
MIT Open Access Articles

Hare: a file system for non-cache-coherent multicores

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Charles Gruenwald, III, Filippo Sironi, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. 
Hare: a file system for non-cache-coherent multicores. In Proceedings of the Tenth European 
Conference on Computer Systems (EuroSys '15). ACM, New York, NY, USA, Article 30, 16 pages.

As Published: http://dx.doi.org/10.1145/2741948.2741959

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/101091

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/101091
http://creativecommons.org/licenses/by-nc-sa/4.0/


Hare: a file system for non-cache-coherent multicores
Charles Gruenwald III, Filippo Sironi, M. Frans Kaashoek, and Nickolai Zeldovich

MIT CSAIL

Abstract
Hare is a new file system that provides a POSIX-like inter-
face on multicore processors without cache coherence. Hare
allows applications on different cores to share files, directo-
ries, and file descriptors. The challenge in designing Hare
is to support the shared abstractions faithfully enough to run
applications that run on traditional shared-memory operating
systems, with few modifications, and to do so while scaling
with an increasing number of cores.

To achieve this goal, Hare must support features (such as
shared file descriptors) that traditional network file systems
don’t support, as well as implement them in a way that scales
(e.g., shard a directory across servers to allow concurrent
operations in that directory). Hare achieves this goal through
a combination of new protocols (including a 3-phase com-
mit protocol to implement directory operations correctly and
scalably) and leveraging properties of non-cache-coherent
multiprocessors (e.g., atomic low-latency message delivery
and shared DRAM).

An evaluation on a 40-core machine demonstrates that
Hare can run many challenging Linux applications (including
a mail server and a Linux kernel build) with minimal or
no modifications. The results also show these applications
achieve good scalability on Hare, and that Hare’s techniques
are important to achieving scalability.

1 Introduction
As the number of cores per processor grows, it is becom-
ing more challenging to implement cache-coherent shared-
memory. Although computer architects don’t agree on
whether scalable shared memory is feasible [25], researchers
and practitioners are exploring multicore designs that have a
global physical address space but lack cache coherence. In
such designs, cores have private caches and share one or more
DRAMs (see Figure 1). Cores communicate with each other

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author.

Copyright is held by the owner/author(s).
EuroSys’15, April 21–24, 2015, Bordeaux, France.
ACM 978-1-4503-3238-5/15/04.
http://dx.doi.org/10.1145/2741948.2741959

Figure 1: Hare’s target multicore system: private caches,
shared DRAM, but no hardware cache coherence.

using messages, but can read and write from DRAM. Pro-
cessors cache the results of such reads and writes in private
caches, but do not provide cache coherence. Intel’s SCC [19],
IBM Cell’s SPE [18], the TI OMAP4 SoC [21] and GPGPUs
are examples of such processors, and even on commodity x86
servers, Intel’s Xeon Phi [34] has non-cache-coherent shared
memory.

Hare is a file system for such non-cache-coherent shared-
memory machines. The challenge in Hare’s design is that
non-cache-coherent shared-memory systems require software
to explicitly handle coherence. Hare strives to provide the illu-
sion of a single, coherent system—often called single system
image—because it makes it easy to write applications. For
example, if one core creates a file, it is convenient if another
core can read that file with a guarantee that it will see the last
consistent version of that file. Similarly, it is convenient for
programmers to be able to create a child process on a remote
core that may share file descriptors with the parent process.
Traditional shared-memory operating systems rely on cache-
coherence and synchronization primitives (such as locks) to
implement these facilities, but on non-cache-coherent shared-
memory systems, there exists no good solution that scales to
a large number of processors.

One possible solution is to treat the non-cache-coherent
multicore as a distributed system and run a distributed file
system (e.g., NFS [30] or 9P/VirtFS [22]). Processes share
files by making remote calls to the NFS server. The downside
of this solution is that many Unix applications cannot be run
on several cores, because network file systems do not pro-
vide a single system image. For example, NFS clients lack a
mechanism for sharing file descriptors, but many applications
rely on shared file descriptors (e.g., building software with
make or using redirection). As a result, such applications
are restricted to a single core on an NFS-based design. In
addition, this “solution” treats the underlying hardware as a
message-passing distributed system, and cannot take advan-

1

http://dx.doi.org/10.1145/2741948.2741959


tage of shared resources (such as non-cache-coherent shared
memory) for performance.

This paper explores the Hare file system design, which
allows applications to take advantage of multiple cores by
providing a single system image on non-cache-coherent mul-
ticores in a scalable manner. To provide the single-system-
image POSIX API, Hare must support the correct semantics
for shared files, directories, pipes, sockets, file descriptors,
etc, without relying on the hardware cache-coherence proto-
col. Hare implements the POSIX system call API faithfully
enough that it can run many POSIX applications with little
to no modifications. For example, Hare can build the Linux
kernel with a small modification to make (to flag the pipe
of the jobserver as shared) and no modifications to any of
the standard Unix utilities used by the build process. Hare
provides these interfaces in a way that allows applications to
scale to many cores. For example, our suite of benchmarks
achieves an average speedup of 14× on a 40-core machine
with Hare, compared to running on a single core.

Hare achieves good performance using several techniques.
First, Hare uses the shared DRAM to store the buffer cache,
but each server manages its own partition of the buffer cache.
This allows for high throughput for read and write opera-
tions while avoiding storing multiple copies of the same file
data. Second, to allow for scalable directory operations, Hare
shards directory entries in the same directory to different
servers, using hashing. To ensure consistency of the directory
caches, Hare employs an invalidation protocol, and to reduce
the latency of invalidation, Hare relies on atomic message
delivery. To handle removal of directories correctly, Hare
uses a three-phase protocol. Third, Hare supports remote
execution of processes. Fourth, Hare supports sharing of file
descriptors between processes.

We implement Hare by running a Linux kernel, interposing
on system calls that involve sharing, and redirecting those
system calls to a local Hare client library. System calls that
don’t involve shared resources are processed by the Linux
kernel locally. This implementation strategy allowed us to
implement a sufficiently complete POSIX API, so that Hare
can run many Linux applications unmodified, including build-
ing the Linux kernel, running a mail server, etc. In addition,
this strategy enables a more direct performance comparison
with Linux, because local systems calls are implemented
identically.

We evaluate Hare on a 40-core off-the-shelf machine that
provides cache-coherent shared memory. Like previous oper-
ating systems (e.g., Barrelfish [6]), Hare uses cache coherence
purely to pass messages from one core to another. Hare uses
shared DRAM to store file data, but explicitly manages file
consistency in software by sending invalidate message on
open and writing back dirty blocks on fsync. The advantage
of using a cache-coherent shared-memory machine is that
we can also run Linux as a shared-memory multiprocessor

operating system on the same machine, and compare Hare
and Linux in terms of performance and scalability.

We run complete application benchmarks (such as com-
piling the Linux kernel) as well as microbenchmarks to test
specific aspects of the Hare design. We find that most bench-
marks scale well when run on Hare. Hare’s single-core’s
performance is worse than Linux’s due to messaging over-
head, however Hare’s performance is substantially better than
a user-space NFS server [2]. We also find that the individ-
ual techniques that Hare uses are important to achieve good
scalability.

Although Hare’s design scales well to many cores, our
current prototype has several limitations. We do not support
persistent storage to disk, and instead focus on the multi-core
scalability of the in-memory file system. We do not support
multiple threads in a single process, to keep Hare’s polling
IPC implementation simple. Our remote execution mecha-
nism does not support migration between exec calls. Finally,
we do not support the entire POSIX API, but instead focus on
providing enough of POSIX to run many real applications, as
we show in §5.

2 Related Work
Hare targets running standard POSIX applications on multi-
core processors without cache-coherent shared memory. To
achieve this goal Hare builds both on work in file systems for
multicore processors and distributed systems.

2.1 File systems for multicore processors
Shared-memory file systems. Widely used multicore pro-
cessors support cache-coherent shared-memory and can run
shared-memory multiprocessor (CC-SMP) file systems. Al-
though CC-SMP file systems are successful, CC-SMP file
systems have suffered from scalability bottlenecks due to
locks on directories and reference counting of shared file sys-
tem objects [11]. To achieve better scalability, CC-SMP file
systems like Linux have been moving to a more distributed
model, with per-core state or explicit replication for certain
data structures, adopting techniques from earlier CC-NUMA
systems like SGI IRIX [41], Tornado [16], and K42 [3]. How-
ever, the Linux file system takes advantage of cache-coherent
shared memory for shared file descriptors, shared file caches,
and the shared directory cache—something that Hare cannot
do on a non-cache-coherent system.

Because Hare cannot rely on cache coherence, it introduces
several new techniques that, when combined together, allow
POSIX applications to run with few modifications on a non-
cache-coherent multicore processor. Furthermore, because
we implemented Hare on top of the Linux kernel (without
using Linux’s shared-memory functionality), we can compare
Hare to Linux using POSIX applications, which allows us to
assess the value of cache coherence. From this comparison
we conclude that some techniques that Hare introduces could
also be of value to CC-SMP file systems to achieve scalability.

2



HFS [23] allows high-performance-computing applications
to adjust the file system to the needs of the application and the
architecture it is running on. It gives applications fine-grained
control over how files are organized and accessed to improve
performance, based on a workload’s access pattern and the
architecture of the machine. Hare targets general-purpose
SMP applications, which require many POSIX features be-
yond basic file operations, and often need those operations to
be scalable. For example, applications like make stress many
POSIX operations, and require directory and file operations
to scale well.

Hive [10] splits a cache-coherent shared-memory multi-
processor into cells and runs an isolated kernel in each cell
for fault containment. Different cells can use distributed file
systems like NFS to share files across cells. Disco [9] layers
a small virtual machine monitor below the cells to manage
resources between the different kernels and to support both
general-purpose kernels with limited scalability and special-
purpose scalable kernels. Cerberus uses a combination of a
virtual machine monitor and a layer on top of the cells to pro-
vide a scalable single system image on top of the cells [38].
Unlike Hare, all of these systems rely on cache-coherent
shared memory.

File systems for heterogeneous multicore processors.
Operating systems targeting heterogeneous multicore pro-
cessors or intelligent IO devices split the system in different
functional components [27] but typically do not support a
single file system across the different cores. For example, the
Spine [15] and Hydra [43] systems support offloading OS
components to smart devices but don’t provide a file system
to them. Helios’s satellite kernels provide a uniform kernel
API across heterogeneous cores but Helios doesn’t include
file and directory operations [28]. Hare’s techniques could
be used to implement a file system using the uniform kernel
API.

K2 [24] implements a “share most” operating system based
on Linux for multicore mobile platforms with separate do-
mains that have no cache coherence between them. K2 relies
on distributed shared memory for sharing OS data structures
across coherence domains. Hare targets architectures where
coherence domains consists of a single core and Hare relies
on new protocols, instead of distributed shared memory, to
achieve good performance and scalability for shared files,
directories, and so on.

GPUfs [37] is similar to Hare in that it uses a shared DRAM
between a GPU and the host processor to implement a dis-
tributed file system. Hare differs from GPUfs in handling
directories, file offsets, and other shared state exposed by
POSIX. Furthermore, GPUfs is focused purely on accessing
file contents through a restricted interface, and cannot support
general-purpose POSIX applications. For example, without
sharing of file descriptors, pipes, and so on, make’s jobserver
will not function correctly.

Cosh [7] provides abstractions for managing shared mem-
ory across heterogeneous cores, including cache-coherent and
non-cache-coherent cores as well as accelerators that require
explicitly transferring memory to and from the shared system
memory. CoshFS provides a simple file system on top of
the Cosh primitives, but focuses on file data, and does not
address the question of how to provide scalable directory and
file descriptor operations.

File systems for multikernels. Multikernel operating sys-
tems don’t require cache-coherent shared memory; each core
runs its own kernel, which communicate with message pass-
ing. One approach for building a multikernel file system is to
strictly partition the file system state across cores, similar to
how many multicore databases work [35]. This suffers from
load imbalance and makes remote data access costly. The
file system in the fos multikernel [44] shares data between
cores, but is limited to read-only workloads. Barrelfish uses a
standard distributed file system, NFS [39], but NFS doesn’t
support POSIX applications that rely, for example, on shared
file descriptors (as discussed below), while Hare does. Al-
though Hare runs on top of the Linux kernel, Hare doesn’t
rely on shared memory and its techniques could be used in
multikernel operating systems to build a scalable file system
that can run a wide range of POSIX applications.

Popcorn [5] is a multikernel based on Linux specifically
targeting heterogeneous platforms without cache-coherent
shared memory. Popcorn is complementary to Hare: Popcorn
focuses on running a separate Linux on each core while pro-
viding a shared namespace and process migration. However,
Popcorn does not have a scalable design for a shared file sys-
tem. We expect that Hare’s file system design would fit well
into Popcorn.

2.2 Distributed file systems
Hare adopts many techniques from distributed file systems,
but differs in significant ways. To support the same applica-
tions as CC-SMP file systems do, Hare introduces a number
of new techniques to support the necessary POSIX semantics.
Hare does so by leveraging properties of the hardware that
distributed file systems cannot leverage: assuming a single
failure domain between the Hare file servers and client li-
braries, leveraging fast and reliable message delivery between
cores, and using shared DRAM for efficient access to bulk
shared data.

LAN Distributed File Systems. Hare’s design resem-
bles networked distributed file systems such as NFS [30],
AFS [20], and Plan 9 [32], and borrows some techniques
from these designs (e.g., directory caching, close-to-open
consistency, etc). The primary differences are that Hare can
exploit shared DRAM to maintain a single buffer cache, that
directory entries from a single directory are distributed across
servers, and that file descriptors can be shared among clients.

3



This allows Hare to run standard SMP POSIX applications
with almost no modifications.

Consider a situation where a file descriptor is shared be-
tween a parent and child process. This idiom appears in many
applications such as extracting a compressed file using tar or
configuring a build system using autoconf. According the
POSIX API specification [1], the underlying file descriptor
should be shared. This means that aspects related to the file
descriptor such as the file offset should remain consistent
between the two processes. However, since there is no mech-
anism for NFS clients to share file descriptors, applications
using this idiom are limited to a single core.

Distributed file systems also typically lack support for ac-
cessing unlinked files through already-opened file descriptors,
especially if the file is open on one machine and is unlinked
on another machine. Consider the situation where one process
opens a file while another process writes to and then removes
that file. This situation arises during a typical compilation
process. According to the POSIX [1] specification, the file
data should remain valid for the original process that opened
the file. Networked file systems typically do not handle this
situation, as they cannot rely on client machines to remain
online and reliably close all outstanding open files. This is
due to the fact that client machines are not trusted and may
crash without notifying the server.

More broadly, distributed OSes like Sprite [14],
Amoeba [40], and MOSIX [4] also aim to provide a single
system image, which includes a shared file system. These sys-
tems provide process migration to place applications closer
to nodes storing data, but cannot take advantage of direct ac-
cess to shared DRAM, and do not provide scalable directory
operations.

Datacenter and Cluster File Systems. Hare targets run-
ning POSIX applications in a scalable manner by paralleliz-
ing file system operations. Datacenter and cluster file systems
are designed to support parallel file workloads. A major dif-
ference is that the Metadata Server (MDS) in these designs
is typically a single entity, as in Lustre [12] and the Google
File System [17], which creates a potential bottleneck for
metadata operations. The Flat Datacenter Storage (FDS) [29]
solution uses a Tract Locator Table to perform lookups. This
design avoids the MDS on the critical path, but FDS is a blob
store and not a general file system. Blizzard [26] builds a file
system on top of FDS as a block store, but does not allow
multiple clients to share the same file system. Ceph [42]
uses a distributed approach to metadata management by using
Dynamic Subtree Partitioning to divide and replicate the meta-
data among a cluster of Metadata Servers. As with traditional
distributed file systems, they cannot exploit a shared DRAM
and don’t support sharing of file descriptors across clients.

Cluster file systems rely on sophisticated protocols to
achieve consistency between nodes. For example, Farsite
showed how to implement rename atomically across directo-

ries [13]. Hare uses similar protocols, such as its directory
removal protocol, to provide shared file system semantics
on a non-cache-coherent system, but it can assume a single
failure domain.

Shared-disk file systems such as Redhat’s GFS [33, 45] and
IBM’s GPFS [36] enable multiple nodes to share a single file
system at the disk block level. Such designs typically store
each directory on a single disk block, creating a bottleneck for
concurrent directory operations. Furthermore, such designs
cannot take advantage of a shared buffer cache or a shared
directory cache, and cannot support shared file descriptors
between processes.

3 Design
Hare’s goal is to run a wide variety of POSIX applications
out-of-the-box on a machine with non-cache-coherent shared
memory, while achieving good performance and scalability.
This goal is challenging because modern SMP applications
rely on the POSIX API in complex ways. Consider an appli-
cation such as make to compile the Linux kernel. make has its
own internal job scheduler that creates processes to achieve
good parallelism, it uses shared file descriptors, pipes, and
signals to coordinate activities, it removes files that other pro-
cesses opened, it creates many files in the same directory, and
so on. Hare must implement all these features correctly but
without relying on cache consistency as CC-SMP operating
systems do. This section introduces the design and protocols
that Hare uses to achieve its goal.

3.1 Overview
Figure 2 illustrates Hare’s overall design. The main parts
of Hare are the per-core client libraries and the file servers.
Applications run on top of the Hare client library, and issue
POSIX system calls such as open, read, and write, to this
library. The library implements the Hare protocol, maintains
caches, accesses data in the shared buffer cache directly via
DRAM, and communicates with the file servers via message
passing. Our design assumes that the client library runs in
the kernel, protected from misbehaving applications. Our
current prototype is implemented as a library that runs in the
application process itself, but we expect it would be straight-
forward to migrate it into the kernel. Our prototype runs on
top of the Linux kernel, so that we can make comparisons
with Linux. Hare uses Linux to boot up the system and to
provide system calls that do not require sharing. Hare inter-
poses on all systems calls for shared resources (e.g., files, file
descriptors, etc.) and redirects those system calls to the Hare
client library.

Our prototype of Hare does not support a persistent on-disk
file system, and instead provides an in-memory file system.
We made this choice because implementing a scalable in-
memory file system is a prerequisite for tackling persistence,
and poses a set of unique challenges in maintaining shared file
system state on top of non-cache-coherent shared memory;

4



Shared DRAM

Shared buffer cache

Core 1 Core 2 Core N. . .
Linux kernel

Client
library

Client
library

Client
library

RPC

App
1

App
2

App 3 File
server

Figure 2: Hare design.

implementing persistence for a non-scalable file system is
relatively straightforward. We are focused on the steady-
state behavior of the system after blocks have been read from
disk; when our Hare prototype reboots, it loses all data. Any
operations that read or write data on disk would be orders
of magnitude slower than in-memory accesses, and could
be serialized by processors that are closest to the disk I/O
controllers. We expect that implementing fsync would be
straightforward by serializing fsync at the corresponding file
server and flushing the relevant file to disk (or a distributed
protocol for flushing a distributed directory).

Although Hare focuses on the file system, it inevitably
needs to run processes on multiple cores. To avoid relying on
the Linux kernel (and its shared memory) for this, Hare intro-
duces a scheduling server. The scheduling server is responsi-
ble for spawning new processes on its local core, waiting for
these processes to exit, and returning their exit status back to
their original parents. Additionally, the scheduling server is
responsible for propagating signals between the child process
and the original parent. To this end, the scheduling server
maintains a mapping between the original process that called
exec() and the new child process that has been spawned
locally.

Since Hare runs on a single physical machine, it assumes a
single failure domain: either all cores and DRAM are work-
ing, or the entire machine crashes. This abstraction matches
the model provided by our target non-cache-coherent ma-
chines. We assume that the Hare client libraries and file
servers are correct and do not crash, similar to how a mono-
lithic kernel is assumed to never crash. If only a subset of the
file servers or client libraries crash or malfunction, Hare will
malfunction as a whole; it might return incorrect data to an
application, corrupt the file system state, or hang.

Figure 3 shows the data structures used by Hare’s file sys-
tem. The file server processes maintain file system state and
perform operations on file system metadata. The data struc-
tures that comprise the file system are split between all of the
servers. Each client library keeps track of which server to
contact in order to perform operations on files, directories, or

open file descriptors. For example, to open a file, the client
library needs to know both the file’s inode number, and the
server storing that inode. The client library obtains both the
inode number and the server ID from the directory entry cor-
responding to the file. A designated server stores the root
directory entry.

Figure 3: Data structures used by the Hare File System.

The rest of this section discusses Hare’s file system in more
detail, focusing on how shared state is managed.

3.2 File data
The buffer cache stores file blocks, but not file metadata. The
buffer cache is divided into blocks which file servers allocate
to files on demand. Each server maintains a list of free buffer
cache blocks; each block is managed by one file server. When
a file requires more blocks, the server allocates them from its
local free list; if the server is out of free blocks, it can steal
from other file servers (although stealing is not implemented
in our prototype).

The client library uses shared-memory addresses to directly
read and write blocks in the buffer cache. If an application
process opens a file, it traps into the client library, which
sends a message to the file server in charge of that file. If the
standard POSIX permission checks pass, the server responds
to the client library with the block-list associated with that file.
When an application invokes a read() or write() system
call, the application’s local client library reads and writes
the buffer cache directly, provided the blocks are known,
otherwise it requests the associated blocks before performing
the operation.

The challenge in accessing the shared buffer cache from
multiple cores lies in the fact that each core has a non-coherent
private cache. As a result, if the application on core 1 writes
to a file, and then an application on core 2 reads the same file,
the file’s data might be in core 1’s private cache, or even if it
was flushed to DRAM, core 2’s cache could still have a stale
copy.

Solution: Invalidation and writeback protocol. To ad-
dress this problem, Hare performs explicit invalidation and

5



writeback. To avoid having to invalidate and writeback cache
data at every file read and write, Hare employs a weaker con-
sistency model, namely, close-to-open consistency [20, 30].
When an application first opens a file, the client library inval-
idates the local processor’s cache for the blocks of that file,
since they may have been modified by another core. When
an application closes the file descriptor or calls fsync() on
it, its client library forces a writeback for any dirty blocks
of that file in its local processor cache to the shared DRAM.
This ensures that when that file is opened on any core, the
will observe the latest changes to that file since the last close.
As we demonstrate in §5, many applications are compatible
with close-to-open semantics.

Although close-to-open semantics do not require Hare to
ensure data consistency in the face of concurrent file op-
erations, Hare must ensure its own data structures are not
corrupted when multiple cores manipulate the same file. In
particular, if one core is writing to a file and another core
truncates that file, reusing the file’s buffer cache blocks can
lead to data corruption in an unrelated file, because the client
library on the first core is still writing to these buffer cache
blocks. To prevent this, Hare defers buffer cache block reuse
until all file descriptors to the truncated file have been closed
(see §3.4).

3.3 Directories
Parallel applications often create files in a shared directory.
To avoid contention between operations on different files in
the same directory, Hare allows the application to create a
distributed directory by using a flag during directory creation
time. Hare then distributes the directory entries across the
file system servers. When an application creates a file in a
distributed directory dir, the client library determines which
server to contact about the directory entry using a hash func-
tion: hash(dir, name) % NSERVERS → server_id, where
name is the name of the new file in directory dir. To avoid
re-hashing directory entries when the parent directory is re-
named, Hare uses the inode number to identify each directory
(and file) in the file system, which does not change when it
is renamed. In the hash computation, dir refers to the parent
directory’s inode number.

Hashing ensures that directory entries of the directory dir
are evenly distributed across the file servers, so that appli-
cations can perform multiple operations (e.g., creating files,
destroying inodes, and adding and removing directory entries)
on a distributed directory in parallel, as long as the file names
hash to different servers.

In the current design, the number of servers (NSERVERS)
is a constant. As we show in §5, it can be worthwhile to
dynamically change the number of servers to achieve better
performance. However, the optimal number of servers is
dependent on the application workload.

Most directory operations require contacting just one or
two servers. For example, rename first contacts the server

storing the new name, to create (or replace) a hard link with
the new name, and then contacts the server storing the old
name to unlink it. One exception is readdir, which requires
contacting all servers to obtain a list of all directory entries.
In case of concurrent operations, this might produce a non-
linearizable result, but POSIX allows this [1].

One complication with directory distribution arises during
rmdir, which must atomically remove the directory, but only
if it is empty. Since the directory entries are distributed across
file servers, performing rmdir() on the directory can race
with another application creating a file in the same directory.

Solution: Three-phase directory removal protocol. To
prevent the race between rmdir() and file creation in that
directory, Hare implements rmdir() using a three-phase pro-
tocol. The core of this protocol is the standard two-phase
commit protocol. The client library performing rmdir() first
needs to ensure that the directory is empty; to do so, it sends a
message to all file servers, asking them to mark the directory
for deletion, which succeeds if there are no remaining direc-
tory entries. If all servers succeed, the client library sends
out a COMMIT message, allowing the servers to delete that
directory. If any server indicates the directory is not empty,
the client library sends an ABORTmessage, which removes the
deletion mark on the directory. While the directory is marked
for deletion, file creation and other directory operations are
delayed until the server receives a COMMIT or ABORT message.
The last complication with this protocol arises from concur-
rent rmdir() operations on the same directory. To avoid
deadlock, Hare introduces a third phase, before the above
two phases, where the client library initially contacts the di-
rectory’s home server (which stores the directory’s inode) to
serialize all rmdir() operations for that directory.

It might be possible to optimize this protocol further, by
placing the directory’s home server in charge of coordinating
rmdir() across all of the servers. We did not implement this
because Hare avoids server-to-server RPCs, which simplifies
reasoning about possible deadlock scenarios between servers.

3.4 File descriptors
File descriptors are used to keep track of the read/write offset
within an open file, which poses a challenge for Hare when
several processes share a file descriptor. In a cache-coherent
system, it is simply a matter of storing the file descriptor data
structure with its associated lock in shared memory to coordi-
nate updates. Without cache coherency, though, Hare needs
a mechanism to ensure that the file descriptor information
remains consistent when shared. For example, suppose a pro-
cess calls open() on a file and receives a file descriptor, then
calls fork() to create a child process. At this point write()
or read() calls must update the offset for both processes.

A second scenario which poses a challenge for Hare is
related to unlinked files. In POSIX, a process can still read
and write a file through an open file descriptor, even if the file
has been unlinked.

6



Solution: Hybrid File Descriptor tracking. To solve this
problem, Hare stores some file descriptor state at servers. For
each open file, the server responsible for that file’s inode
tracks the open file descriptors and associated reference count.
This ensures that even if the file is unlinked, the inode and
corresponding file data will remain valid until the last file
descriptor for that file is closed.

The file descriptor’s offset is sometimes stored in the client
library, and sometimes stored on the file server, for perfor-
mance considerations. When the file descriptor is not shared
between processes (“local” state), the client library maintains
the file descriptor offset, and can perform read and write op-
erations without contacting the file server. On the other hand,
if multiple processes share a file descriptor (“shared” state),
the offset is migrated to the file server, and all read() and
write() operations go through the server, to ensure consis-
tency. The file descriptor changes from local to shared state
when a process forks and sends a synchronous RPC request
to the server to increment the reference count; it changes back
to local state when the reference count at the server drops
to one. Although this technique could present a potential
bottleneck, sharing of file descriptors is typically limited to a
small number of processes for most applications.

3.5 Processes
In order to take advantage of many cores, Hare applications
must be able to spawn processes on those cores. A scheduler
in a traditional shared memory operating system can simply
steal processes from another core’s run queue. However, in
Hare, it is difficult to migrate a process from one core to
another, since it requires packaging up data structures related
to the process on the local core, sending them over, and
unpacking them on the destination core.

Solution: Remote execution protocol. Hare’s insight is
that exec provides a narrow point at which it is easy to mi-
grate a process to another core. In particular, the entire state
of the process at the time it invokes exec is summarized by
the arguments to exec and the calling process’s open file
descriptors. To take advantage of this, Hare can implement
the exec call as an RPC to a scheduler running on another
core, so that the process finishes the exec on that core before
resuming execution.

Each core runs a scheduling server, which listens for RPCs
to perform execs. When a process calls exec, the client li-
brary implements a scheduling policy for deciding which core
to pick; our prototype supports both a random and a round-
robin policy, with round-robin state propagated from parent
to child. These two policies proved to be sufficient for our
applications and benchmarks. The client library then sends
the arguments, file descriptor information, and process envi-
ronment to the other core’s scheduling server. The scheduling
server in turn starts a new process on the destination core
(by forking itself), configures the new process based on the

RPC’s arguments, and calls exec to load the target process
image on the local core.

Running a process on another core faces three challenges.
First, when the process exits, the parent on the original core
needs to be informed. Second, signals need to be propagated
between the new and original core. Third, the process might
have had local file descriptors (e.g., to the console or other file
descriptors specific to the original core) that are not accessible
on the new core.

To address this challenge, Hare uses a proxy process, simi-
lar to MOSIX [4]. The original process that called exec turns
into a proxy once it sends the RPC to the scheduling server.
The scheduling server will, in turn, wait for the new process
to terminate; if it does, it will send an RPC back to the proxy,
enabling the proxy to exit, and thereby providing the exit
status to the parent process. If the process running on the new
core tries to access any file descriptors that were specific to
its original core, the accesses are turned into messages back
to the proxy process, which relays them to the original core.
Finally, if the proxy process receives any signals, it relays
them to the new process.

If a process repeatedly execs and runs a process on another
core, it can accumulate a large number of proxy processes.
When the remote core already has a proxy for the process
calling exec, Hare could reuse this proxy process. We do not
implement this in our prototype, since our target applications
do not perform repeated exec calls in the same process.

3.6 Techniques and Optimizations
Hare implements several optimizations to improve perfor-
mance, which we evaluate in §5.

3.6.1 Directory lookup and caching

Hare caches the results of directory lookups, because lookups
involve one RPC per pathname component, and lookups
are frequent. Pathname lookups proceed iteratively, issu-
ing the following RPC to each directory server in turn:
lookup(dir, name)→ ⟨server, inode⟩, where dir and inode
are inode numbers, name is the file name being looked up,
and server is the ID of the server storing name’s inode. The
file server returns both the inode number and the server ID,
as inodes do not identify the server; each directory entry in
Hare must therefore store both the inode and the server of the
file or directory.

Hare must ensure that it does not use stale directory cache
entries. To do this, Hare relies on file servers to send invali-
dations to client libraries, much like callbacks in AFS [20].
The file server tracks the client libraries that have a particular
name cached; a client library is added to the file server’s track-
ing list when it performs a lookup RPC or creates a directory
entry.

The key challenge in achieving good performance with
invalidations is to avoid the latency of invalidation callbacks.
In a distributed system, the server has to wait for clients to

7



acknowledge the invalidation; otherwise, the invalidation may
arrive much later, and in the meantime, the client’s cache will
be inconsistent.

Solution: Atomic message delivery. To address this chal-
lenge, Hare relies on an atomic message delivery property
from its messaging layer. In particular, when the send()
function completes, the message is guaranteed to be present
in the receiver’s queue. In our prototype implementation, we
implement message passing on top of cache-coherent shared
memory, and achieve atomic message delivery by delivering
the message into the receiver’s shared-memory queue before
returning from send().

To take advantage of this property, Hare’s directory lookup
function first checks the invalidation queue for incoming mes-
sages, and processes all invalidations before performing a
lookup using the cache. This allows the server to proceed as
soon as it has sent invalidations to all outstanding clients (i.e.,
send() returned), without waiting for an acknowledgment
from the client libraries themselves. Note that the lookup op-
eration does not have to contact the server; it simply processes
a queue of already-delivered messages.

This design ensures that if a server sent an invalidation
to a client library before that client core initiated a lookup,
the lookup is guaranteed to find the invalidation message
in its queue. If the invalidation message was sent after the
lookup started, the client might miss the invalidation, but
this is acceptable because the invalidation and lookup were
concurrent.

3.6.2 Directory broadcast

As described in §3.3, the hash function distributes directory
entries across several servers to allow applications to perform
directory operations on a shared directory in parallel. How-
ever, some operations like readdir() have to contact all of
the servers. To speed up the execution of such operations,
Hare’s client libraries contact all directory servers in parallel.
This enables a single client to overlap the RPC latency, and
to take advantage of multiple file servers that can execute
its readdir() in parallel, even for a single readdir() call.
The individual RPCs to each file server are implemented as
unicast messages; the benefit of this technique stems from
overlapping the execution of server RPC handlers.

3.6.3 Message coalescing

As the file system is distributed among multiple servers, a sin-
gle operation may involve several messages (e.g. an open()
call may need to create an inode, add a directory entry, as well
as open a file descriptor pointing to the file). When multiple
messages are sent to the same server for the same operation,
the messages are coalesced into a single message. In particu-
lar, Hare often places the file descriptor on the server that is
storing the file inode, in order to coalesce file descriptor and
file metadata RPCs.

3.6.4 Creation affinity

Modern multicore processors have NUMA characteristics [6].
Therefore, Hare uses Creation Affinity heuristics when creat-
ing a file: when an application creates a file, the local client
library will choose a close-by server to store that file. If Hare
is creating a file, and the directory entry maps to a nearby
server (on the same socket), Hare will place the file’s inode on
that same server. If the directory entry maps to a server on an-
other socket, Hare will choose a file server on the local socket
to store the file’s inode, under the assumption that the inode
will be accessed more frequently than the directory entry. As
mentioned in §3.6.1, Hare names inodes by a tuple consisting
of the server ID and the per-server inode number to guarantee
uniqueness across the system as well as scalable allocation
of inode numbers. Each client library has a designated local
server it uses in this situation, to avoid all clients storing files
on the same local server. Creation Affinity requires client
libraries to know the latencies for various servers, which can
be measured at boot time.

4 Implementation
Hare’s implementation follows the design in Figure 2. The
kernel that Hare runs on top of is Linux, which provides
support for local system calls which do not require sharing.
Hare interposes on system calls using the linux-gate.so
mechanism [31] to intercept the application’s system calls
(by rewriting the syscall entry code in the linux-gate.so
page) and determine whether the call should be handled by
Hare or forwarded to the kernel. Hare implements most of the
system calls for file system operations, as well as several for
spawning child processes and managing pipes. We have not
placed the client library into the kernel since it complicates the
development environment, although it would allow processes
on the same core to share the directory lookup cache. As a
result, our prototype does not provide any security or isolation
guarantees.

Hare does not rely on the underlying kernel for any state
sharing between cores; all cross-core communication is done
either through Hare’s message passing library [8], which uses
polling, or through the buffer cache, which is partitioned
among the servers, and totals 2 GB in our setup. The mes-
sage passing library is implemented using shared memory,
but could be changed to a hardware message-passing primi-
tive. Our prototype does not support multiple threads within a
single process because of the polling-based message passing.
To limit any unintended use of shared memory, the applica-
tions as well as the server processes are pinned to a core; we
informally checked that Hare does not inadvertently rely on
shared memory.

Because Hare relies on RPC to file servers that potentially
run on the same core, Hare uses a modification to the Linux
kernel to provide PCID support. Use of the PCID feature on
the Intel architecture allows the TLB to be colored based on

8



process identifiers, which avoids flushing the TLB during a
context switch. This results in faster context switch times
which can result in faster messaging when a server is sharing
a core with the application.

The Hare prototype strives to provide a POSIX interface,
and except for close-to-open consistency, we believe that Hare
adheres to POSIX. As we describe in §5, our benchmarks use
a wide range of file system operations, and are able to run
correctly on Hare, suggesting that Hare’s POSIX support is
sufficient for many applications. That said, Hare is a research
prototype and other applications might expose ways in which
Hare does not fully adhere to the POSIX standard. We expect
that it would be relatively straightforward (if time-consuming)
to find and fix cases where Hare deviates from POSIX.

Lines of code for various portions of the system are pro-
vided in Figure 4; Hare is implemented in C and C++.

Component Approx. SLOC

Messaging 1,536
Syscall Interception 2,542
Client Library 2,607
File System Server 5,960
Scheduling 930

Total 13,575

Figure 4: SLOC breakdown for Hare components.

5 Evaluation
This section evaluates Hare’s performance on several work-
loads to answer four questions. First, what POSIX applica-
tions can Hare support? Second, what is the performance of
Hare? Third, how important are Hare’s techniques to overall
performance? Fourth, can Hare’s design show benefits on
machines with cache coherence?

5.1 Experimental Setup
All of the results in this section are from a system with four
Intel Xeon E7-4850 10-core processors, for a total of 40
cores, with 128 GB of DRAM. This machine provides cache-
coherent shared memory in hardware, which enables us to
answer the last evaluation question, although Hare does not
take advantage of cache coherence (other than for implement-
ing message passing). The machines run Ubuntu Server 13.04
i686 with Linux kernel 3.5.0. All experiments start with an
empty directory cache in all client libraries. All reported
results are the averages across 6 runs of each experiment.

5.2 POSIX Applications
As one of Hare’s main goals is to support POSIX style ap-
plications, it is important to consider which applications run
on the system. Although Hare does not support threads, and
fork() calls must run locally, Hare can still run a variety of
applications with little to no modifications. Some of these
are benchmarks designed to stress a portion of the system,

Figure 5: Operation breakdown for our benchmarks.

while others employ a broader range of operations. All of the
applications can run on Hare as well as Linux without any
modifications. However, to improve their performance, we
made small changes to several applications; specifically, to
control the sharing policy of directories or to use exec() in
addition to fork() calls. Additionally, we chose a placement
policy for each of the applications (random placement for
build linux and punzip and round-robin for the rest), though
the placement policy is within the Hare client library and does
not require modifying the application.

The tests which stress individual parts of the system include
creates, writes, renames, directories, rm and pfind. For each
of these benchmarks an individual operation is performed
many times (typically 65535 iterations) within the same di-
rectory, to reduce variance. The dense directory tree contains
2 top-level directories and 3 sub-levels with 10 directories
and 2000 files per sub-level. The sparse directory tree con-
tains 1 top-level directory and 14 sub-levels of directories
with 2 subdirectories per level. The extract test performs a
decompression of the Linux 3.0 kernel while the build linux
text performs a parallel build of this kernel. The punzip test
unzips 20 copies of the manpages on the machine in parallel.
The fsstress benchmark repeatedly chooses a file system op-
eration at random and executes it; we borrowed it from the
Linux Test Project. Finally, the mailbench test is a mail server
benchmark from the sv6 operating system [11]. The POSIX
use cases described previously are present in one or more of
these tests. It is also important to note that configuring and
building the Linux kernel invokes a broad range of standard
Unix utilities, all of which run unmodified on Hare.

From Figure 5, it is clear that the breakdown of opera-
tions is significantly different across the various benchmarks.
In addition to the breakdown provided, it is also important
to note the number of operations being issued and various
ways that the workloads access files and directories varies.
For instance the larger benchmark build linux issues on the
order of 1.2M operations with the other tests issuing tens
to hundreds of thousand operations. Tests such as extract,

9



punzip and build linux make use of pipes. make relies on a
shared pipe implemented in Hare in order to coordinate with
its jobserver. The broad range of applications and the various
ways in which they access the system demonstrate that Hare
can support a variety of real-world applications. For space
reasons, we do not break down how each application uses
Hare, but collectively they stress all aspects of Hare.

5.3 Performance
To understand Hare’s performance, we evaluate Hare’s scal-
ability, compare timesharing and dedicated-core configura-
tions, and measure Hare’s sequential performance.

5.3.1 Scalability

To evaluate Hare’s scalability, we measure the speedup that
our benchmarks observe when running on a different total
number of cores. We use a single-core Hare configuration as
the baseline and increase the number of cores, as well as the
number of Hare servers, up to the maximum number of cores
in the system. Figure 6 shows the results.

Figure 6: Speedup of benchmarks on Hare as more cores are
added, relative to their throughput on a single core.

The results demonstrate that for many applications, Hare
scales well with the number of cores. The benchmark that
shows the least scalability is pfind sparse. In this test, appli-
cation processes recursively list directories in a sparse tree.
As the directories are not distributed in this test and there are
relatively few subdirectories, each of the clients contacts the
servers in the same order, resulting in a bottleneck at a single
server as all n clients perform lookups in the same order. The
other tests show promise of further scalability to higher core
counts.

5.3.2 Split Configuration

In addition to running the filesystem server on all cores,
Hare can also be configured to dedicate several cores to the
filesystem server while running the application and schedul-
ing server on the remaining cores. As will be described in
§5.3.3, there are some performance penalties associated with

Figure 7: Performance of Hare in both split and combined
configurations.

time-multiplexing cores between servers and applications,
though the split configuration limits the number of cores than
an application may scale to.

Figure 7 presents the performance of Hare in the following
configurations: running the server and application on all 40
cores (timeshare), running the server on 20 cores and the
application on the remaining 20 cores (20/20 split) and finally
choosing the optimal split for all 40 cores between applica-
tion cores and filesystem server cores (best). The optimal
number of servers is presented above the bar for the best con-
figurations, and is determined by running the experiment in
all possible configurations and picking the best-performing
one. Each of the configurations is normalized against the
timeshare configuration which was used for the scalability
results presented in Figure 6.

From these results, it is clear that Hare can achieve better
performance if we knew the optimal number of servers. The
results also show, however, that the optimal number of servers
is highly dependent on the application and its specific work-
load, making it difficult to choose ahead of time. For example,
always using a 20/20 split leads to significantly lower through-
put for mailbench, fsstress, directories, and others. Con-
versely, always using an 8/32 split leads to significantly lower
throughput for both pfind benchmarks. Consequently, we
employ a time-sharing configuration instead, which achieves
reasonable performance without per-application fine-tuning
and provides a fair comparison for the results presented in
§5.3.1.

5.3.3 Hare Sequential Performance

Now that it has been established that Hare scales with increas-
ing core counts, it is important to consider the baseline that is
used for the scalability results. To evaluate Hare’s sequential
performance (single-core baseline), we compare it to that of
Linux’s ramfs running on one core. In the simplest configura-
tion, Hare runs on a single core, time-multiplexing between
the application and the server. Hare can also be configured

10



to run the application process(es) on one core alongside the
scheduling server while the filesystem server runs on another
core. In this split configuration, Hare’s performance can be
improved significantly as the time spent performing individ-
ual operations is comparable to the cost of the context switch
(which is significant because it involves the Linux kernel
scheduling and switching to the file server, and then schedul-
ing and switching back to the client library). When running
in the split configuration, there are no other processes sharing
the core with the filesystem server, and therefore the cost of
the context switch is eliminated. An additional performance
hit is also incurred due to cache pollution when the appli-
cation and the server share a core. We note, however, that
the split configuration does use twice as many resources to
perform the same operations.

We also compare Hare’s performance with that of
UNFS3 [2], a user-space NFS server. This comparison more
closely represents a state-of-the-art solution that would be
viable on a machine which does not support cache coherence.
In this setup, Linux uses two cores: one running the NFS
server, and one running the application, accessing the NFS
server via a loopback device. This experiment is intended to
provide a naïve alternative to Hare, to check whether Hare’s
sophisticated design is necessary.

0

0.5

1

1.5

2

2.5

3

3.5

creates

writes

renam
es

directories

rm
 dense

rm
 sparse

pfind dense

pfind sparse

extract

punzip

m
ailbench

fsstress

build linux

N
or

m
al

iz
ed

 T
hr

ou
gh

p
ut

hare timeshare
hare 2-core
linux ramfs

linux unfs

9.
01

2.
27

4.
12

2.
02

42
.2

4

0.
38

1.
74

0.
62

17
.0

7

18
.4

4

16
.5

0

3.
63

12
41

.3
8

Figure 8: Normalized throughput for a variety of applications
running on one core on Linux, relative to Hare (“hare time-
share”). The number above the “hare timeshare” bar indicates
the total runtime of that workload in seconds.

Figure 8 shows the performance of our benchmarks in these
configurations. These results show that Hare is significantly
faster than that of UNFS3 due to the high cost of messaging
through the OS and loopback interface. The only application
that performs well on UNFS3 is build linux, since it more
CPU-intensive, and Hare’s scheduler is worse than Linux’s.
When compared to Linux ramfs, Hare is slower (up to 3.4×),
though the ramfs solution is not a viable candidate for archi-
tectures which lack cache coherence. Our benchmarks with
Hare achieve a median throughput of 0.39× that of Linux on
one core.

Much of Hare’s performance on micro-benchmarks stems
from the cost of sending RPC messages between the client
library and the file server. For example, in the renames bench-
mark, each rename() operation translates into two RPC calls:
ADD_MAP and RM_MAP, which take 2434 and 1767 cycles
respectively at the client end, while only taking 1211 and 756
cycles at the server when run on separate cores. Since no
other application cores have looked up this file, the server
does not send any directory cache invalidations. As a conse-
quence, the messaging overhead is roughly 1000 cycles per
operation. The UNFS3 configuration will suffer a similar
overhead from using the loopback device for RPC messages.

In order to determine the component of the system most
affected by running on a separate core we evaluate the perfor-
mance of the rename() call across many iterations. When
running on a single core the call takes 7.204 µs while running
on separate cores the call takes 4.171 µs. Adding timestamp
counters to various sections of code reveals an increase of
3.78× and 2.93× for sending and receiving respectively. Us-
ing perf demonstrates that a higher portion of the time is
being spent in context switching code as well as a higher
number of L1-icache misses both contributing to the decrease
in performance when running on a single core.

5.4 Technique Importance
To evaluate the importance of each individual technique in
Hare’s design, we measure the relative throughput of each
benchmark in Hare’s normal configuration normalized to the
throughput with that technique disabled. Each technique has
different effects on each benchmark; Figure 9 summarizes
the results, which we discuss in more detail in the rest of
this subsection. For example, in Figure 10, the creates test is
approximately 4× faster when distributing directories than
without. We perform this comparison on the timesharing
configuration using all 40 cores, to include the effects on
scalability.

Technique Min Avg Median Max

Directory distribution 0.97× 1.93× 1.37× 5.50×
Directory broadcast 0.99× 1.43× 1.07× 3.93×
Direct cache access 0.98× 1.18× 1.01× 2.39×
Directory cache 0.87× 1.44× 1.42× 2.42×
Creation affinity 0.96× 1.02× 1.00× 1.16×

Figure 9: Relative performance improvement achieved by five
techniques in Hare over the set of all benchmarks, compared
to not enabling that technique. Higher numbers indicate better
performance; numbers below 1× indicate benchmarks that
got slower as a result of enabling a technique.

Directory Distribution. Applications have two options
for how to store a directory—distributed or centralized—
determined by a flag at directory creation time. When a di-
rectory is distributed, the entries are spread across all servers.

11



For centralized directories, the entries are all stored at a sin-
gle server. Applications which perform many concurrent
operations within the same directory benefit the most from
directory distribution and therefore use this flag. The appli-
cations which use this flag include creates, renames, pfind
dense, mailbench and build linux.

As seen in Figure 10, applications which exhibit this behav-
ior can benefit greatly from distributing the directory entries
across servers as they do not bottleneck on a single server for
concurrent operations. Additionally, workloads that involve
readdir() on a directory which contains many entries (e.g.
pfind dense) benefit from obtaining the directory listings from
several servers in parallel. Conversely, obtaining a directory
listing with few entries (e.g. pfind sparse) can suffer from
distributing directory entries and thus leave this feature turned
off.

On the other hand, rmdir() requires the client library to
contact all servers to ensure that there are no directory entries
in the directory that is to be removed before executing the
operation. As a consequence, workloads such as rm sparse
and fsstress which perform many rmdir() operations on di-
rectories with few children perform worse with directory dis-
tribution enabled and likewise run without this feature. This
demonstrates that allowing applications to choose directory
distribution on a per-directory basis is a good idea.

Figure 10: Throughput of Hare with Directory Distribution
(normalized to throughput without Directory Distribution).

Directory Broadcast. As mentioned above, Directory Dis-
tribution can improve performance when several operations
are being executed in the same directory. One drawback is
that some operations must now contact all servers, such as
rmdir() and readdir(). Hare uses Directory Broadcast to
send out such operations to all servers in parallel. Figure 11
shows the effect of this optimization, compared to a version of
Hare that uses sequential RPCs to each file server for directory
operations. Benchmarks that perform many directory listings,
such as pfind (dense) and pfind (sparse), as well as the direc-
tories test which removes many directories, benefit the most

from this technique. On the other hand, Directory Broadcast
can hurt performance only when repeatedly removing a direc-
tory that is not empty, as occurs in fsstress. However, since
each of the fsstress processes perform operations in different
subtrees, fsstress turns off directory distribution for this test,
and therefore Directory Broadcast is not employed.

Figure 11: Throughput of Hare with Directory Broadcast
(normalized to throughput without Directory Broadcast).

Direct Access to Buffer Cache. Figure 12 shows the per-
formance of Hare compared to a version where the client
library does not directly read and write to a shared buffer
cache, and instead performs RPCs to the file server. The
performance advantage of directly accessing the buffer cache
is most visible in tests which perform heavy file I/O, such
as writes, extract, punzip and build linux. Direct access to
the buffer cache allows the client library to access it indepen-
dently of the server and other applications, providing better
scalability and throughput. Furthermore, it reduces RPC calls,
which provides a significant performance advantage by alle-
viating congestion at the server.

Figure 12: Throughput of Hare with direct access from the
client library to the buffer cache (normalized to throughput
without direct access).

12



Another design for the buffer cache could be to use an
independent cache on each core rather than a shared buffer
cache across all cores. We chose a unified buffer cache to
reduce capacity misses introduced by sharing the same blocks
on multiple cores. To evaluate such effects, we use build linux
as a representative workload, as it has a large working-set
size. On this test, the number of misses is 2.2× greater when
the buffer cache is not shared. In a persistent file system that
stores data on disk (unlike Hare), these misses would require
going to disk, and thus this increase in the number of misses
would have a significant performance penalty. Additionally,
direct access to the buffer cache is never a hinderance to
performance and therefore should be used if available.

Directory Cache. Caching directory lookups improves the
performance of many benchmarks. As seen in Figure 13,
the benchmarks which benefit the most perform many opera-
tions on the same file or directory, such as renames, punzip
or fsstress. In mailbench and fsstress, each iteration will be
executed on a file in a subdirectory which will require an
extra lookup if the directory cache is disabled. The rm dense
test takes a performance hit with this optimization as it caches
lookups without using them. Overall, considering the perfor-
mance advantage across all tests, it makes sense to use this
technique.

Figure 13: Throughput of Hare with the Directory Cache
(normalized to throughput without the Directory Cache).

Creation Affinity. Figure 14 shows the effect of enabling
the creation affinity optimization. With creation affinity dis-
abled, Hare places newly created files on the same server that
stores the corresponding directory entry. While this enables
better message coalescing, it requires sending messages to
server cores that are further away. The benchmarks that most
benefit from Creation Affinity are writes, punzip, and mail-
bench. In these workloads, the application creating the file
is likely to access the file again, and therefore benefit from
nearby placement.

Figure 14: Throughput of Hare with Creation Affinity (nor-
malized to throughput without Creation Affinity).

5.5 Hare on cache-coherent machines
Figure 15 shows the speedup of the parallel tests on both Hare
and Linux (using tmpfs) for 40 cores. Some tests scale better
on Hare while others scale better on Linux. Traditional shared-
memory operating systems, such as Linux, could potentially
benefit from employing distributed directories to increase
performance for applications which perform many operations
within the same directory.

0

5

10

15

20

25

30

35

creates

writes

renam
es

directories

pfind dense

pfind sparse

punzip

m
ailbench

fsstress

build linux

S
pe

ed
up

 a
t 4

0 
C

or
e

s

hare
linux

0.
46

0.
13

0.
31

0.
12

0.
12

0.
07 1.

73

1.
20 0.
25

97
.5

9

3.
15 0.

44

1.
92

0.
99

0.
16

0.
01

1.
10

0.
33

0.
15

58
.8

2

Figure 15: Relative speedup for parallel tests running across
40 cores for Hare (timesharing configuration) and Linux re-
spectively. The absolute running time on 40 cores, in seconds,
is shown above each bar.

6 Discussion
Hare contributes to the discussion of whether future proces-
sors should provide cache-coherent shared memory. As the
previous section demonstrated, it is possible to provide a sin-
gle system image with good scalability without relying on
cache coherence. However, Hare’s performance is notably
lower than that of Linux, largely as a result of IPC overhead.
While Linux simply cannot run on a non-cache-coherent sys-
tem, this nonetheless suggests that better hardware support for

13



IPC (or direct hardware support for remote flushes or reads
on another core) could be helpful. Hardware that provides
islands of cache coherence between small subsets of cores
could provide an interesting trade-off: if applications and
file servers reside in the same coherence domain, Hare could
switch to shared-memory data structures instead of RPC.

Every directory in Hare is either not distributed or is dis-
tributed across all cores. This makes sense with a modest
number of cores, but as the number of cores grows, contacting
every server may become too expensive. Such systems may
want to consider intermediate choices, such as distributing a
directory over a subset of cores, or automatically adjusting the
directory’s distribution state based on access patterns, instead
of relying on programmers. Similarly, Hare could achieve
better performance by dynamically tuning the number of file
servers for a particular workload. This would require redis-
tributing state between file servers and updating the client
libraries’ mappings from directory entries and inodes to file
servers.

The previous section also showed that it’s possible to sup-
port many largely unmodified applications on a non-cache-
coherent system, even though they were designed with POSIX
in mind. Hare’s design appears to be a good fit for multikernel
systems that want to provide a POSIX-like interface. Sup-
porting these applications required us to implement complex
features such as file descriptor sharing, directory distribution,
directory entry caching, etc. Exploring whether alternative
APIs (such as ones that expose more asynchrony) can lead to
lower overheads while still providing a convenient abstraction
for programmers is an interesting question for future work.

Hare relaxes the guarantees typically provided by POSIX,
such as by providing close-to-open consistency in some cases.
We believe this is a good fit for a large range of applications,
as confirmed by the fact that Hare can run many unmodified
benchmarks correctly. This tradeoff might not be a good fit for
applications that concurrency access the same file from multi-
ple cores (without inheriting a single shared file descriptor for
that file), such as BerkeleyDB. We believe these applications
are an exception rather than the rule, and can likely be made
to work on Hare with small changes (such as explicit use of
file locks or shared file descriptors).

Hare’s design lacks support for on-disk persistence.
Adding persistence support to Hare is challenging because
the on-disk state must be consistent in case of crashes. How-
ever, since individual file servers do not communicate with
one another, this is hard to achieve. For instance, flushing a
single directory to disk is complicated when the directory is
distributed across multiple file servers and applications are
concurrently modifying parts of the directory on each of the
servers. Combining scalable in-memory file systems with on-
disk persistence in a crash-safe manner is an interesting area
for future research, independent of whether shared memory
provides cache coherence or not.

7 Conclusion
The Hare file system provides a single system image on mul-
ticore system without cache-coherent shared memory. Hare
can run many challenging POSIX workloads with minimal
or no changes. Hare achieves good performance and scalabil-
ity through a combination of new protocols for maintaining
consistency and exploiting hardware features of the target
architecture, such as shared DRAM, atomic message deliv-
ery, and a single fault domain. Our results demonstrate that
Hare’s techniques are key to achieving good performance,
and may also be beneficial to existing shared-memory multi-
processor operating systems. Hare’s source code is available
at https://github.com/charlesg3/faux.

Acknowledgments
Thanks to the anonymous reviewers and our shepherd Don
Porter for feedback that helped improve this paper. This
paper builds upon prior work on the Pika multikernel network
stack [8], and we thank Nathan Z. Beckmann, Christopher R.
Johnson, and Harshad Kasture for their help in developing
Pika. This research was supported by Quanta.

References
[1] POSIX API Specification. IEEE Std. 1003.1, 2013

Edition.

[2] UNFS3. http://unfs3.sourceforge.net.

[3] J. Appavoo, D. D. Silva, O. Krieger, M. Auslander,
M. Ostrowski, B. Rosenburg, A. Waterland, R. W. Wis-
niewski, J. Xenidis, M. Stumm, and L. Soares. Ex-
perience distributing objects in an SMMP OS. ACM
Transactions on Computer Systems, 25(3):6, 2007.

[4] A. Barak, S. Guday, and R. G. Wheeler. The MOSIX Dis-
tributed Operating System: Load Balancing for UNIX.
Springer-Verlag, 1993.

[5] A. Barbalace and B. Ravindran. Popcorn: a replicated-
kernel OS based on Linux. In Proceedings of the Linux
Symposium, Ottawa, Canada, July 2014.

[6] A. Baumann, P. Barham, P. É. Dagand, T. L. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new OS architec-
ture for scalable multicore systems. In Proceedings of
the 22nd ACM Symposium on Operating Systems Prin-
ciples (SOSP), Big Sky, MT, Oct. 2009.

[7] A. Baumann, C. Hawblitzel, K. Kourtis, T. Harris, and
T. Roscoe. Cosh: Clear OS data sharing in an incoherent
world. In Proceedings of the 2014 Conference on Timely
Results in Operating Systems (TRIOS), Broomfield, CO,
Oct. 2014.

14

https://github.com/charlesg3/faux
http://unfs3.sourceforge.net


[8] N. Z. Beckmann, C. Gruenwald, III, C. R. Johnson,
H. Kasture, F. Sironi, A. Agarwal, M. F. Kaashoek, and
N. Zeldovich. Pika: A network service for multiker-
nel operating systems. Technical Report MIT-CSAIL-
TR-2014-002, MIT Computer Science and Artificial
Intelligence Laboratory, Cambridge, MA, Jan. 2014.

[9] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum.
Disco: Running commodity operating systems on scal-
able multiprocessors. ACM Transactions on Computer
Systems, 15(4):412–447, Nov. 1997.

[10] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teo-
dosiu, and A. Gupta. Hive: Fault containment for
shared-memory multiprocessors. In Proceedings of the
15th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 12–25, Copper Mountain, CO, Dec.
1995.

[11] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T.
Morris, and E. Kohler. The scalable commutativity rule:
Designing scalable software for multicore processors. In
Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), pages 1–17, Farmington,
PA, Nov. 2013.

[12] Cluster Filesystems, Inc. Lustre: A scal-
able, high-performance file system. http:
//www.cse.buffalo.edu/faculty/tkosar/
cse710/papers/lustre-whitepaper.pdf, 2002.

[13] J. R. Douceur and J. Howell. Distributed directory ser-
vice in the Farsite file system. In Proceedings of the
7th Symposium on Operating Systems Design and Im-
plementation (OSDI), Seattle, WA, Nov. 2006.

[14] F. Douglis and J. Ousterhout. Transparent process migra-
tion: Design alternatives and the Sprite implementation.
Software: Practice and Experience, 21(8):757–785, July
1991.

[15] M. E. Fiuczynski, R. P. Martin, B. N. Bershad, and D. E.
Culler. SPINE: An operating system for intelligent net-
work adapters. In Proceedings of the 8th ACM SIGOPS
European Workshop, 1998.

[16] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tor-
nado: maximizing locality and concurrency in a shared
memory multiprocessor operating system. In Proceed-
ings of the 3rd Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 87–100, New
Orleans, LA, Feb. 1999.

[17] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (SOSP), Bolton
Landing, NY, Oct. 2003.

[18] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. Synergistic processing
in Cell’s multicore architecture. IEEE Micro, 26(2):
10–24, Mar. 2006.

[19] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar,
S. Jain, V. Erraguntla, M. Konow, M. Riepen, M. Gries,
G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar, V. K.
De, and R. F. V. der Wijngaart. A 48-core IA-32 proces-
sor in 45 nm CMOS using on-die message-passing and
DVFS for performance and power scaling. J. Solid-State
Circuits, 46(1), 2011.

[20] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51–81, Feb.
1988.

[21] T. Instruments. OMAP4 applications processor: Techni-
cal reference manual. OMAP4470, 2010.

[22] V. Jujjuri, E. V. Hensbergen, A. Liguori, and
B. Pulavarty. VirtFS - a virtualization aware file system
pass-through. In Proceedings of the Linux Symposium,
Ottawa, Canada, July 2010.

[23] O. Krieger and M. Stumm. HFS: A performance-
oriented flexible file system based on building-block
compositions. ACM Transactions on Computer Systems,
15(3):286–321, Aug. 1997.

[24] F. X. Lin, Z. Wang, and L. Zhong. K2: a mobile op-
erating system for heterogeneous coherence domains.
In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 285–300, Salt
Lake City, UT, Mar. 2014.

[25] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-
chip cache coherence is here to stay. Communications
of the ACM, 55(7):78–89, July 2012.

[26] J. Mickens, E. Nightingale, J. Elson, B. Fan, A. Kadav,
V. Chidambaram, O. Khan, K. Nareddy, and D. Gehring.
Blizzard: Fast, cloud-scale block storage for cloud-
oblivious applications. In Proceedings of the 11th Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI), Seattle, WA, Apr. 2014.

[27] S. Muir and J. Smith. Functional divisions in the Piglet
multiprocessor operating system. In Proceedings of the
8th ACM SIGOPS European Workshop on Support for
Composing Distributed Applications, pages 255–260,
Sintra, Portugal, 1998.

15

http://www.cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
http://www.cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
http://www.cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf


[28] E. B. Nightingale, O. Hodson, R. McIlroy, C. Haw-
blitzel, and G. Hunt. Helios: Heterogeneous multipro-
cessing with satellite kernels. In Proceedings of the
22nd ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 221–234, Big Sky, MT, Oct. 2009.

[29] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. How-
ell, and Y. Suzue. Flat datacenter storage. In Pro-
ceedings of the 10th Symposium on Operating Systems
Design and Implementation (OSDI), Hollywood, CA,
Oct. 2012.

[30] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS version 3 design and imple-
mentation. In Proceedings of the Summer 1994 USENIX
Technical Conference, Boston, MA, June 1994.

[31] J. Petersson. What is linux-gate.so.1? http://www.
trilithium.com/johan/2005/08/linux-gate/.

[32] R. Pike, D. Presotto, K. Thompson, H. Trickey, and
P. Winterbottom. The use of name spaces in Plan 9.
ACM SIGOPS Operating System Review, 27(2):72–76,
Apr. 1993.

[33] K. W. Preslan, A. P. Barry, J. Brassow, G. Erickson,
E. Nygaard, C. Sabol, S. R. Soltis, D. Teigland, and
M. T. O’Keefe. A 64-bit, shared disk file system for
linux. In Proceedings of the IEEE Symposium on Mass
Storage Systems, San Diego, CA, Mar. 1999.

[34] J. Reinders and J. Jeffers. Intel Xeon Phi Coprocessor
High Performance Programming. Morgan Kaufmann,
2013.

[35] T.-I. Salomie, I. E. Subasu, J. Giceva, and G. Alonso.
Database engines on multicores, why parallelize when
you can distribute? In Proceedings of the ACM EuroSys
Conference, Salzburg, Austria, Apr. 2011.

[36] F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. In Proceedings
of the Conference on File and Storage Technologies
(FAST), Monterey, CA, Jan. 2002.

[37] M. Silberstein, B. Ford, I. Keidar, and E. Witchel.
GPUfs: integrating a file system with GPUs. In Pro-
ceedings of the 18th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), Houston, TX, Mar. 2013.

[38] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang. A
case for scaling applications to many-core with OS clus-
tering. In Proceedings of the ACM EuroSys Conference,
Salzburg, Austria, Apr. 2011.

[39] M. Stocker, M. Nevill, and S. Gerber. A messaging
interface to disks. http://www.barrelfish.org/
stocker-nevill-gerber-dslab-disk.pdf, 2011.

[40] A. S. Tanenbaum, R. van Renesse, H. van Staveren,
G. J. Sharp, and S. J. Mullender. Experiences with the
Amoeba distributed operating system. Communications
of the ACM, 33(12):46–63, Dec. 1990.

[41] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum.
Operating system support for improving data locality on
CC-NUMA compute servers. ACM SIGOPS Operating
Systems Review, 30(5):279–289, Sept. 1996.

[42] S. A. Weil, S. A. Brandt, E. L. Miller, and D. D. Long.
Ceph: A scalable, high-performance distributed file sys-
tem. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), Seattle,
WA, Nov. 2006.

[43] Y. Weinsberg, D. Dolev, T. Anker, M. Ben-Yehuda, and
P. Wyckoff. Tapping into the fountain of CPUs: On
operating system support for programmable devices. In
Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 179–188, Seattle,
WA, Mar. 2008.

[44] D. Wentzlaff, C. Gruenwald, III, N. Beckmann,
K. Modzelewski, A. Belay, L. Youseff, J. Miller, and
A. Agarwal. An operating system for multicore and
clouds: Mechanisms and implementation. In Proceed-
ings of the 1st ACM Symposium on Cloud Computing
(SoCC), Indianapolis, IN, June 2010.

[45] S. Whitehouse. The GFS2 filesystem. In Proceedings
of the Linux Symposium, Ottawa, Canada, June 2007.

16

http://www.trilithium.com/johan/2005/08/linux-gate/
http://www.trilithium.com/johan/2005/08/linux-gate/
http://www.barrelfish.org/stocker-nevill-gerber-dslab-disk.pdf
http://www.barrelfish.org/stocker-nevill-gerber-dslab-disk.pdf

	Introduction
	Related Work
	File systems for multicore processors
	Distributed file systems

	Design
	Overview
	File data
	Directories
	File descriptors
	Processes
	Techniques and Optimizations
	Directory lookup and caching
	Directory broadcast
	Message coalescing
	Creation affinity


	Implementation
	Evaluation
	Experimental Setup
	POSIX Applications
	Performance
	Scalability
	Split Configuration
	Hare Sequential Performance

	Technique Importance
	Hare on cache-coherent machines

	Discussion
	Conclusion

