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Abstract
Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific
functional patterns. In the case of visual object recognition, small, focal regions have been
characterized with selectivity for visual categories such as human faces. In this paper, we develop
an algorithm that automatically learns patterns of functional specificity from fMRI data in a group
of subjects. The method does not require spatial alignment of functional images from different
subjects. The algorithm is based on a generative model that comprises two main layers. At the
lower level, we express the functional brain response to each stimulus as a binary activation
variable. At the next level, we define a prior over sets of activation variables in all subjects. We
use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional
specificity shared across the group, which we call functional systems, and estimate the number of
these systems. Inference based on our model enables automatic discovery and characterization of
dominant and consistent functional systems. We apply the method to data from a visual fMRI
study comprised of 69 distinct stimulus images. The discovered system activation profiles
correspond to selectivity for a number of image categories such as faces, bodies, and scenes.
Among systems found by our method, we identify new areas that are deactivated by face stimuli.
In empirical comparisons with perviously proposed exploratory methods, our results appear
superior in capturing the structure in the space of visual categories of stimuli.

Keywords
fMRI; clustering; high level vision; category selectivity

1 Introduction
It is well-known that functional specificity at least partially explains the functional
organization of the brain (Kanwisher, 2010). In particular, fMRI studies have revealed a
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number of regions along the ventral visual pathway that demonstrate significant selectivity
for certain categories of objects such as human faces, bodies, or places (Kanwisher, 2003;
Grill-Spector and Malach, 2004). Most studies follow the traditional confirmatory
framework (Tukey, 1977) for making inference from fMRI data. This approach first
hypothesizes a candidate pattern of functional specificity. The hypothesis may be derived
from prior findings or the investigator’s intuition. An experiment is then designed to enable
detection of brain areas that exhibit the specificity of interest. Unfortunately, fMRI data is
extremely noisy and the resulting detection map does not provide a fully faithful
representation of actual brain responses. In order to confirm the hypothesis, it is common to
consider detection maps across different subjects and look for contiguous areas located
around the same anatomical landmarks. Anatomical consistency in the detected areas attests
to the validity of the hypothesis.

The traditional confirmatory approach to fMRI analysis comes with fundamental limitations
when employed to search for patterns of functional specificity. Consider again the case of
visual category selectivity. The space of categories that could constitute a likely grouping of
objects in the visual cortex is large enough to make brute force confirmatory tests for all
likely patterns of selectivity infeasible. Instead, prior studies only focus on specific
categories based on semantic classifications of objects. Yet, we cannot disregard the
possibility that some cortical groupings may not exactly agree with our conceptual
abstractions of object classes.

Another limitation of the traditional method is its reliance on spatial correspondence across
subjects for validation. It is possible that the organization of category-selective areas varies
across subjects relative to anatomical landmarks. Furthermore, it is likely that, instead of
contiguous blob-like structures, category selectivity appears in distributed networks of
smaller regions. Yet, most fMRI analysis techniques are based on the premise that
functionally specific areas are relatively large and tightly constrained by the anatomical
landmarks in all subjects.

Here, we present a model for group fMRI exploratory analysis that circumvents the
limitations above, building on a previously demonstrated approach (Lashkari et al., 2010b).
The key idea is to employ a rich experimental design that includes a large number of stimuli
and an analysis procedure that automatically searches for patterns of specificity in the
resulting fMRI data. To explicitly express these patterns, we define the selectivity profile of
a brain area to be a vector that represents this area’s selectivity to different stimuli in the
experiment. We employ clustering to identify functional systems defined as collections of
voxels with similar selectivity profiles that appear consistently across subjects. The method
considers all relevant brain responses to the entire set of stimuli, and automatically learns the
selectivity profiles of dominant systems from the data. This framework eliminates the need
for spatial correspondences.

The method presented in this paper simultaneously estimates voxel selectivity profiles,
system profiles, and spatial maps from the observed fMRI time courses. Moreover, the
model refines the assumptions regarding the group structure of the mixture distribution by
allowing variability in the size of systems and the parameters of fMRI signals such as the
hemodynamic response function (HRF) across subjects. The model further enables the
estimation of the number of systems from data. Since all variables of interest are treated as
latent random variables, the method yields posterior distributions that encode uncertainty in
the estimates.
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1.1 Nonparametric Bayesian Model for Group Clustering
We employ Hierarchical Dirichlet Processes (HDP) (Teh et al., 2006) to share structure
across subjects. In our model, the structure shared across the group corresponds to grouping
of voxels with similar functional responses. The nonparametric Bayesian aspect of HDPs
enables automatic search in the space of models of different sizes.

Nonparametric Bayesian models have been previously employed in fMRI data analysis,
particularly in modeling the spatial structure in the significance maps found by confirmatory
analyses (Kim and Smyth, 2007; Thirion et al., 2007b). The probabilistic model introduced
in this paper is more closely related to recent applications of HDPs to DTI data where
anatomical connectivity profiles of voxels are clustered across subjects (Jbabdi et al., 2009;
Wang et al., 2009). In contrast to prior methods that apply stochastic sampling for inference,
we take advantage of a variational scheme that is known to have faster convergence rate and
greatly improves the speed of the resulting algorithm (Teh et al., 2008).

As before, this approach uses no spatial information other than the original smoothing of the
data and therefore does not suffer from the drawbacks of voxel-wise spatial normalization.

1.2 FMRI Signal Model for Activation Profiles
The goal of this work is to employ clustering ideas to automatically search for distinct forms
of functional specificity in the data. Consider a study of high level object recognition in
visual cortex where a number of different categories of images have been presented to
subjects. Within a clustering framework, each voxel in the image can be represented by a
vector that expresses how selectively it responds to different categories presented in the
experiment. We may estimate the brain responses for each of the stimuli using the general
linear model for fMRI signals and perform clustering on the resulting response vectors.
However, the results of such an analysis may yield clusters of voxels with responses that
only differ in their overall magnitude (as one can observe, e.g., in the results of Thirion and
Faugeras, 2004). The vector of brain responses, therefore, does not directly express how
selectively a given voxel responds to different stimuli.

Unfortunately, fMRI signals do not come in well-defined units of scale, making it hard to
literally interpret the measured values. Univariate confirmatory methods avoid dealing with
this issue by only assessing voxel contrasts, differences in signal evaluated separately in
each voxel. Others instead express the values in terms of the percent changes in signal
compared to some baseline, but then there is no consensus on how to define such a baseline
(Thirion et al., 2007a). There is evidence that not only the characteristics of the linear BOLD
response vary spatially within the brain (e.g., Schacter et al., 1997; Miezin et al., 2000;
Makni et al., 2008), but the neuro-vascular coupling itself may also change from an area to
another (Ances et al., 2008). A wide array of factors can contribute to this within-subject,
within-session variability in fMRI measurements, from the specifics of scanners to the local
tissue properties and relative distances to major vessels. As might be expected, similar
factors also contribute to within-subject, across-session, as well as across-subject variations
in fMRI signals, although the latter has a more considerable extent likely due to inter-subject
variability in brain function (Wei et al., 2004; Smith et al., 2005).

Given the reasoning above, we aim to transform the brain responses into a space where they
directly express their relative selectivity to different stimuli. Such a space allows us to
compare voxel responses from different areas, and even from different subjects.

To achieve this goal, our framework includes a model for fMRI time courses that handles
the ambiguity in fMRI measurements by introducing a voxel-specific amplitude of response.
The model assumes that the response to each stimulus is the product of the voxel-specific
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amplitude of response and an activation variable. While the former encodes overall
magnitude of signal, which may be a byproduct of physiological confounds such as the
distance between the voxel and nearby veins, the latter measures the size of signal in the
voxel in response to each stimulus when compared to others. Therefore, the activation
profile of a voxel can be naturally interpreted as a signature of functional specificity: it
describes the probability that any stimulus or task may activate that brain location.

The remainder of the paper is organized as follows. Section 2 presents a review of prior
work on exploratory fMRI analysis. In Section 3, we describe the two main layers of the
model, the fMRI signal model and the hierarchical clustering model, and discuss the
variational procedure for inference on the latent variables of the model. We present the
results of applying the algorithm to data from a study of human visual object recognition and
compare them with results found by the finite mixture model clustering model (Lashkari et
al., 2010b) and the tensorial group ICA (Beckmann and Smith, 2005) in Section 4. This is
followed by discussion in Section 5 and conclusions in Section 6.

2 Prior Work on Exploratory fMRI Analysis
Early work on clustering of fMRI data typically employed fuzzy clustering, which allows
soft cluster assignments, in simple fMRI studies of early visual areas (Baumgartner et al.,
1997, 1998; Moser et al., 1997; Golay et al., 1998, and references therein). Baumgartner et
al. (2000) reported superior performance of clustering compared to PCA and Moser et al.
(1999) suggested that it can be used for removing motion confounds. Variants of fuzzy
clustering (Chuang et al., 1999; Fadili et al., 2000; Jarmasz and Somorjai, 2003), K-means
(Filzmoser et al., 1999), and other heuristic clustering techniques (Baune et al., 1999) have
been applied to fMRI data, but little evidence exists for advantages of clustering beyond the
experimental settings where they were first reported. A mixture model formulation of
clustering has been employed in (Golland et al., 2007, 2008) to recover a hierarchy of large-
scale brain networks in resting state fMRI.

Applying clustering directly to the time course data, as described above, may not be the best
strategy when it comes to discovering task-related patterns. First, the high dimensionality of
fMRI time courses makes the problem challenging since noise represents a large proportion
of the variability in the observed signals. Second, the spatially varying properties of noise
may increase the dissimilarity between the time courses of different activated areas. Third,
in order to interpret the results, one must determine the relationship between the estimated
cluster mean time courses and different experimental conditions, usually through a post hoc
stage of regression or correlation.

Alternatively, some clustering methods use information from the experimental paradigm to
define a measure of similarity between voxels, effectively projecting the original high-
dimensional time courses onto a low dimensional feature space, and then perform clustering
in the new space (Goutte et al., 1999, 2001; Thirion and Faugeras, 2003, 2004). The
paradigm-dependent feature space represents the dimensions of interest in fMRI
measurements. For instance, if the experiment involves a paradigm that is rich enough, we
can simply cluster vectors of estimated regression coefficients for all stimuli in the
experiment (Thirion and Faugeras, 2004; Lashkari et al., 2010b).

We previously demonstrated a clustering method that consists of two separate stages
(Lashkari et al., 2010b). We first computed voxel selectivity profiles using regression
estimates from the standard linear model and then clustered profiles from all subjects
together. This analysis does not account for inter-subject variability and provides no obvious
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choice for the number of clusters. The unified model presented in this paper integrates the
two steps into a single estimation procedure and incorporates model selection.

Independent component analysis (ICA) is another popular exploratory technique commonly
applied to fMRI data. McKeown et al. (1998) employed a basic noiseless ICA algorithm for
the analysis of fMRI data and demonstrated improved results compared to PCA (see also
McKeown and Sejnowski, 1998; Biswal and Ulmer, 1999). Beckmann and Smith (2004)
proposed a probabilistic formulation that includes Gaussian noise. When applied directly to
fMRI time courses, interpretation of ICA components still requires relating the estimated
component time courses to the experimental conditions. Balslev et al. (2002) provides an
example of regression on component time courses to identify relevant systems.

Similar to standard confirmatory techniques, most extensions of exploratory methods to
multisubject data rely on voxel-wise correspondence. Using this framework, Beckmann and
Smith (2005) proposed a tensorial group factorization of the data within the ICA framework.
This method factorizes the group fMRI data into a number of components. Each component
is characterized by a time course and a group spatial map defined in the population template.
The only across-subject variability assumed is the differences in the contribution of each
group component to measurements in different individuals. In contrast, our approach to
group analysis avoids making any assumptions about spatial correspondences of functional
areas across subjects. Spatial maps for different clusters are defined in each subject’s native
space.

The model developed in the next section can be viewed as a Bayesian probabilistic
extension of simple mixture model clustering that includes three important elements: 1) a
nonparametric prior that enables estimation of the number of components, 2) a hierarchical
structure that enables group analysis, and 3) an fMRI time course model that explicitly
accounts for the experimental paradigm.

3 Methods
Consider an fMRI experiment with a relatively large number of different tasks or stimuli, for
instance, a design that presents S distinct images in an event-related visual study. We let yji
be the acquired fMRI time course of voxel i in subject j. The goal of the analysis is to
identify patterns of functional specificity, i.e., distinct profiles of response that appear
consistently across subjects in a large number of voxels in the fMRI time courses {yji}. We
refer to a cluster of voxels with similar response profiles as a functional system. Figure 1
illustrates the idea of a system as a collection of voxels that share a specific functional
profile across subjects. Our model characterizes the functional profile as a vector whose
components express the probability that the system is activated by the stimuli in the
experiment.

To define the generative process for fMRI data, we first consider an infinite number of
group-level systems. System k is assigned a prior probability πk of including any given
voxel. While the vector π is infinite-dimensional, any finite number of draws from this
distribution will obviously yield a finite number of systems. To account for inter-subject
variability and noise, we perturb the group-level system weight π independently for each
subject j to generate a subject-specific weight vector βj. System k is further characterized by
a vector [ϕk1, ⋯, ϕkS]t, where ϕks ∈ [0, 1] is the probability that system k is activated by
stimulus s. Based on the weights βj and the system probabilities ϕ, we generate binary
activation variables xjis ∈ {0, 1} that express whether voxel i in subject j is activated by
stimulus s.
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So far, the model has the structure of a standard HDP. The next layer of this hierarchical
model defines how activation variables xjis generate observed fMRI signal values yjit. If the
voxel is activated (xjis = 1), the corresponding fMRI response is characterized by a positive
voxel-specific response magnitude aji; if the voxel is non-active (xjis = 0) the response is
assumed to be zero. The model otherwise follows the standard fMRI linear response model
where the HRF is assumed to be variable across subjects and is estimated from the data.

Below, we present the details of the model starting with the lower level signal model to
provide an intuition on the representation of the signal via activation vectors and then move
on to describe the hierarchical clustering model. Table 1 presents the summary of all
variables and parameters in the model; Figure 2 shows the structure of our graphical model.

3.1 Model for fMRI Signals
Using the standard linear model for fMRI signals (Friston et al., 2007), we model measured
signal yji of voxel i in subject j as a linear combination

(1)

where Gj and Fj are the stimulus and nuisance components of the design matrix for subject j,
respectively, and εji is Gaussian noise. To facilitate our derivations, we rewrite this equation
explicitly in terms of columns of the design matrix:

(2)

where gjs is the column of matrix Gj that corresponds to stimulus s and fjd represents column
d of matrix Fj.

We devise a model that integrates this representation with binary activation variables x that
connect the signal model with the hierarchical prior. If voxel i in subject j is activated by
stimulus s, i.e., if xjis = 1, its response takes positive value aji that specifies a voxel-specific
amplitude of response; otherwise, its response remains 0. Using this parametrization, bjis =
ajixjis. The response amplitude aji represents uninteresting variability in fMRI signal due to
physiological reasons unrelated to neural activity (examples include proximity of major
blood vessels).

To explicitly describe the properties of the hemodynamic response, we define gjs = ξjs * hj
where ξjs ∈ IRT is a binary indicator vector that shows whether stimulus s ∈  is present
during the experiment for subject j at each of the T acquisition times, and hj ∈ IRL is a finite-
time vector characterization of the hemodynamic response function (HRF) in subject j.

It is common in fMRI analysis to use a canonical shape for the HRF, letting hj = h̄ for all
subjects j. However, prior research has demonstrated considerable variability in the shape of
the HRF across subjects (Aguirre et al., 1998; Handwerker et al., 2004). We define hj to be
the shape of the HRF for subject j. It is a latent variable that is inferred from data. To
simplify future derivations, we let Ξjs be a T × L convolution matrix derived from the
stimulus indicator vector ξjs such that gjs = Ξjshj. Here, we assume a shared HRF for all
voxels in a subject since our application involves only the visual cortex. For studies that
investigate responses of the entire brain or several cortical areas, the model can be easily
generalized to include separate HRF variables for different areas (Makni et al., 2005).

With all the definitions above, our fMRI signal model becomes
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(3)

We use a simplifying assumption throughout that . In the
application of this model to fMRI data, we first apply temporal filtering to the signal to
decorrelate the noise in the preprocessing stage (Burock and Dale, 2000; Bullmore et al.,
2001; Woolrich et al., 2001). An extension of the current model to include colored noise is
possible, although it has been suggested that noise characteristics do not greatly impact the
estimation of the HRF (Marrelec et al., 2002).

3.1.1 Priors—We assume a multivariate Gaussian prior for hj, with a covariance structure
that encourages temporal smoothness,

(4)

(5)

where

(6)

and h̄ is the canonical HRF. The definition of the precision matrix above yields a prior that

involves terms of the form , penalizing differences between the values of
the HRF at consecutive time points.

We assume the prior distributions on the remaining voxel response variables as follows. For
the response magnitude, we assume

(7)

where Normal+(η, ρ) is the conjugate prior defined as a normal distribution restricted to
positive real values:

(8)

Positivity of the variable aji simply reflects the constraint that the expected value of fMRI
response in the active state is greater than the expected value of response in the non-active
state. For the nuisance factors, we let

(9)

where Normal(η, ρ) is a Gaussian distribution with mean η and variance ρ. Finally, for the
noise precision parameter, we assume
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(10)

where Gamma (κ, θ) is a Gamma distribution parametrized by shape parameter κ and scale
parameter θ−1:

(11)

3.2 Hierarchical Dirichlet Prior for Modeling Variability across Subjects
Our model assumes a shared clustering structure in the fMRI activations x that allows inter-
subject variability in the size of clusters across subjects. We further include a nonparametric
prior to estimate the number of clusters supported by the observed data.

Similar to standard mixture models, we define the distribution of a voxel activation variable
xjis by conditioning on the system membership zji ∈ {1, 2, ⋯} of the voxel and on the
system probabilities of activation for different stimuli ϕ = {ϕks}:

(12)

This model implies that all voxels within a system have the same prior probability of being
activated by a particular stimulus s.

We place a Beta prior distribution on system-level activation probabilities ϕ:

(13)

Parameters ωϕ control the overall proportion of activated voxels across all subjects. For
instance, we can induce sparsity in the results by introducing bias towards 0, i.e., the non-
active state, in the parameters of this distribution.

To capture variability in system weights, we assume:

(14)

(15)

where βj is a vector of subject-specific system weights, generated by a Dirichlet distribution
centered on the population-level system weights π. The extent of variability in the size of
different systems across subjects is controlled by the concentration parameter α of the
Dirichlet distribution. Finally, we place a prior on the population-level weight vector π that
allows an infinite number of components:

(16)

where GEM(γ) is a distribution over infinitely long vectors π = [π1, π2, ⋯]t, named after
Griffiths, Engen and McCloskey (Pitman, 2002). Specifically,
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(17)

It can be shown that the components of the generated vectors π sum to 1 with probability 1.
With this prior over system memberships z = {zji}, the model in principle allows for an
infinite number of functional systems; however, for any finite set of voxels, a finite number
of systems is sufficient to include all voxels.

This prior for activation variables corresponds to the stick-breaking construction of HDPs
(Teh et al., 2006), which is particularly suited for the variational inference scheme that we
discuss in the next section.

3.3 Variational EM Inference
Having devised a full model for the fMRI measurements in a multi-stimulus experiment, we
now provide a scheme for inference on the latent variables from the observed data. Sampling
schemes are most commonly used for inference in HDPs (Teh et al., 2006). Despite
theoretical guarantees of convergence to the true posterior, sampling techniques generally
require a time-consuming burn-in phase. Because of the relatively large size of our problem,
we will use a collapsed variational inference scheme for inference (Teh et al., 2008), which
is known to yield faster algorithms. Here, we provide a brief overview of the derivation
steps for the update rules. Appendix A contains the update rules and more detailed
derivations.

3.3.1 Formulation—To formulate the inference for system memberships, we integrate
over the subject-specific unit weights β = {βj} and introduce a set of auxiliary variables r =
{rjk} that represent the number of tables corresponding to system k in subject j according to
the Chinese Restaurant Process formulation of HDP in (Teh et al., 2006). Appendix A
provides some insights into the role of these auxiliary variables in our model; they allow us
to find closed-form solutions for the inference update rules. We let u = {x, z, r, ϕ, π, υ, a, e,
h, λ} denote the set of all latent variables in our model. In the framework of variational
inference, we approximate the model posterior on u given the observed data p(u|y) by a
distribution q(u). The approximation is performed through the minimization of the Gibbs
free energy function:

(18)

Here, and in the remainder of the paper, E[·] and V [·] indicate expected value and variance
with respect to distribution q. We assume a distribution q of the form:

(19)

where we explicitly account for the dependency of the auxiliary variables r on the system
memberships z. Including this structure maintains the quality of the approximation despite
the introduction of the auxiliary variables (Teh et al., 2007). We use coordinate descent to
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solve the resulting optimization problem. Minimizing the Gibbs free energy function in
terms of each component of q(u) while fixing all other parameters leads to closed form
update rules, provided in Appendix A.

3.3.2 Initialization—Iterative application of the update rules leads to a local minimum of
the Gibbs free energy. Since variational solutions are known to be biased toward their initial
configurations, the initialization phase becomes critical to the quality of the results. We can
initialize the variables in the fMRI signal model by ignoring higher level structure of the
model and separately fitting the linear model of Equation (3) to the observed signal in each
subject, starting with the canonical form of the HRF. Note that these estimates are the same
as the traditional GLM estimates used in most fMRI analyses. Our method begins with these
estimates and modifies them according to the assumptions made in the model.

The standard least squares regression produces estimates for coefficients bjis in Equation (3)
that describe the contribution of each condition to signal in different voxels. In our model,
we assume that these coefficients can be factored as bjis = ajixjis to positive voxel-specific
response amplitudes aji and activation variables xjis. Therefore, for the initialization we let
E[aji] = maxs b̂jis and E[xjis] = (b̂jis − mins b̂jis) / (maxs b̂jis − mins b̂jis), where b̂jis is the least
squares estimate based on the standard GLM. We initialize nuisance factors eji directly to
the values of the nuisance regressor coefficients obtained via least squares estimation, and
variance reciprocals of noise λji to values found based on the estimated residuals.

To initialize system memberships, we introduce voxels one by one in a random order to the
collapsed Gibbs sampling scheme (Teh et al., 2006) constructed for our model with each
stimulus as a separate category and the initial x assumed known. In contrast to the
initialization of the other variables, the initialization of system memberships has a random
nature and we repeat it several times to find the configuration that yields the best Gibbs free
energy.

The update rules for each variable usually depend only on the previous values of other
variables in the model. The exception to this is the update for q(xjis), which also depends on
previous estimates of x. Therefore, unless we begin by updating x, the first variable to be
updated does not need to be initialized. Due to the coupling of the initializations for x and a,
we can choose to initialize either one of them first and update the other next. By performing
both variants and choosing the one that provides the lower free energy after convergence, we
further improve the search in the space of possible initializations and the quality of the
resulting estimates.

4 Results
This section presents the results of applying our method to data from an event-related visual
fMRI experiment. We compare the results of our hierarchical Bayesian method with the
finite mixture model (Lashkari et al., 2010b) and the tensorial group ICA of (Beckmann and
Smith, 2005) in a high-level visual experiment.

4.1 Data
Ten subjects were scanned in an event-related experiment. Each subject was scanned in two
2-hour scanning sessions. During the scanning session, the subjects were presented with
images from nine categories (animals, bodies, cars, faces, scenes, shoes, tools, trees, vases)
in the event-related paradigm. Images were presented in a pseudo-randomized design
generated by optseq (Dale, 1999) to optimize the efficiency of regression. During each 1.5s
presentation, the image moved slightly across the field of view either leftward or rightward.
Subjects were asked to indicate the direction of motion by pressing a button. Half of the
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image set was presented in the first session, and the other half was presented in the second
session. Figure 3 shows the stimuli used in this study.

Functional MRI data were collected on a 3T Siemens scanner using a Siemens 32-channel
head coil. The high-resolution slices were positioned to cover the entire temporal lobe and
part of the occipital lobe (gradient echo pulse sequence, TR = 2s, TE = 30ms, 40 slices with
a 32 channel head coil, slice thickness = 2mm, in-plane voxel dimensions = 1.6 × 1.6mm).
The anatomical scans were obtained at an isotropic resolution of 1mm in all three directions,
and were subsequently subsampled to an isotropic resolution of 2mm.

The data was first motion corrected separately for the two sessions (Cox and Jesmanowicz,
1999) and spatially smoothed with a Gaussian kernel of 3mm width. We then registered the
two sessions to the subject’s native anatomical space (Greve and Fischl, 2009). We used
FMRIB’s Improved Linear Model (FILM) to prewhiten the acquired fMRI time courses
before applying the linear model (Woolrich et al., 2001).

We created a mask for the analysis in each subject using an omnibus F-test that determines
whether any stimulus regressors significantly explain the variations in the measured fMRI
time course (p = 10−6). This step essentially removed noisy voxels from the analysis and
only retained areas that are relevant for the experimental protocol at hand. Since the goal of
the analysis is to study high level functional specificity in the visual cortex, we further
removed from the mask the set of voxels within early visual areas. Furthermore, we included
the average time course of all voxels within early visual areas as a confound factor in the
design matrix of Equation (3). This procedure selected between 2700 to 6800 voxels for
different subjects and a total of 50435 voxels for all 10 subjects. Our method works directly
on the temporally filtered time courses of all voxels within the mask.

4.2 Comparison and Evaluation
We compare our results with those of the finite mixture model of (Lashkari et al., 2010b)
and tensorial group ICA (Beckmann and Smith, 2005). Below, we first describe the
parameters and settings used with each of these methods and then introduce measures
employed in our evaluation of their results.

4.2.1 Nonparametric Hierarchical Model—For HDP scale parameters, we use α = 100,
γ = 5. We show in Section 4.5 that the results are not sensitive to this specific choice. We
also set ωϕ,1 = ωϕ,2 = 1 for the nonparametric prior to assume a uniform prior on activation
probabilities. For the signal model, we use ν = 100, and estimate the remaining
hyperparameters of the fMRI signal model as follows. Like the initialization procedure of
Section 3.3.2, we begin by applying least squares regression based on the standard GLM
model of the signal. For each subject, we create empirical distributions for the estimated
values of the fMRI signal variables aji and ejid from the GLM estimates, and λji from the
residuals. Based on the assumptions made in Section 3.1.1, we fit the prior models to these
empirical distributions and find maximum likelihood estimates of the hyperparameters

, κj, and θj.

We run the algorithm 20 times with different initializations for system memberships and
choose the solution that yields the least Gibbs free energy function.

4.2.2 Finite Mixture Model—When evaluating the finite mixture model, we apply the
standard regression analysis to find regression coefficients for each stimulus at each voxel
and use the resulting vectors as inputs for clustering. Like ours, this method is also
initialized with 20 random sets of parameters and the best solution in terms of log-likelihood
is chosen as the final result.
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In (Lashkari et al., 2010b), we provided an approach to quantifying and validating the group
consistency of each profile found by the finite mixture model. We use this method to
provide an ordering of the resulting systems in terms of their consistency scores. We define
the consistency scores based on the correlation coefficients between the group-wise profiles
with the selectivity profiles found in each subject. We first match group-wise profiles with
the set of profiles found by the algorithm in each individual subject’s data separately. We
employ the Hungarian algorithm (Kuhn, 1955) to find the matching between the two sets of
profiles that maximizes the sum of edge weights (correlation coefficients in this case).1 The
consistency score for each system is then defined as the average correlation coefficient
between the corresponding group-wise profile and its matched counterparts in different
subjects.

As we discuss in Section 5, basic model selection schemes for finite mixture model fail to
provide a reasonable choice for the number of clusters. However, the results remain
qualitatively similar when we change the number of clusters (Lashkari et al., 2010b). Given
that we expect at least 3 or 4 areas selective for faces, scenes, and bodies, we choose K = 15
clusters to allow for several novel likely systems. Among the resulting profiles, we select
systems whose consistency scores are significant at threshold p = 10−3 based on the group-
wise permutation test. We demonstrated in (Lashkari et al., 2010b) that the finite mixture
modeling results are qualitatively insensitive to changes in the numbers of clusters.

4.2.3 Tensorial Group ICA—Tensorial group ICA requires spatial normalization of the
functional data from different subjects to a common spatial template. We employ FMRIB’s
nonlinear image registration tool2 (FNIRT) to register the structural image from each subject
to the MNI template (T1 image of MNI152). As an initialization for this registration, we use
FMRIB’s linear image registration tool3 (FLIRT). We create a group mask for the ICA
analysis defined as the union of the masks found for different subjects by the F-test
procedure above. We use the Melodic4 implementation of the tensorial group ICA provided
within the FSL package. Since the experiment includes a different number of runs for each
subject, we cannot directly apply the ICA algorithm to the time courses. Instead, we use
vectors of estimated regression coefficients for the 69 stimuli at each voxel as the input to
ICA.

As implemented in the Melodic package, the tensorial group ICA employs the automatic
model selection algorithm of Minka (2001) to estimate the number of independent
components (Beckmann and Smith, 2004).

ICA provides one group spatial map for each estimated component across the entire group.
In contrast, our method yields subject-specific maps in each subject’s native space. In order
to summarize the maps found by our method in different subjects and compare them with
their ICA counterparts, we apply the same spatial normalization described above to spatial
maps of the discovered systems. We then average these normalized maps across subjects to
produce a group summary of the results.

4.2.4 Classification and Consistency Scores—As a quantitative way to evaluate the
specificity patterns found by different methods, we define a classification score for each set
of system (or component) profiles that measures how well they encode information about

1We use the open source matlab implementation of the Hungarian algorithm available at http://www.mathworks.com/matlabcentral/
fileexchange/11609.
2http://www.fmrib.ox.ac.uk/fsl/fnirt/index.html
3http://fsl.fmrib.ox.ac.uk/fsl/flirt/
4http://www.fmrib.ox.ac.uk/fsl/melodic/index.html
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stimulus categories. Each system activation profile in our model represents the probabilities
that different stimuli activate that system. Therefore, the brain response to stimulus s can be
summarized based on our results in terms of a vector of activations [E[ϕ1s], ⋯, E[ϕKs] ]t

that it induces over the set of all functional systems. Similarly, finite mixture profiles and
ICA component profiles can be used as stimulus representations, which may in turn be used
to classify stimuli. We consider all distinct binary classification problems involving all pairs
of the first 8 categories (we do not include the 5 vase images in this analysis since there are
fewer samples from this category). We apply 8-fold cross validation with linear SVM
classifiers trained on the profiles and define the average classification accuracy for all 28
binary classification problems on the test data as the classification score.

We also use the consistency scores, which were defined above for finite mixture modeling,
in our sensitivity and reproducibility analyses. In each of these cases, we aim to quantify the
similarity of two sets of system (or component) profiles, e.g., when assessing the
consistency of the results across two subgroups of data. In each case, we apply the
Hungarian algorithm to find the one-to-one matching that maximizes the pairwise
correlation coefficients and define the average correlation coefficient between matched
profiles to be the consistency score of the results.

To test statistical significance of the consistency scores, we create a permutation-based null
distribution for the pairwise correlation coefficients between two groups of matched
profiles. For each sample, we randomly permute the S components of all profiles
independently of each other. We then apply the matching, calculate pairwise correlation
coefficients between matched profiles, and compute their average, i.e., the consistency
score. We create 10, 000 samples of the consistency score in this way and use this empirical
distribution to evaluate the significance of the average consistency score of the original
result.

Systems or components found by the methods discussed in this paper do not come in a
unique order or with unique labels. As mentioned earlier, for the finite mixture model we
use the consistency scores to create a ranking that allows us to focus on the more relevant
systems. For the two other methods, we use similar measures that capture the variability in
the size of systems across subjects to provide an ordering of the profiles for their
visualization. In tensorial group ICA results, variable cjk expresses the contribution of
component k to the fMRI data in subject j. Similarly, variable E[njk] in our results denotes
the number of voxels in subject j assigned to system k. We define this measure for system
(component) k as the standard deviation of values of E[njk] (or cjk) across subjects when
scaled to have unit average. We rank our profiles based on this measure in ascending order
and label them accordingly.

4.3 System Functional Profiles
We apply our method to the real data from the visual experiment. In the data from ten
subjects, the method finds 25 systems. Figure 4 presents the posterior activation probability
profiles of these 25 functional systems in the space of the 69 stimuli presented in the
experiment. We compare these profiles with the ones found by the finite mixture model and
the group tensorial ICA, presented in Figure 5. ICA yields ten components. The profiles in
Figure 4 and Figure 5 are presented in order of consistency. In the results from all methods,
there are some systems or components that mainly contribute to the results of one or very
few subjects and possibly reflect idiosyncratic characteristics of noise in those subjects.

Qualitatively, we observe that the category structure is more salient in the results of the
nonparametric model. Most of our systems demonstrate similar probabilities of activation
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for images that belong to the same category. This structure is present to a slightly lesser
extent in the results of the finite mixture model, but is much weaker in the ICA results.

More specifically, we identify systems 2, 9, and 12 in Figure 4 as selective for categories of
bodies, faces, and scenes, respectively (note that animals all have bodies). Among the
system profiles ranked as more consistent, these profiles stand out by the sparsity in their
activation probabilities. Figure 5 shows that similarly selective systems 1 (faces), 2 (bodies),
3 (bodies), and 5 (scenes) also appear in the results of the finite mixture model. The ICA
results include only one component that seems somewhat category selective (component 1,
bodies). As discussed in Section 1, previous studies have robustly localized areas such as
EBA, FFA, and PPA with selectivities for the three categories above. Automatic detection of
these profiles demonstrates the potential of our approach to discover novel patterns of
specificity in the data.

Inspecting the activation profiles in Figure 4, we find other interesting patterns. For instance,
the three non-face images with the highest probability of activating the face selective system
9 (animals 2, 5 and 7) correspond to the three animals that have large faces (Figure 3).
Beyond the three known patterns of selectivity, we identify a number of other notable
systems in the results of Figure 4. For instance, system 1 shows lower responses to cars,
shoes, and tools compared to other stimuli. Since the images representing these three
categories in our experiment are generally smaller in terms of overall pixel size and overall
image intensity, this system appears selective to lower level features (note that the highest
probability of activation among shoes corresponds to the largest shoe 2). The correlation
coefficient between this profile and the sum of the intensity values of the 69 images is 0.48,
where a correlation value of 0.35 is in this case significant at p = 0.05 with Bonferroni
corrections for 25 profiles. System 3 and system 8 are less responsive to faces compared to
all other stimuli.

To quantify how well each set of profiles encodes the category information in images, we
compute the classification scores of the three methods. For our method, the finite mixture
model, and tensorial group ICA, the score, which represents average classification accuracy
in binary category classification tasks, is equal to 0.95 ± 0.16, 0.97 ± 0.13, and 0.68 ± 0.31,
respectively. We also apply the finite mixture model with K = 30 and find the classification
score of the results to be 0.96 ± 0.13. The average classification score of our method is
significantly greater than that of ICA with p = 10−4 based on a nonparametric permutation
test. This suggests that while nonparametric and finite mixture models yield similar
classification performance for encoding category information, they both show much higher
performance than that of ICA.

We investigate the spatial properties of the detected systems in the next section.

4.4 System Spatial Maps

For each system k in our results, vector  describes the posterior membership
probability for all voxels in subject j. We can represent these probabilities as a spatial map
for the system in the subject’s native space. Figure 6 (top) shows the membership maps for
the systems 2 (bodies), 9 (faces), and 12 (scenes). For comparison, Figure 6 (bottom) shows
the significance maps found by applying the conventional confirmatory t-test to the data
from the same subject. These maps present uncorrected significance values −log10(p) for
each of the three standard contrasts of bodies-objects, faces-objects, and scenes-objects,
thresholded at p = 10−4 as is common practice in the field. While the significance maps
appear to be generally spatially larger than the systems identified by our method, close
inspection reveals that the system membership maps include the peak voxels for their
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corresponding contrasts. Figure 7 illustrates the fact that voxels within our system
membership maps are generally associated with high significance values for the contrasts
that correspond to their respective selectivity. The figure also clearly shows that there is
considerable variability across subjects in the distribution of significance values.

Our method calculates the spatial maps in each subjects native anatomical space while we
have to normalize the data before applying ICA so it finds a group map in the population
template. As a result, we cannot directly compare the spatial properties of maps found by the
two methods. To make an indirect comparison, we normalize the system probability maps of
different subject to the population template and then average them to find the proportion of
subjects whose system maps includes any given voxel in their system maps. Figure 9
compares this group-average of spatial maps for the body-selective system 2 with the group-
level spatial map of component 1 found by ICA. Although both maps cover the same
approximate anatomical areas, our group map includes very few voxels with values close to
1 suggesting that areas associated with body-selectivity do not have high voxel-wise overlap
across subjects. In other words, the location of body-selective system 2 varies across
subjects but generally remains at the same approximate area. This result, which agrees with
the findings previously reported in the literature (Spiridon et al., 2006), does not appear in
the ICA map that includes large areas with a maximum value of 1.

Figure 9 presents average normalized spatial maps for two other selective systems 9 and 12.
These maps clearly contain previously identified category selective areas, such as FFA,
OFA, PPA, TOS, and RSC (Kanwisher and Yovel, 2006; Epstein et al., 2007). We also
examine the spatial map for system 1, which we demonstrated to be sensitive to low-level
features. As Figure 10 (left) shows, this system resides mainly in the early visual areas.
Figure 10 (right) shows the spatial map for system 8, which exhibits reduced activation to
faces and shows a fairly consistent structure across subjects. To the best of our knowledge,
selectivity similar to that of system 8 has not been reported in the literature so far.

4.5 Sensitivity Analysis
We test the sensitivity of our method to different initializations for system memberships and
also to perturbations in values of HDP scale parameters.

Figure 11 (left) shows the histogram of classification scores for the results found from 20
different initializations of the algorithm. We observe that the performance of all different
initializations is very similar to the results presented in Section 4.3 that achieve the least
Gibbs free energy. In Figure 11 (right), we show the correlation coefficients between
profiles found by each initialization and their matching profiles from the best results in
terms of the Gibbs free energy. Please note that in cases where the numbers of systems in
the two results are not equal, we assumed a correlation coefficient of zero for the systems
that do not have a match. These zero correlation coefficients explain why the average
consistency scores are less than the consistency scores of most profiles in the results.
Nevertheless, the average consistency scores are significant for all 20 results at p = 10−4.
This analysis confirms that the results of our algorithm are robust across different
initializations of the algorithm.

Most hyperparameters of our model have intuitive interpretations in terms of the parameters
of fMRI signal model and are selected based on the GLM estimates from the data. Selection
of HDP scale parameters, on the other hand, is not as straightforward. For the results
presented in this section so far, we chose (γ, α) = (5, 100). To investigate how sensitive the
results are with respect to this specific choice, we run the algorithm with a few different
other choices for the HDP scale parameters. We first perturb each parameter slightly around
the choice (γ, α) = (5, 100) by varying the values of γ and α by ±1 and ±10, respectively.
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We then increase the range of change by roughly dividing or multiplying each parameter by
2. Table 2 presents the resulting number of systems and classification scores for all these
changes of HDP scale parameters. We observe that the category information remains at
similar levels when we change the parameters. To directly assess the similarity of the results
to the ones presented in Section 4.3, Figure 12 reports the consistency scores when matching
system profiles found with different HDP scale parameters to the results reported in Section
4.3. All average consistency scores are significant with p = 10−4. This analysis confirms that
our results are insensitive to the choice of HDP scale parameters.

Varying initializations or model parameters in Figures 11 (right) and 12, although the
profiles on average remain consistent with the system profiles presented in Figure 4, we
observe some degree of variation in consistency scores. If we investigate the results more
closely, we find an interesting structure in these variations: the labeling of systems, which is
based on the consistency of their sizes across subjects (Section 4.2.4), is highly correlated
with their consistency across different initializations or model parameters. Figure 13
presents the correlation coefficients between each system profile of Figure 4 and the profiles
matched to it in the results from 20 different initializations or from 8 different configrations
of HDP scale parameters. The figure provides another way for examining the consistency
scores in Figures 11 (right) and 12. Here, we can see that higher ranked profiles are
generally more consistent. The ranking of voxels has correlation coefficients −0.74 and
−0.65 with the average consistency of match profiles (blue squares in Figure 13) across
different initializations and model parameters (both significant with p = 10−4 in a
permutation test). This result suggest that the systems that are more relevant in our analysis,
i.e., the ones that appear more consistently across subjects, remain more consistent in the
results found with different initializations and model parameters.

4.6 Reproducibility Analysis
In this section, we validate our results based on their reproducibility across subjects. We
split the ten subjects into two groups of five and apply the analysis separately to each group.
The method finds two sets of 17 and 23 systems in the two groups.

Figure 14 shows the system profiles in both groups of subjects matched with the top 13
consistent profiles of Figure 4. Visual inspection of these activation profiles attests to the
generalization of our results from one group of subjects to another. Figure 15 reports
correlation coefficients for pairs of matched profiles from the two sets of subjects for all
three methods: our Bayesian nonparametric method, the finite mixture-model, and the group
tensorial ICA. Average consistency scores for both nonparametric and finite mixture models
are significant at p = 10−4. In contrast, the p-value for the average consistency score of ICA
profiles is only 0.05. This result suggests that, in terms of robustness across subjects, our
unified model is more consistent than tensorial group ICA and is comparable to the finite
mixture model. We note that due to the close similarity in the assumptions of our model and
the finite mixture model, we do not expect a significant change in the robustness of the
results when comparing the two models.

5 Discussion
The nonparametric nature of the model developed in this paper represents an important
advantage over the finite mixture models (Golland et al., 2007; Lashkari et al., 2010b). The
nonparametric construction enables the estimation of the number of systems from the data.
In our experience, both basic model selection schemes such as BIC (Schwarz, 1978) and
computationally intensive resampling methods such as that of Lange et al. (2004) yield
monotonically increasing measures for the goodness of the finite mixture model up to cluster
numbers in several hundreds. In contrast, our nonparametric method automatically finds the
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number of components within the expected range based on prior information. The estimates
depend on the choice of HDP scale parameters α and γ. The results provide optimal choices
within the neighborhood of model sizes allowed by these parameters. We also showed in our
sensitivity analysis in Section 4.5 that the results remain fairly consistent as we change the
HDP scale parameters.

Like the finite mixture model, the proposed hierarchical Bayesian model avoids making
assumptions about the spatial organization of functional systems across subjects. This is in
contrast to tensorial group ICA, which assumes that independent components of interest are
in voxel-wise correspondence across subjects. Average spatial maps presented in the
previous section clearly demonstrate the extent of spatial variability in functionally specific
areas. This variability violates the underlying ICA assumption that independent spatial
components are in perfect alignment after spatial normalization. Accordingly, ICA results
are sensitive to the specifics of spatial normalization. In our experience, changing the
parameters of registration algorithms can considerably alter the profiles of estimated
independent components.

As mentioned earlier, Makni et al. (2005) also employed an activation model similar to ours
for expressing the relationship between fMRI activations and the measured BOLD signal.
The most important distinction between the two models is that the amplitude of activations
in the model of Makni et al. (2005) is assumed to be constant across all voxels. In contrast,
we assume a voxel-specific response amplitude that allows us to extract activation variables
as a relative measure of response in each voxel independently of the overall magnitude of
the BOLD response.

A more subtle difference between the two models lies in the modeling of noise in time
courses. Makni et al. (2005) assume two types of noise. First, they include the usual time
course noise term εjit as in Equation (3). Moreover, they assume that the regression
coefficients bis are generated by a Gaussian distribution whose mean is determined by
whether or not voxel i is activated by stimulus s, i.e., the value of the activation variable xis.
This model assumes a second level of noise characterized by the uncertainty in the values of
the regression coefficients conditioned on voxel activations. Our model is more
parsimonious in that it does not assume any further uncertainty in brain responses
conditioned on voxel activations and response amplitudes.

We emphasize the advantage of the activation profiles in our method over the cluster
selectivity profiles of the finite mixture modeling in terms of interpretability. Our definition
of a classification score uses the fact that vectors formed by concatenating components of
different system profiles that correspond to the same stimulus can be used as a
representation for the stimulus. In the case of our fMRI signal model, this representation has
an intuitive interpretation as the probability that the stimulus can activate a given system. In
contrast, the finite mixture modeling of (Lashkari et al., 2010b) defines the system profiles
as vectors of unit length. As a result, it is not straightforward how we can interpret different
components of each profile vector.

We note at that a preliminary version of the model demonstrated in this paper was presented
elsewhere (Lashkari et al., 2010a).

6 Conclusion
In this paper, we developed a nonparametric hierarchical Bayesian model that allows us to
infer patterns of functional specificity that consistently appear across subjects in fMRI data.
The model accounts for inter-subject variability in the size of functionally specific systems.
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It enables estimation of the number of systems from the data. In addition, we endow the
model with a layer that explicitly connects fMRI activations to the observed time courses.
We derived a variational inference algorithm for fitting the model to the data from a group
of subjects. Most notably, the method does not require spatial alignment of the functional
data across the group in order to perform group analysis.

We apply our method to an fMRI study of visual object recognition that presents 69 distinct
images to ten subjects. The algorithm successfully discovers system activation profiles that
correspond to well-known patterns of category selectivity along with a number of novel
systems. These systems include one that is deactivated by face images. We showed that the
results of our method are not sensitive with respect to changes in the initialization and model
parameters and are reproducible across different groups of subjects.
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Appendix

A Derivations of the Update Rules
In this section, we derive the Gibbs free energy cost function for variational inference and
derive the update rules for inference using the variational approximation.

A.1 Joint Probability Distribution
Based on the generative model described in Section 3, we form the full joint distribution of
all the observed and unobserved variables. For each variable, we use ω˙ to denote the natural
parameters of the distribution for that variable. For example, the variable ejid is associated

with natural parameters .

A.1.1 fMRI model—Given the fMRI model parameters, we can write the likelihood of the
observed data y:

(A.

1)

We now express the priors on the parameters of the likelihood model defined in Section
3.1.1 in the new notation. Specifically, for the nuisance parameters e, we have

(A.2)

(A.3)

where .
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With our definition of the Gamma distribution in Equation (11), the natural parameters for

the noise precision variables λ are .

The distribution over the activation heights a is given by

(A.4)

(A.5)

We have .

The distribution Normal+(η, ρ−1) is a member of an exponential family of distributions and
has the following properties:

(A.6)

(A.7)

(A.8)

A.1.2 Nonparametric Hierarchical Joint Model for Group fMRI Data—The voxel
activation variables xjis are binary, with prior probability ϕks given according to cluster
memberships. Since ϕ ~ Beta(ωϕ,1, ωϕ,2), the joint density of x and ϕ conditioned on the
cluster memberships z is defined as follows:

We assume a hierarchical Dirichlet process prior over the functional unit memberships, with
subject-level weights β. We use a collapsed variational inference scheme (Teh et al., 2008),
and therefore marginalize over these weights:

(A.9)

(A.10)
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where K is the number of non-empty functional units in the configuration and

. To provide conjugacy with the Dirichlet prior for the group-level
functional unit weights π, we prefer the terms in Equation (A.10) that include weights to
appear as powers of πk. However, the current form of the conditional distribution makes the
computation of the posterior over π hard. To overcome this challenge, we note that for 0 ≤ r

≤ n, we have  are unsigned Stirling numbers
of the first kind (Antoniak, 1974). The collapsed variational approach uses this fact and the
properties of the Beta distribution to add an auxiliary variable r = {rji} to the model:

(A.11)

where rjk ∈ {0, 1, ⋯, nji}. If we marginalize the distribution (A.11) over the auxiliary
variable, we obtain the expression in (A.10).

A.2 Minimization of the Gibbs Free Energy
Let u = {x, z, r, ϕ, π, υ, a, e, h, λ} denote the set of all unobserved variables. In the
framework of variational inference, we approximate the posterior distribution p(u|y) of the
hidden variables u given the observed y by a distribution q(u). The approximation is
performed through minimization of the Gibbs free energy function in Equation (18) with an
approximate posterior distribution q(u) of the form in Equation (19). We derive a coordinate
descent method where in each step we minimize the function with respect to one of the
components of q(·), keeping the rest constant.

A.2.1 Auxiliary variables—Assuming that all the other components of the distribution q
are constant, we obtain:

(A.

12)

The optimal posterior distribution on the auxiliary variables takes the form

(A.13)

Under q*, we have for the auxiliary variable r:

(A.14)

This distribution corresponds to the probability mass function for a random variable that
describes the number of tables that njk customers occupy in a Chinese Restaurant Process

with parameter  (Antoniak, 1974). The optimal value of the parameter  is given by

(A.15)
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As a distribution parameterized by log , Equation (A.14) defines a member of an
exponential family of distributions. The expected value of the auxiliary variable rjk is
therefore:

(A.16)

(A.17)

where . This expression is helpful when updating the other components
of the distribution. Accordingly, we obtain expectation:

(A.18)

Under q(z), each variable njk is the sum of Nj independent Bernoulli random variables δ(zji,
k) for 1 ≤ i ≤ Nj with the probability of success q(zji = k). Therefore, as suggested in (Teh et
al., 2008), we can use the Central Limit Theorem and approximate this term using a
Gaussian distribution for njk > 0.

Due to the independence of these Bernoulli variables, we have

(A.19)

(A.20)

(A.21)

which we can use to easily compute E+[njk] = E[njk|njk > 0] and V+[njk] = V [njk|njk > 0]. We
then calculate E[rjk] using Equation (A.18) by noting that

(A.

22)

Lastly, based on the auxiliary variable r, we find that the optimal posterior distribution of the

system weight stick-breaking parameters is given by , with parameters:

(A.23)

(A.24)
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A.2.2 System memberships—The optimal posterior over the auxiliary variables defined
in Equation (A.13) implies:

(A.

25)

The Gibbs free energy as a function of the posterior distribution of a single membership
variable q(zji) becomes

(A.

26)

We can simplify the second term on the right hand side of Equation (A.26) as:

(A.27)

(A.28)

where  and z¬ji indicate the exclusion of voxel i in subject j and only the first term is a
function of q(zji). Minimizing Equation (A.26) yields the following update for membership
variables:

In order to compute the first term on the right hand side, as with the Equation (A.22), we use
a Gaussian approximation for the distribution of njk:

(A.29)

A.2.3 Voxel activation variables—We form the Gibbs free energy as a function only of
the posterior distribution of voxel activation variables x. For notational convenience, we
define ψjis = Σk E[log(ϕks)]q(zji = k) and ψ̄jis = Σk,l E[log(1 − ϕks)]q(zji = k) and obtain

(A.

30)

Minimization of this function with respect to q(x) = Πj,i,s q(xjis) yields the update rule:
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(A.31)

(A.32)

where Tr(·) is the trace operator.

A.2.4 fMRI model variables—We collect the free energy terms corresponding to the
nuisance variables e:

(A.

33)

Recall that we assume a factored form for q(e) = Πj,i,d q(ejid). Minimizing with respect to

this distribution yields , with the parameters

 given in the Table A.1.

For the activation heights a, we find

(A.

34)

Assuming a factored form, minimization yields , a ≥

0, with parameters  given in Table A.1.

The terms relating to the noise precisions λ are computed as:
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(A.

35)

Minimization with respect to q(λji) yields ,

where the parameters  are given in Table A.1. Finally, we can write the term
involving the HRF as:

(A.36)

Assuming an approximate factored posterior distribution q(h) = Πj q(hj) and minimizing the
above cost function shows that the posterior for each HRF is of the form

 with parameters  and Ξ presented in Table A.1.

A.2.5 System Activation Probabilities—For the system activation profiles, we find

(A.

37)

The minimum is achieved for , with the following parameters:
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(A.38)

(A.39)

Appendix
Table A.1

Update rules for computing the posterior q over the unobserved variables.
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> We provide a nonparametric hierarchical Bayesian for fMRI data across subjects. >
Inference based on the model learns patterns of functional specificity from data. > The
model estimates the number, activation profile, and spatial extent of patterns. > Results in
a visual fMRI study agree with prior findings and suggest novel patterns.
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Fig. 1.
Schematic diagram illustrating the concept of a system. System k is characterized by vector
[ϕk1, ⋯, ϕkS]t that specifies the level of activation induced in the system by each of the S
stimuli. This system describes a pattern of response demonstrated by collections of voxels in
all J subjects in the group.
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Fig. 2.
Full graphical model that expresses dependencies among latent and observed variables
across subjects. Circles and squares indicate random variables and model parameters,
respectively. Observed variables are shaded. For a description of different variables, see
Table 1.
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Fig. 3.
The 69 images used as stimuli in the experiment.
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Fig. 4.
System profiles of posterior probabilities of activation for each system to different stimuli.
The bar height correspond to the posterior probability of activation.
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Fig. 5.
Left: system selectivity profiles estimated by the finite mixture of functional systems
(Lashkari et al., 2010b). The bar height corresponds to the value of components of
normalized selectivity profiles. Right: profiles of independent components found by the
tensorial group ICA (Beckmann and Smith, 2005). The bar height corresponds to the value
of the independent components. Both sets of profiles are defined in the space of the 69
stimuli.
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Fig. 6.
Top: membership probability maps corresponding to systems 2, 9, and 12, selective
respectively for bodies (magenta), scenes (yellow), and faces (cyan) in one subject. Bottom:
map representing significance values −log10 p for three contrasts bodies-objects (magenta),
faces-objects (cyan), and scenes-objects (yellow) in the same subject.
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Fig. 7.
The distributions of significance values across voxels in systems 2, 9, and 12 for three
different contrasts. For each system and each contrast, the plots report the distribution for
each subject separately. The black circle indicates the mean significance value in the area;
error bars correspond to 25th and 75th percentiles. Systems 2, 9, and 12 contain voxels with
high significance values for bodies, faces, and scenes contrasts, respectively.
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Fig. 8.
Left: the proportion of subjects with voxels in the body-selective system 2 at each location
after nonlinear normalization to the MNI template. Right: the group probability map of the
body-selective component 1 in the ICA results.
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Fig. 9.
Group normalized maps for the face-selective system 9 (left), and the scene-selective system
12 (right).
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Fig. 10.
Group normalized maps for system 1 (left), and system 8 (right) across all 10 subjects.
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Fig. 11.
(Left) the histogram of classification scores for 20 different initializations of system
memberships. The figure denotes the classification scores for the best result based on Gibbs
free energy (Figure 4) and tensorial group ICA for comparison. (Right) Consistency scores
of all different profiles found by 20 different initializations when matched to the best results
in terms of Gibbs free energy. Red squares denote the average consistency score for each
initialization.

Lashkari et al. Page 41

Neuroimage. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 12.
Consistency scores for the results found with different HDP scale parameters when matched
to the results found with γ = 5 and α = 100. Red squares denote the average correlation
coefficients for all profiles found with any given parameter pair.
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Fig. 13.
(Top) The histogram of classification scores matched to each of the 25 system profiles of
Figure 4 for different initializations. (Bottom) The histogram of classification scores
matched to each of the 25 system profiles of Figure 4 for different HDP scale parameters.
Blue squares denote the average of all consistency scores for each system profile.
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Fig. 14.
System profiles of activation probabilities found by applying the method to two independent
sets of 5 subjects. The profiles were first matched across two groups using the scheme
described in the text, and then matched with the system profiles found for the entire group
(Figure 4).
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Fig. 15.
The correlation of profiles matched between the results found on the two separate sets of
subjects for the three different techniques. Red squares denote the average correlation
coefficients for each set of profiles.
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Table 1

Variables and parameters in the model.

xjis binary activation of voxel i in subject j for stimulus s

zji multinomial unit membership of voxel i in subject j

ϕks activation probability of system k for stimulus s

βj system prior vector of weights in subject j

πk group-level prior weight for system k

α, γ HDP scale parameters

yjit fMRI signal of voxel i in subject j at time t

ejid nuisance regressor d contribution to signal at voxel i in subject j

aji amplitude of activation of voxel i in subject j

hj a finite-time HRF vector in subject j

λji variance reciprocal of noise for voxel i in subject j

prior parameters for response amplitudes in subject j

prior parameters for nuisance regressor d in subject j

ωϕ,1, ωϕ,2 prior parameters for actviation probabilities ϕ

κj, θj prior parameters for noise variance in subject j
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