 (0.05) 0.82 (0.05)
Best ML with op-clinician features 0.73 (0.06) 0.71 (0.08) 0.71 (0.05) 0.70 (0.06)
Best ML with simplest features 0.72 (0.05) 0.73 (0.07) 0.74 (0.08) 0.72 (0.05)

Table 6.2: Results for Supersparse Linear Integer Models on clinical group classification task

PREDICT MEMORY IMPAIREMENT DISORDER IF SCORE < 10

Command clock:

1. All digits are present, not repeated, and in the correct angular order +5
2. Hour hand is present +5
3. All of the non-anchor digits are in the correct eighth +1
4. Crossed-out digits present -3
5. Two hands not present -1
6. More than 60 seconds to draw -1
7. Minute hand points to digit 10 -6

Copy clock:

8. All of the non-anchor digits are in the correct eighth +4
9. Numbers are repeated -3

Table 6.3: Supersparse Linear Integer Model for screening of memory impairment disorders

not have the problems present in many existing scoring systems; in particular, the features used

in the model are not as subjective, producing a scoring criterion likely to be more reliable.

6.3 Rules and Decision Lists

We mined association rules from our data and used these rules to build interpretable decision

lists. The rules allow us to gain insights about how different cognitive impairments influence

behavior on the test. By constraining the width and length of our decision lists to levels

similar to existing scoring systems, and by using simple features, we created decision lists that

we believe can be easily interpreted by clinicians. Unlike the linear models above, rules and

decision lists also allow us to use non-linear relationships in the data.
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6.3.1 Mining Association Rules

The first step was to discretize all of our features into equal-frequency bins, using 2 and 5

bins per feature. We then mined globally for all IF-THEN rules in the data that obeyed cer-

tain conditions on the quality of the rule. In particular, we wanted the rules with sufficiently

high support (i.e the number of subjects that obeyed the IF condition). We also wanted rules

with high confidence (i.e. the empirical probability of the THEN condition to be true, given

that the IF condition is true). We used FPGrowth [4] to extract decision rules from our data

that predict each of our conditions (memory impairment disorders, vascular cognitive disorders,

Parkinson’s). We set a minimum support threshold of 40 tests, and required confidence to be

greater than chance, where chance is simply the proportion of total patients who had the con-

dition. Figure 6-1 shows the distribution of confidence and support for rules for each condition

in the screening task.

These graphs show us that some of these rules can be very accurate. For memory impairment

disorders for example, we have a rule that, for our data, can be applied to 15% of the tests and

can accurately predict memory impairment disorders over 80% of the time (circled in Figure

6-1(a)). This rule is: Pre-first-hand latency on copy clock is greater than 2.3 seconds, AND

at least one hand missing on the command clock. This rule is consistent with what is known

about memory impairment disorders, as we discuss below.

6.3.2 Interesting patterns

Some of the association rules confirm existing knowledge about correlations between pen-based

features and clinical groups. Others appear to be novel, possibly providing insight into corre-

lations not reported previously. Tables 6.4, 6.5, and 6.6 present a set of rules that focus on the

screening task for memory impairment disorders, vascular cognitive disorders, and Parkinson’s.

Memory impairment disorders

The first two rules in Table 6.4 show that, when compared to healthy subjects, the memory

impairment group subjects tend to spend a greater percentage of the test-taking time thinking

(i.e., with pen off the paper) and a smaller percentage of their test-taking time inking (with
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(a) Memory impairment disorders vs. Healthy (b) Vascular cognitive disorders vs. Healthy

(c) Parkinson’s vs. Healthy (d) All three vs. Healthy

Figure 6-1: Scatter plot of Confidence vs. Support for rules for each condition vs. healthy. Each dot on the
plot represents an IF-THEN rule, where the condition is the THEN part of the rule. The right angle at the
bottom left of each of these clusters shows the minimum confidence and support cutoffs used when mining the
rules.

Rule Support Confidence

1 Percentage thinking time is high, > 65% 0.2 0.57
(alternative phrasing: Percentage inking time is low, < 35%)

2 Pre-first-hand latency on copy clock is high, > 2.3 seconds 0.2 0.64
3 Pre-first-hand latency on copy clock is high, > 2.3 seconds, AND

at least one hand missing on the command clock
0.14 0.84

4 There is at least one digit missing on command clock and none
missing on copy clock

0.04 0.78

5 The minute hand is pointing more than 15𝑜 away from digit 2 on
command clock but points within 15𝑜 degrees on copy clock

0.06 0.75

Table 6.4: Screening conditions implying memory impairment disorders

Rule Support Confidence

1 Minute hand points within 15𝑜 of digit 10 on command clock 0.04 0.79
2 One or more digits fail the quadrant test on command clock 0.19 0.52
3 Average time to draw digits on both clocks is high, > 2.5 seconds 0.2 0.52

Table 6.5: Screening conditions implying vascular cognitive disorders
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Rule Support Confidence

1 Average inking time over both clocks is high, > 17 seconds 0.2 0.38
2 Average angle gap of clock face is high, > 1 0.2 0.43
3 The average pen speed is low for both clocks 0.19 0.41
4 Average digit width is low, < 3mm 0.2 0.33
5 Average digit height is low, < 5mm 0.2 0.34
6 Average number of strokes per clock is high, > 27 0.16 0.34
7 Average number of noise strokes per clock is high, > 1.5 0.2 0.38
8 Average number of noise strokes smaller than 0.3mm per clock is

high, > 0.5
0.2 0.49

Table 6.6: Screening conditions implying Parkinson’s disease

pen on the paper). This is consistent with what’s known about Alzheimer’s and amnestic MCI.

The third rule indicates that memory impairment group subjects make a longer than normal

pause between the first stroke of the hands and the last stroke that was drawn before the hands

on the copy clock. This may result from decision-making difficulty, or from trouble recalling

the instructions given (e.g., what time to set the clock to). Combining this third rule with the

requirement that both hands be present on the command clock gives the fourth rule, which has

a very high confidence.

Memory impairment patients tend to display signs of improvement from the command clock

to the copy clock. Consistent with this, the fifth rule finds in the data that there is a significant

chance someone belongs in the memory impairment group if they have one or more digits

missing on their command clock but none missing on their copy clock. Similarly, the sixth rule

tells us that this group is very likely if the minute hand is not aimed accurately in the command

clock but is aimed accurately in the copy clock.

Vascular cognitive disorders

The patterns that distinguish the vascular-related cognitive disorders subjects from our healthy

subjects are similar to those of the memory impairment group. These subjects also tend to

spend more time thinking, less time inking, and show signs of improvements between the two

clocks.

We highlight a few additional rules in Table 6.5. The first rule shows a particularly interest-

ing phenomenon: some patients draw the minute hand pointing towards the 10 digit instead of

towards the 2 digit, presumably driven by the words “ten” and “eleven” (as in the instructions
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to set the time to “ten past eleven”). Almost 80% of people who do this fall in our vascular

cognitive disorders group, making it a very accurate rule for screening. The second rule mea-

sures the angular distribution of the digits around the clock using the quadrant test, and if one

or more digits fail the quadrant test, there is a high chance the subject belongs in our vascular

cognitive disorders group. These subjects also tend to spend a long time drawing digits, as

shown in the third rule.

Parkinson’s Disease

The patterns for the Parkinon’s group are very different. As expected, given the motor slowing

and increased incidence of tremor characteristic of this disorder, instead of having low inking

time like the memory group and the cognitive disorders group, subjects in the Parkinson’s group

tend to have high inking time over both clocks, likely due to motor impairment, as shown in

the first rule of Table 6.6. The second rule shows that they tend to leave a larger angular gap in

their clock face, possibly a consequence of their difficulty in starting, stopping, and persisting

in motions, which might contribute to premature stopping, producing the gaps. They also tend

to display signs of bradykensia, drawing slower than healthy patients, a common symptom of

ParkinsonÕs, as shown in the third rule. The fourth and fifth rule show that the digits tend

to be both shorter and narrower than those of healthy subjects, suggestive of micrographia,

also common among ParkinsonÕs patients. Both their command and copy clocks also tend

to have more total strokes (rule 6), and they also have a larger number of noise strokes (rule

7), particularly small strokes (rule 8), possibly due to tremors, or a pull to stimulus (i.e. the

subject is resting the pen on a target of attention in the clock).

While these rules provide some interesting insights when considered individually, we also

want to combine them to produce a classifier in the form of a decision list, yielding a classifier

with a high degree of accuracy that remains interpretable. We turn next to this.

6.3.3 Decision Lists

To construct scoring systems for the CDT that are both accurate and interpretable using the

rules mined above, we chose a recently developed machine learning algorithm called Bayesian

Rule Lists (BRL) [22]. Its intent is to create classifiers that are accurate but more interpretable
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Features MID VCD Parkinson’s All three
vs. Healthy vs. Healthy vs. Healthy vs. Healthy

BRL with simplest features 0.82 (0.06) 0.79 (0.08) 0.81 (0.05) 0.82 (0.06)
BRL with op-clinician features 0.82 (0.07) 0.78 (0.07) 0.83 (0.09) 0.78 (0.10)
BRL with MRMR subset 0.83 (0.10) 0.82 (0.07) 0.79 (0.09) 0.85 (0.09)

Best operationalized scoring system 0.73 (0.08) 0.72 (0.09) 0.73 (0.09) 0.70 (0.06)
Best ML with all features 0.93 (0.09) 0.88 (0.11) 0.91 (0.11) 0.91 (0.09)
Best ML with op-clinician features 0.83 (0.09) 0.83 (0.11) 0.86 (0.08) 0.82 (0.10)
Best ML with simplest features 0.83 (0.06) 0.82 (0.07) 0.83 (0.08) 0.83 (0.07)

Table 6.7: Results for BRL on screening task

than traditional machine learning models like CART, and thus more likely to be used by

clinicians.

BRL derives from the data an ordered list of IF-THEN rules, known as a decision list. Table

6.9 shows an example. There are two main steps to the BRL algorithm:

• Find all of the feature combinations that occur sufficiently often (e.g., copy clock is missing

numbers AND there is a missing hour hand on the command clock).

• Choose and order the feature combinations to form the left hand sides of rules for the

decision list. This is done using a Bayesian modeling approach. BRL has two user-defined

parameters that enter into its Bayesian prior over rule lists, allowing the user to specify

the desired number of rules in the rule list, 𝜆, and the desired number of conditions within

each rule, 𝜂.

BRL’s Bayesian modeling approach creates a posterior distribution of decision lists. The

Bayesian prior encourages it to favor lists with approximately 𝜆 rules and 𝜂 conditions per

rule, as specified by the user.

We ran BRL on our three sets of features: simplest features, op-clinician features, and the

MRMR subset of all features. AUCs for screening are shown in Table 6.7, and range from

0.79 to 0.85. These are significantly more accurate than the operationalized scoring systems

(the best of which performed in the 0.70 to 0.73 range, Table 5.6). Clinical group classification

AUCs, shown in Table 6.8, display a range from 0.69 to 0.74, only slightly better than the

operationalized scoring systems (the best of which performed in the 0.64 to 0.69 range, Table

5.7).
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Features MID VCD Parkinson’s All three
vs. All others vs. All others vs. All others vs. All others

BRL with simplest features 0.72 (0.08) 0.71 (0.05) 0.70 (0.08) 0.69 (0.06)
BRL with op-clinician features 0.70 (0.11) 0.72 (0.08) 0.69 (0.07) 0.72 (0.11)
BRL with MRMR subset 0.73 (0.08) 0.70 (0.05) 0.73 (0.06) 0.74 (0.08)

Best operationalized scoring system 0.69 (0.07) 0.65 (0.05) 0.65 (0.07) 0.64 (0.05)
Best ML with all features 0.83 (0.06) 0.79 (0.05) 0.82 (0.05) 0.82 (0.05)
Best ML with op-clinician features 0.73 (0.06) 0.71 (0.08) 0.71 (0.05) 0.70 (0.06)
Best ML with simplest features 0.72 (0.05) 0.73 (0.07) 0.74 (0.08) 0.72 (0.05)

Table 6.8: Results for BRL on clinical group classification task

Figure 6-2: Plot of AUC on testing folds vs. list length for simplest features, for both screening and clinical
group classification.

59



IF the command clock minute hand points within 15𝑜 of digit 10 THEN 94% (88%−100%)
ELSE IF the command clock minute hand is present and drawn outwards from the
center AND all of the non-anchor digits in the command clock are in the correct
eighth

THEN 16% (12%− 20%)

ELSE IF all hands are present with arrowheads pointing outwards AND more than
5 of the non-anchor digits in the copy clock are in the correct eighth

THEN 24% (17%− 32%)

ELSE IF the total time to draw the command clock is greater than 40 seconds THEN 92% (84%− 98%)
ELSE IF the total time to draw the copy clock is less than 20 seconds THEN 12% (0%− 21%)
ELSE 33% (12%− 45%)

Table 6.9: BRL for screening of memory impairment disorders. Percentages are the probability of memory
impairment disorders, with the 95% confidence interval in parentheses.

There is a tradeoff between accuracy and the size of the list (both width and length). Adding

more rules and allowing them to have more antecedents will increase the accuracy, up to a limit.

To make the decision list as interpretable as existing scoring systems, we restricted the width

to at most 2, then maximized the accuracy over possible lengths. Figure 6-2 shows the tradeoff

between testing AUC and list length for the simplest features. For the screening task, between

4 and 7 rules leads to the maximum AUC, while 5 to 8 is enough for clinical group classification.

These models are both more concise and more accurate than existing scoring algorithms.

Table 6.9 presents a decision list obtained for the screening of memory impairment disorders;

it was derived using the simplest features to allow the resulting decision list to be used with the

pen-and-paper test, and allow clinicians to measure these features quickly and reliably by eye.

Containing only 5 rules, each of similar complexity to a line from the existing scoring systems,

it is shorter than most of the existing scoring systems, yet it achieves an AUC of 0.82, higher

than the upper bound of 0.73 on the best existing scoring system that we examined.

60



Chapter 7

Conclusion

Traditional scoring systems created by clinicians are typically based on obvious features and

thus have a transparency and face validity that is readily understood by the user population.

A potential lack of transparency in machine learning-derived classifiers could be a barrier to

clinical use.

Our goal was to have the best of both worlds: create an automated system based on new

technology (the digital pen), state-of-the-art machine learning methods, and large amounts of

patient data, but ensure the same interpretability qualities as the existing scoring systems.

There are several important challenges we faced when trying to create our assessment models,

in addition to the usual challenges of applying machine learning in practice for knowledge

discovery applications.

The first challenge is interpretability. A major theme of this work is how to walk the

line between interpretability and accuracy. We started with traditional (black box) machine

learning methods to establish the highest accuracy baselines, then went to the other end of

the spectrum by mining association rules, which provided accuracy baselines for the most

interpretable methods. We then aimed to find the right balance of interpretability and accuracy

using new machine learning techniques designed for this particular tradeoff. The models we

learned have major advantages in accuracy over the traditional scoring systems for the clock

drawing test, and even some advantages in interpretability because the traditional pen-and-

paper scoring systems require subjective judgment and are not consistent across clinicians.

Interpretability is notoriously difficult to quantify for a particular domain, but in this case, we
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were able to use the new machine learning techniques to create models that mimic the form

of model that the clinicians currently use. These techniques allowed us to optimize directly

for interpretability as we chose to define it. The resulting models are potentially directly

actionable. Our results indicate that some of our models are more robust, just as interpretable,

more accurate than some widely used scoring systems, and require less computation on the part

of the clinicians to compute the result, even without the benefit of the detailed data from the

digital pen.

Another challenge we faced is how to create a reasonable assessment of the quality of our

predictions, which required us to encode subjective human judgments in a way that captured

the intent of those judgments. This led to our strategy of creating an optimized version of each

of the existing scoring systems (the operationalized scoring systems). We were then able to

show that even fully optimized versions of widely used scoring methods were not as accurate as

a machine learning methods trained on data – even when that machine learning method was

trained on the same features used in the existing scoring systems. This shows the power of

combining machine learning with clinical knowledge.

This project brings together many important pieces: a new sensor (the digital pen), new

techniques for handwritten stroke classification, techniques for optimizing calculations made

using human judgment, new machine learning techniques for interpretability, and data created

from many subjects’ clock drawings and their subsequent clinical classifications. While our

classifiers now need to be tested in actual clinical use, the results presented here suggest the

potential of this work to make significant improvements in both screening and diagnosis of

cognitive conditions.
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Appendix A

All operationalized scoring systems

A.1 Additional features

We define two additional features that appear within the operationalized scoring systems, in

Table A.1. The following subsections each provide an existing scoring system and our opera-

tionalization of it.

Variable Description

ClockfaceGap The distance between the start and end of the clock face
DigitClockfaceDistanceVariance The variance in the distance of digits from the clockface.

Table A.1: Additional operationalized clinician features.

A.2 Manos

Table A.2 provides the original Manos scoring system, and Table A.3 shows our operational-

ization.
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maximum: 10 points

1. Digit placement errors (maximum: 8 points)

The clock is divided into eighths, beginning with a line through “12" and

the center of the circle

(if “12" is missing the position is assumed to be counterclockwise from the “1"

at a distance equal to that between the “1" and “2")

For each eighths, add one point if the expected anchor digit is missing

2. Presence and placement of the hands (maximum: 2 points)

One point each is given for an obvious short hand pointing at the “11"

and an obvious long hand pointing to the “2"

The difference in the length of the hands must be obvious at a glance

Table A.2: Original Manos scoring system [26]
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maximum: 10 points

1. Digit placement errors (maximum: 8 points)

Get angle of digit 12

If “12" present, go to step 2.

Else if “12" not present but “1" and “2" present, get angle of “1" and “2", compute difference

in angle,

and add difference to angle of “1" to get approximate angle of “12".

Else if “12" not present but “10" and “11"" present, get angle of “10" and “11", compute

difference

in angle, and subtract difference to angle of “11" to get approximate angle of “12".

Else, bring up error.

∀ step ∈ [−15,−14, ..., 0, ..., 14, 15]

Break up clock into eighths using angle of “12" + step

and adding multiples of 45𝑜 to obtain eighths

For each eighth, add one point if the expected anchor digit is missing

Pick the the minimum score over all step values.

2. Presence and placement of the hands (maximum: 2 points)

If exactly two hands are present AND handRatio ≤ 𝜖1

If minute hand has handAngleError ≤ 𝜖2, add 1

If hour hand has handAngleError ≤ 𝜖2, add 1

Table A.3: Operationalization of Manos scoring system

A.3 Royall

Table A.4 provides the original Royall scoring system, and Table A.5 shows our operationaliza-

tion.
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maximum: 15 points; one point for each line satisfied

1. Does figure resemble a clock?

2. Circular face present?

3. Dimensions > 1 inch ?

4. All numbers inside the perimeter?

5. “12", “6", “3" and “9" placed first?

6. Spacing intact? (symmetry on either side of “12" and “6" o’clock)

7. No sectoring or tic marks?

8. Only Arab numerals?

9. Only numbers 1-12 among the numerals present?

10. Sequence 1-12 intact? (no omissions or intrusions)

11. Only two hands present? (ignore sectoring/tic marks)

12. All hands represented as arrows?

13. Hour hand between 1 and 2 o’clock?

14. Minute hand longer than hour hand?

15. None of the following

(1) hand pointing to 10 o’clock

(2) “11:10" present?

(3) intrusions from “hand" or “face" present?

(4) any letters, words or pictures?

(5) any intrusion from circle below?

Table A.4: Original Royall scoring system [41]
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maximum: 15 points; one point for each line satisfied

1. Clockface closed percentage ≥ 𝜖1 AND at least 4 digits present AND at least 1 hand present

2. Clockface present

3. Major axis of fitted ellipse to clockface greater than 1 inch

4. All numbers inside the clockface

5. “12", “6", “3", “9" all anchor digits

6. DigitsAngleError ≤ 𝜖2

7. No spokes or tick marks present

8. Always 1 (we do not have any clocks with other numerals in our dataset so assume it is very rare)

9. No digit greater than 12 present

10. All numbers present in correct order by angle, no repetitions, no numbers greater than 12, no text,

crossed-out digits allowed

11. Two hands present, no repetitions of hands but allow crossed-out hands

12. Arrows present on both hands, direction must be correct

13. Angle of hour hand between angle of “11" and angle of “12". If either digits or hand missing, 0

14. HandRatio ≤ 𝜖3

15. None of the following

(1) Minute hand pointing within 𝜖4 of “10"

(2) Any text present

(3) Always false. Very hard to measure, and no example in dataset so assume it is very rare

(4) Any text present

(5) Always false.

Table A.5: Operationalization of Royall scoring system

A.4 Shulman

Table A.6 provides the original Schulman scoring system, and Table A.7 shows our operational-

ization.
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maximum: 6 points

1. Perfect

2. Minor visuospatial errors

Examples

(a) Mildly impaired spacing of times

(b) Draws times outside circle

(c) Turns page while writing numbers so that some numbers appear upside down

(d) Draws in lines (spokes) to orient spacing

3. Inaccurate representation of “10 after 11" when visuospatial organization is perfect or shows

only minor deviations

Examples

(a) Minute hand points to “10"

(b) Writes “10 after 11"

(c) Unable to make any denotation of time

4. Moderate visuospatial disorganization of times such that accurate denotation of “10 after 11"

is impossible

Example

(a) Moderately poor spacing

(b) Omits numbers

(c) Perseveration: repeats circle or continues on past 12 to 13, 14, 15 etc.

(d) Right-left reversal: numbers drawn counterclockwise

(e) Dysgraphia: unable to write numbers accurately

5. Severe level of disorganization as described in 4

6. No reasonable representation of a clock

Exclude severe depression or other psychotic states

Example

(a) No attempt at all

(b) No semblance of a clock at all

(c) Writes a word or name

Table A.6: Original Shulman scoring system [42]
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maximum: 6 points

1. MOCAPtScore = 3

2. Minor visuospatial errors

(a) 𝜖1 < DigitsAngleError ≤ 𝜖2

(b) At least one digit outside the circle

(c) No way to measure automatically given our data, and very rare according to doctors

(d) At least one spoke present

3. Inaccurate representation of “10 after 11" when visuospatial organization is perfect or shows

only minor deviations

(a) Minute hand points within 𝜖3 of “10"

(b) Any text present

(c) both hands have HandAngleError > 𝜖4

4. Moderate visuospatial disorganization of times such that accurate denotation of “10 after 11"

is impossible

(a) DigitNeighborsTest ≥ 𝜖5

(b) At least one digit missing

(c) More than one clockface OR at least one digit repeated OR digits greater than 12 present

(d) Numbers drawn counterclockwise

(e) At least one digit missing

5. Severe level of disorganization as described in 4

Severely poor spacing: DigitNeighborsTest ≥ 𝜖6

6. No reasonable representation of a clock

Clockface closed percentage < 𝜖7 OR fewer than four digits present OR no hands present

Table A.7: Operationalization of Shulman scoring system

A.5 Libon

Table A.8 provides the original Libon scoring system, and Table A.9 shows our operationaliza-

tion.
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maximum: 10 points

Scores 10 to 6: Circle and Hands are basically intact, some impairment in hand placement.

10: Hands, numbers and circle are totally intact

9: Slight error(s) in hand number placement; hands of equal length; any self-correction

8: More noticeable errors in hand/number placement; hand length correct but shifted to one side or

top/bottom

7: Significant errors in hand placement; hand placement intact with some numbers deleted; minor perse-

veration in number placement

6: Inappropriate use of clock hands i.e., digital display; circling numbers to indicate hand placement;

connecting the numbers 10 and 11 or 11 and 2.

Scores 5 to 1: Circle, numbers and/or hand placement are grossly impaired.

5: Crowding numbers to one side; numbers reversed; significant perseveration of numbers within circle

boundary

4: Loss of clock face integrity, numbers outside circle boundary, further distortion of number placement

3: Numbers and clock face no longer connected

2: Vague representations of a clock; clock face absent but numbers present

1: Either no attempt or response is made; scattered bits or fragments are produced

Table A.8: Original Libon scoring system [23]

maximum: 10 points

Scores 10 to 6: Circle and Hands are basically intact, some impairment in hand placement.

10: Both hands have HandAngleError ≤ 𝜖1

9: At least one hand has 𝜖1 < HandAngleError ≤ 𝜖2

8: Both hands hand have 𝜖1 < HandAngleError ≤ 𝜖2

7: At least one hand not in correct quadrant

6: Ignore: Hard to measure automatically, and very rare in our data

Scores 5 to 1: Circle, numbers and/or hand placement are grossly impaired.

5: DigitNeighborsTest ≥ 𝜖3

4: Any number missing or any number placed outside the clockface

3: DigitNeighborsTest ≥ 𝜖4

2: Clockface closed percentage ≥ 𝜖5 OR at least four digits present OR at least one hand present

1: Clockface closed percentage < 𝜖5 AND fewer than four digits present AND less than one hand present

Table A.9: Operationalization of Libon scoring system
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A.6 Mendez

Table A.10 provides the original Mendez scoring system, and Table A.11 shows our operational-

ization.

maximum: 20 points; one point for each line satisfied

1. There is an attempt to indicate a time in any way

2. All marks or items can be classified as either part of a closure figure, a hand, or a symbol for clock

numbers

3. There is a totally closed figure without gaps (closure figure).

Score only if Symbols for Clock Numbers Are Present

4. A 2 is present and is pointed out in some way for the time

5. Most symbols are distributed as a circle without major gaps

6. Three or more clock quadrants have one or more appropriate numbers: 12 to 3, 3 to 6, 6 to 9, 9 to 12

per respective clockwise quadrant.

7. Most symbols are ordered in a clockwise or rightward direction

8. All symbols are totally within a closure figure.

9. An 11 is present and is pointed out in some way for the time

10. All numbers 1-12 are indicated

11. There are not repeated or duplicated number symbols

12. There are no substitutions for Arabic or Roman numerals

13. The numbers do not go beyond the number 12

14. All symbols lie about equally adjacent to a closure figure edge

15. Seven or more of the same symbol type are ordered sequentially.

Score Only if One or More Hands Are Present:

16. All hands radiate from the direction of a closure figure center

17. One hand is visibly longer than another hand

18. There are exactly two distinct and separable hands

19. All hands are totally within a closure figure

20. There is an attempt to indicate a time with one or more hands.

Table A.10: Original Mendez scoring system [28]
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maximum: 20 points; one point for each line satisfied

1. At least one hand present

2. No noise, no ticks, no spokes, no text

3. ClockfaceGap ≤ 𝜖1

Score only if Symbols for Clock Numbers Are Present

4. “2" is present, minute hand has handAngleError ≤ 𝜖2

5. DigitsAngleError < 𝜖3

6. Break clock into quadrants, and at least three correct digits within each quadrant

7. More than half of digits present are in clockwise direction

8. No digit or hands present outside clockface

9. “11" is present, hour hand has handAngleError ≤ 𝜖2

10. All digits present

11. No repeated digits (cross-outs allowed)

12. Always 1 (hard to measure and very rare in our data)

13. No digits greater than 12 present

14. DigitClockfaceDistanceVariance < 𝜖4

15. At least 7 digits are in correct order by angle

Score Only if One or More Hands Are Present:

16. Both hands are drawn in an outwards direction

17. HandRatio ≤ 𝜖5

18. Only two hands present (cross-outs allowed)

19. Hands drawn within the clockface

20. At least one hand present

Table A.11: Operationalization of Mendez scoring system

A.7 MiniCog

Table A.14 provides the original Mendez scoring system, and Table A.13 shows our operational-

ization.

maximum: 1 point

If all numbers approximately in the correct position AND there are two hands pointing properly +1

Table A.12: Original MiniCog scoring system [6]
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maximum: 1 point

If DigitsAngleError < 𝜖1 AND both hands have HandAngleError < 𝜖2 +1

Table A.13: Operationalization of MiniCog scoring system

A.8 Watson

maximum: 7 points

1. The first quadrant (12-3) has less than three digits +1

2. The second quadrant (3-6) has less than three digits +1

3. The third quadrant (6-9) has less than three digits +1

4. The fourth quadrant (9-12) has less than three digits +4

Table A.14: Original Watson scoring system

maximum: 7 points

1. Get angle of “12"

If “12" present, go to step 2.

Else if “12" not present but “1" and “2" present, get angle of “1" and “2", compute difference

in angle,

and add difference to angle of “1" to get approximate angle of “12".

Else if “12" not present but “10" and “11"" present, get angle of “10" and “11", compute

difference

in angle, and subtract difference to angle of “11" to get approximate angle of “12".

Else, bring up error.

2. ∀ step ∈ [−45,−44, ..., 0, ..., 44, 45]

Break up clock into quadrants using angle of “12" + step

and adding multiples of 90∘ to obtain quadrants

For each quadrant that does not have 3 digits,

add 1 if it’s one of the first three quadrants, and 4 if it’s the fourth

3. Pick the the minimum score over all step values.

Table A.15: Operationalization of Watson scoring system
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Appendix B

ID of clock tests used

ADI0008256248 ADI0019362138 ADI0075002223 ADI0075005607 ADI0075245712

ADI0102773856 ADI0136018171 ADI0139079400 ADI0154339576 ADI0216580475

ADI0223663476 ADI0227360375 ADI0295762579 ADI0314259971 ADI0317654307

ADI0317754394 ADI0335808004 ADI0366611095 ADI0396704045 ADI0416346673

ADI0435757687 ADI0481548090 ADI0532797685 ADI0629818118 ADI0635491091

ADI0647537257 ADI0650804890 ADI0666531196 ADI0686390434 ADI0698564728

ADI0727437491 ADI0731431217 ADI0744278184 ADI0745745588 ADI0756774543

ADI0764806176 ADI0808144331 ADI0827276492 ADI0856368928 ADI0863722010

ADI0888617511 ADI0933504019 ADI0939369232 ADI0959223173 ADI0976513858

ADI0980424484 ADI1002420659 ADI1027293504 ADI1081210139 ADI1142049050

ADI1147871291 ADI1168630452 ADI1199876434 ADI1231588876 ADI1244167831

ADI1311590981 ADI1321165697 ADI1331086070 ADI1386733327 ADI1400319714

ADI1432494541 ADI1453617021 ADI1485720460 ADI1502112757 ADI1571025542

ADI1726887733 ADI1744985764 ADI1761571913 ADI1787209007 ADI1880235858

ADI1888630530 ADI1940442556 ADI1980332443 ADI2042488697 ADI2067299361

ADI2073369577 ADI2092543576 ADI2118006160 ADI2128501311 ADI2136876313

CIN0012554857 CIN0021048289 CIN0021464378 CIN0022817477 CIN0041466804

CIN0047736485 CIN0052221862 CIN0053407618 CIN0055911696 CIN0057065125

CIN0059530813 CIN0064170993 CIN0068752107 CIN0079657991 CIN0083950870

CIN0083967214 CIN0086289408 CIN0087127573 CIN0090074055 CIN0098487336
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CIN0100446024 CIN0100603242 CIN0102618210 CIN0104871835 CIN0105093392

CIN0105350865 CIN0105520977 CIN0105982484 CIN0116966184 CIN0123862361

CIN0124525147 CIN0125579522 CIN0132590717 CIN0133238244 CIN0134665159

CIN0140686130 CIN0146564148 CIN0147692407 CIN0154369662 CIN0164742787

CIN0167812185 CIN0168920098 CIN0173101364 CIN0176652109 CIN0184968821

CIN0187365029 CIN0193304772 CIN0197977380 CIN0210382014 CIN0211552676

CIN0212916689 CIN0219479435 CIN0221953493 CIN0227530469 CIN0231776495

CIN0248655962 CIN0249837095 CIN0252802715 CIN0253153890 CIN0254203855

CIN0258862275 CIN0260717676 CIN0262387140 CIN0263633495 CIN0263688266

CIN0269492078 CIN0273483843 CIN0273928773 CIN0276692760 CIN0278615980

CIN0283371394 CIN0288132746 CIN0302941166 CIN0304569211 CIN0309311347

CIN0309972167 CIN0312155466 CIN0319786108 CIN0323991053 CIN0324244069

CIN0325886721 CIN0327850012 CIN0328353984 CIN0329765729 CIN0338325221

CIN0341880680 CIN0344007458 CIN0351611797 CIN0355693955 CIN0357138794

CIN0364224432 CIN0367938843 CIN0375598863 CIN0376235667 CIN0379627862

CIN0380389393 CIN0381774299 CIN0381839798 CIN0387958652 CIN0388064539

CIN0392789743 CIN0392916689 CIN0398505892 CIN0400188137 CIN0400930771

CIN0408536824 CIN0410358680 CIN0412588832 CIN0413002535 CIN0413582377

CIN0415564888 CIN0416841585 CIN0420909454 CIN0428936289 CIN0428982561

CIN0430675678 CIN0431929809 CIN0432253546 CIN0438467910 CIN0442155792

CIN0450280399 CIN0451985477 CIN0453287782 CIN0455388352 CIN0460213468

CIN0469013109 CIN0471230137 CIN0471926272 CIN0479180710 CIN0482970969

CIN0484415202 CIN0487468552 CIN0488921745 CIN0489803364 CIN0492585281

CIN0500127282 CIN0506813451 CIN0509887985 CIN0510660217 CIN0517439397

CIN0532840254 CIN0538240262 CIN0545159554 CIN0550602888 CIN0550945481

CIN0560040151 CIN0564655929 CIN0568585115 CIN0574546767 CIN0575818107

CIN0578666524 CIN0578707061 CIN0578857653 CIN0583937164 CIN0584487598

CIN0585527464 CIN0591539882 CIN0594516500 CIN0595908914 CIN0598760430

CIN0601776251 CIN0605679142 CIN0606445963 CIN0611403556 CIN0612040585

CIN0612721737 CIN0614448972 CIN0626337772 CIN0636412677 CIN0637371952

CIN0638156814 CIN0639609890 CIN0649466009 CIN0650029116 CIN0653161572
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CIN0665001820 CIN0668974316 CIN0670471511 CIN0671250734 CIN0672793737

CIN0673918715 CIN0677771050 CIN0678537159 CIN0678593951 CIN0680822397

CIN0683990948 CIN0684048327 CIN0684591786 CIN0690199065 CIN0694525168

CIN0694636158 CIN0698323704 CIN0700659550 CIN0702630279 CIN0706851426

CIN0710043159 CIN0715562809 CIN0723152914 CIN0728847298 CIN0731389076

CIN0736560387 CIN0741037621 CIN0741257347 CIN0742533336 CIN0743332986

CIN0745286634 CIN0752776689 CIN0758179468 CIN0760212440 CIN0762170906

CIN0764536926 CIN0766003158 CIN0767033276 CIN0772192473 CIN0773050006

CIN0780355753 CIN0781482116 CIN0782521053 CIN0788977646 CIN0793119678

CIN0793690264 CIN0794004576 CIN0797570370 CIN0797612368 CIN0803820439

CIN0806005027 CIN0808780731 CIN0809634535 CIN0815906007 CIN0816762614

CIN0817443455 CIN0818723200 CIN0819407799 CIN0822210251 CIN0822866441

CIN0829359923 CIN0832677687 CIN0832904372 CIN0836717582 CIN0838333020

CIN0840815587 CIN0846222755 CIN0851145015 CIN0854992145 CIN0855218712

CIN0860855232 CIN0864490712 CIN0866222349 CIN0873632655 CIN0875849784

CIN0876102883 CIN0880825141 CIN0880940110 CIN0885753910 CIN0888150022

CIN0889674526 CIN0896053636 CIN0896384340 CIN0900030148 CIN0903144133

CIN0906909659 CIN0909373883 CIN0920378440 CIN0922540310 CIN0926258744

CIN0928346331 CIN0929223317 CIN0939054722 CIN0943834199 CIN0945986383

CIN0956001420 CIN0958482690 CIN0965876830 CIN0980194111 CIN0980285858

CIN0983401482 CIN0984378197 CIN0990384836 CIN0993769749 CIN0998325398

CIN0999089989 CIN1002367642 CIN1002545116 CIN1002547684 CIN1002796093

CIN1004647539 CIN1004681732 CIN1018227802 CIN1020097416 CIN1020906993

CIN1025370378 CIN1029212004 CIN1031695010 CIN1032333235 CIN1040066317

CIN1040239746 CIN1047290664 CIN1047511993 CIN1054910602 CIN1058930159

CIN1061551666 CIN1068353997 CIN1076069864 CIN1077285320 CIN1079793304

CIN1088914040 CIN1095883363 CIN1096699940 CIN1097468304 CIN1105631229
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YDU0617101708 YDU0617727107 YDU0620373415 YDU0622271221 YDU0631752495

YDU0634589573 YDU0641077570 YDU0642034483 YDU0646366306 YDU0647273907

YDU0649159463 YDU0650105226 YDU0650249345 YDU0650438393 YDU0652496541

YDU0653358925 YDU0654026159 YDU0654590886 YDU0661006598 YDU0664631001

YDU0664820461 YDU0664834985 YDU0667291766 YDU0669849871 YDU0674053597

YDU0674229937 YDU0674551186 YDU0675498868 YDU0675540829 YDU0678185867

YDU0684229814 YDU0691192178 YDU0694055157 YDU0695677934 YDU0698800292

YDU0698821181 YDU0704235034 YDU0705545335 YDU0707097531 YDU0708081911

YDU0717139526 YDU0721010010 YDU0727898053 YDU0728688103 YDU0730528186

YDU0734425357 YDU0734865612 YDU0737242733 YDU0741139360 YDU0749812806

YDU0751582127 YDU0751628294 YDU0753522664 YDU0758123625 YDU0758647904

YDU0764084109 YDU0768930299 YDU0769581240 YDU0778356040 YDU0778940952
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YDU0780406559 YDU0781195161 YDU0781277950 YDU0787349648 YDU0798189217

YDU0800760851 YDU0805764096 YDU0811681153 YDU0816608737 YDU0823515466

YDU0824509409 YDU0828734439 YDU0831473474 YDU0837183056 YDU0838540694

YDU0839400511 YDU0844151994 YDU0845965219 YDU0848276648 YDU0849844734

YDU0850335717 YDU0851512089 YDU0855956104 YDU0860348325 YDU0864080241

YDU0869377771 YDU0870360283 YDU0882098626 YDU0886438159 YDU0886886499

YDU0902369543 YDU0906205606 YDU0910172437 YDU0912559460 YDU0913173125

YDU0916680447 YDU0921517182 YDU0922196152 YDU0922777542 YDU0924526693

YDU0929748271 YDU0933400705 YDU0940271716 YDU0940735722 YDU0941955429

YDU0943754303 YDU0943845775 YDU0949859113 YDU0950904469 YDU0954509084

YDU0955864687 YDU0955925927 YDU0958525882 YDU0970563830 YDU0976032835

YDU0980517386 YDU0981813170 YDU0987821825 YDU0988048246 YDU0989652919

YDU0989910683 YDU0995589114 YDU0998363240 YDU0998793474 YDU0999167953

YDU0999595221 YDU1004474181 YDU1018192801 YDU1019325829 YDU1025873863
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YDU1056713099 YDU1059427652 YDU1061153015 YDU1066618405 YDU1067499068

YDU1067591442 YDU1069605307 YDU1069689067 YDU1070761371 YDU1073292090

YDU1073799419 YDU1075401823 YDU1075513151 YDU1075602447 YDU1076746880

YDU1081155040 YDU1082606903 YDU1083764770 YDU1084061420 YDU1084407578

YDU1087372122 YDU1087625628 YDU1089143852 YDU1094596097 YDU1094792359

YDU1097676127 YDU1098238228 YDU1098613165 YDU1098676186 YDU1102586140

YDU1104643378 YDU1106314178 YDU1108148829 YDU1111607398 YDU1112702194

YDU1113209016 YDU1113658108 YDU1116013858 YDU1123212132 YDU1132720809

YDU1134241184 YDU1137749575 YDU1138427750 YDU1140722265 YDU1146481335

YDU1147653631 YDU1153137036 YDU1157000619 YDU1157225559 YDU1157616023

YDU1167267316 YDU1171197008 YDU1172918336 YDU1178670955 YDU1186694994

YDU1189108787 YDU1190396292 YDU1193489166 YDU1193816462 YDU1197182909

YDU1199864177 YDU1203734587 YDU1204778565 YDU1205811401 YDU1207960996

YDU1208343790 YDU1208828981 YDU1209781630 YDU1227785441 YDU1228624646

86



YDU1228911252 YDU1229663052 YDU1229688459 YDU1231033730 YDU1234149197

YDU1237112480 YDU1239770432 YDU1239874577 YDU1247064281 YDU1248852579

YDU1255693404 YDU1263198983 YDU1264799747 YDU1266004989 YDU1266015549

YDU1266029545 YDU1266620540 YDU1267709088 YDU1272005878 YDU1272653553

YDU1280636495 YDU1287356456 YDU1290498395 YDU1290989927 YDU1291267053

YDU1291817442 YDU1292008635 YDU1298824734 YDU1302230099 YDU1305086452

YDU1306656671 YDU1310342415 YDU1317778907 YDU1322016191 YDU1325312070

YDU1325693928 YDU1326786534 YDU1327470632 YDU1331081386 YDU1332665658
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YDU1388949517 YDU1391198275 YDU1393274532 YDU1395390747 YDU1396045194

YDU1396481970 YDU1397162770 YDU1398012108 YDU1403145333 YDU1409616908

YDU1410526265 YDU1411877134 YDU1420555330 YDU1423219925 YDU1423480656

YDU1426401048 YDU1427416020 YDU1429018687 YDU1430048228 YDU1431300834

YDU1433870150 YDU1434401473 YDU1434651150 YDU1436119627 YDU1436212775

YDU1436718652 YDU1437865289 YDU1440368798 YDU1441812972 YDU1442661988

YDU1448081874 YDU1450978918 YDU1452734092 YDU1454605088 YDU1455185435

YDU1457112930 YDU1457461395 YDU1457559306 YDU1458035925 YDU1458697332

YDU1459723324 YDU1460920966 YDU1462987822 YDU1465585716 YDU1469606748

YDU1471226640 YDU1473040393 YDU1473494971 YDU1474151764 YDU1475716916
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YDU1558265074 YDU1558755772 YDU1560204467 YDU1566807487 YDU1567803823

YDU1572730728 YDU1577687001 YDU1582964406 YDU1584830231 YDU1585548342
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YDU1604922488 YDU1605586435 YDU1608374391 YDU1610201815 YDU1613509274

YDU1615248739 YDU1622808830 YDU1625107784 YDU1627519816 YDU1631593610

YDU1634422138 YDU1637367575 YDU1638514686 YDU1640468945 YDU1642858673

YDU1643871417 YDU1644128206 YDU1644468180 YDU1646309972 YDU1647612179

YDU1652770279 YDU1657129120 YDU1663778788 YDU1663829053 YDU1664510618

YDU1667474861 YDU1674127854 YDU1675389179 YDU1682873196 YDU1689758809

YDU1689787523 YDU1691892457 YDU1695114988 YDU1696730611 YDU1697532923

YDU1697856091 YDU1698781179 YDU1698831024 YDU1699086921 YDU1700123170

YDU1701135034 YDU1707228429 YDU1708289856 YDU1713864945 YDU1720238637

YDU1726209825 YDU1726780572 YDU1728485575 YDU1729797852 YDU1730405665

YDU1731592614 YDU1734015106 YDU1735364783 YDU1736452469 YDU1737236831

YDU1737670214 YDU1737982982 YDU1738794300 YDU1739497299 YDU1740855314

YDU1743768912 YDU1746297303 YDU1746833634 YDU1748602328 YDU1751835593

YDU1752378826 YDU1753511355 YDU1758879357 YDU1758978507 YDU1760727720

YDU1762462119 YDU1766128431 YDU1766227533 YDU1771628421 YDU1779470970

YDU1780078212 YDU1793443167 YDU1793715236 YDU1796066114 YDU1796075554

YDU1798007374 YDU1798309932 YDU1799588453 YDU1802365428 YDU1802620688

YDU1803059071 YDU1803870314 YDU1804919074 YDU1807952265 YDU1820484256

YDU1823478584 YDU1824770682 YDU1825636506 YDU1826778250 YDU1828831965

YDU1830830601 YDU1831318841 YDU1837520212 YDU1839401766 YDU1839553265

YDU1839604771 YDU1852374760 YDU1853009070 YDU1854608110 YDU1857163369

YDU1862724637 YDU1870990911 YDU1873137319 YDU1878818512 YDU1884908218

YDU1885274139 YDU1886670830 YDU1891448893 YDU1892874523 YDU1895759559

YDU1903803704 YDU1904348444 YDU1905167133 YDU1907222484 YDU1912505290

YDU1914584053 YDU1915587439 YDU1915794163 YDU1918982229 YDU1921640868

YDU1922832223 YDU1926398223 YDU1934541133 YDU1950620409 YDU1953159052

YDU1956444688 YDU1961713742 YDU1963425759 YDU1963906040 YDU1965420037

YDU1965439458 YDU1966488010 YDU1966654365 YDU1972167273 YDU1978221124

YDU1978625366 YDU1979921491 YDU1980877338 YDU1980935602 YDU1980985828

YDU1982458791 YDU1985007694 YDU1988753319 YDU1989497939 YDU1991313544

YDU1992065806 YDU1995809812 YDU2005771610 YDU2010621421 YDU2012172477
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YDU2012926637 YDU2014953513 YDU2015396656 YDU2016974481 YDU2018030890

YDU2019838709 YDU2025209475 YDU2028258369 YDU2028487448 YDU2028832415

YDU2032502788 YDU2034231021 YDU2036360962 YDU2037301632 YDU2043994353

YDU2045447907 YDU2047227727 YDU2056986759 YDU2058414360 YDU2060021469

YDU2060068185 YDU2060512848 YDU2061476618 YDU2061880442 YDU2063938853

YDU2066673680 YDU2068721453 YDU2071078661 YDU2071144394 YDU2074377873

YDU2075451915 YDU2076742150 YDU2079473580 YDU2084403185 YDU2087296647

YDU2089822118 YDU2090469603 YDU2091430168 YDU2092354574 YDU2092607378

YDU2100188187 YDU2100206195 YDU2100492527 YDU2101920981 YDU2104848685

YDU2105440568 YDU2109668593 YDU2110880454 YDU2120888890 YDU2124900642

YDU2130040936 YDU2131553702 YDU2132564048 YDU2132719751 YDU2132851129

YDU2133487143 YDU2134138170 YDU2134735600 YDU2138197995 YDU2138701164

YDU2139094310 YDU2140910798 YDU2141877161 YDU2144586219
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