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Abstract
14-3-3 proteins play critical roles in the regulation of cell fate through phospho-dependent binding
to a large number of intracellular proteins that are targeted by various classes of protein kinases.
14-3-3 proteins play particularly important roles in coordinating progression of cells through the
cell cycle, regulating their response to DNA damage, and influencing life-death decisions
following internal injury or external cytokine-mediated cues. This review focuses on 14-3-3-
dependent pathways that control cell cycle arrest and recovery, and the influence of 14-3-3 on the
apoptotic machinery at multiple levels of regulation. Recognition of 14-3-3 proteins as signaling
integrators that connect protein kinase signaling pathways to resulting cellular phenotypes, and
their exquisite control through feedforward and feedback loops, identifies new drug targets for
human disease, and highlights the emerging importance of using systems-based approaches to
understand signal transduction events at the network biology level.
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1. Introduction
14-3-3 proteins bind to their phospho-Serine and phospho-Threonine-containing ligands to
regulate a wide range of cellular phenomena. Many 14-3-3-binding proteins contain
sequences that match one of two general consensus motifs: RSx[pS/pT]xP and Rxxx[pS/
pT]xP, which are recognized by all 14-3-3 isotypes [1]. The Pro in the pS/pT+2 position,
while preferred, is not absolutely required [1–3], particularly if the motif is found at the C–
terminus [4]. Two of the most well established roles for 14-3-3 proteins are in the control of
cell cycle progression and the regulation of apoptosis, and these remain areas of active
ongoing research. In this article we briefly summarize the current status of research in these
areas, focusing on a selection of the most recent papers that illustrate new concepts or
expand on previously established models.
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2. 14-3-3 proteins in cell cycle control
2.1 The G2/M Checkpoint

Early studies implicated 14-3-3 as a critical integration point for many of the protein kinases
and phosphatases that control the transition from G2 into M phase (Figure 1A). Normal
mitotic entry from G2 is triggered by a rapidly enhanced activation of Cdk1/cyclin B (c.f.
[5] and references therein). Cdk1 is activated by constitutive phosphorylation of a threonine
residue (T161) within the “T-loop” by CAK (Cdc2-activating kinase) but maintained in an
inhibited state by phosphorylation of a tyrosine residue (Y15) within the ATP-binding “P-
loop” by the tyrosine kinase Wee-1 [5]. In addition, higher eukaryotes also have a
membrane-bound kinase, Myt1, that phosphorylates both Y15 and the preceding threonine,
T14, to ensure Cdk1 inhibition [5]. Removal of these inhibitory P-loop phosphorylations on
Cdk1 to promote entry into mitosis from G2 is achieved by the Cdc25 family of dual-
specificity protein phosphatases [6, 7]. Mammalian cells express three different Cdc25
proteins (A, B, and C), all of which have been implicated in G2/M progression. At the G2/M
boundary, Cdc25B appears to be the trigger phosphatase that initially activates Cdk1/cyclin
B, which in turn phosphorylates Cdc25C to create a binding site for a second mitotic kinase,
Plk1 [8, 9], which in turn further phosphorylates Cdc25C [10]. This cascade of sequential
phosphorylation events results in an autoactivation loop that subsequently drives entry into
mitosis [7, 11–13]. While Cdc25A is predominantly recognized for its involvement in earlier
phases of cell cycle progression (see below), it has been shown to also play a role at the G2/
M transition [14, 15] and is the only Cdc25 family member that has an embryonic lethal
phenotype in knockout mice [16]. The relative importance of Cdc25A in G2/M progression
in normal cells probably depends on the status of Cdc25B and C, which may be influenced
by the prior history of the cells.

Like Cdk1/cyclin B, the Cdc25 phosphatases are themselves regulated through activating
and inhibitory phosphorylations. For Cdc25B and C, activating phosphorylations are
generated by Cdk1 and Plk1 [10, 17–19] through the positive feedback loop described
above, although data in Xenopus extracts suggests that MAPKs (particularly Erk1/2) may
play a major role [20]. Whether this is also true in mammalian cells is less clear. Inhibitory
phosphorylation events during G2 probably arise from the detection of ongoing endogenous
DNA damage from normal replication events during the preceding S-phase, or exogenous
DNA damage that the cell has encountered during late S and G2, and are mediated by three
DNA damage-responsive kinases, Chk1, Chk2, and MK2 [21, 22] (see below). The main
mechanism by which these inhibitory phosphorylations block Cdc25B and C function is
through the phosphorylation-dependent binding to 14-3-3. Phosphorylation of a single
binding site on Cdc25B (S323 in human), or Cdc25C (S216 in human) [23, 24] is necessary
and sufficient for 14-3-3 binding, although there are some indications that additional binding
sites may also contribute to their regulation [25, 26] in ways that are somewhat
mechanistically unclear.

There are likely to be multiple mechanisms through which 14-3-3 proteins inhibit Cdc25B/C
function. First, 14-3-3 binding to Xenopus Cdc25C causes a direct two-fold reduction in its
phosphatase activity when assayed in vitro using Myt1-phosphorylated 32P-labelled Cdk1 as
a substrate [23]. A similar direct inhibition of Cdc25B catalytic activity is likely to occur
based on pull-down data indicating that 14-3-3 binding to Cdc25B blocks Cdc25B binding
to CyclinB/Cdk1 [25]. Second, 14-3-3 binding leads to the cytoplasmic sequestration of
Cdc25B/C [27–30], likely blocking access to its nuclear substrate Cdk1/cyclin B [31],
required for mitotic entry. The mechanism by which 14-3-3 proteins regulate the subcellular
localization of their bound targets involves the selective exposure or shielding of specific
sequence elements. This has been most clearly experimentally elucidated for Cdc25C,
although the identical mechanism almost certainly functions for Cdc25B. In between the N-
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terminal regulatory domain and the C-terminal catalytic domain of Cdc25C lies an intrinsic
nuclear localization sequence (NLS) and a nuclear export sequence (NES) [28, 29]. These
subcellular localization signals allow Cdc25C to shuttle between the nuclear and
cytoplasmic compartments. The major 14-3-3 binding site in human and Xenopus Cdc25C
(S216 and S287, respectively) is located right next to the NLS [28, 32], and in Xenopus,
14-3-3 binding to Cdc25C has been shown to block the binding of Cdc25C to the importin-α
nuclear import receptor [29]. Thus, 14-3-3-binding causes defective nuclear import in the
face of unaffected nuclear export [33], relocalizing most of Cdc25C to the cytoplasm.

Although all of the 14-3-3 isoforms except 14-3-3 σ can bind to Cdc25 isoforms in vitro [34,
35], it appears, on the basis of co-IP experiments using tagged overexpressed proteins that
the ε and γ isoforms of 14-3-3 bind strongest to Cdc25C in cells [34], while yeast 2-hybrid
experiments suggest that 14-3-3 β, η, τ, and ζ bind to Cdc25B [36]. Whether this marked
14-3-3 isoform exclusivity for the mitotic ‘initiator’ Cdc25B phosphatase versus the mitotic
‘sustainer’ Cdc25C phosphatase is biologically important remains unknown.

In addition to inhibiting the Cdc25 phosphatases that activate Cdk1, 14-3-3 proteins also
bind to Wee1, the protein kinase that inhibits Cdk1. In this case, however, 14-3-3 binding
serves to distribute Wee1 uniformly throughout the nucleus, and appears to increase the
catalytic activity of both Xenopus and human Wee1 at least 5-fold [37, 38]. These two
14-3-3 dependent mechanisms of Wee1 activation work synergistically to enhance the
phosphorylation and inactivation of nuclear Cdk1, and together with the 14-3-3-mediated
nuclear exclusion and catalytic reduction of Cdc25B and C activity, acts as a ‘belt and
suspenders’ mechanism to initiate a strong G2 checkpoint arrest (Figure 1A). Interference
with either 14-3-3:Cdc25 or 14-3-3:Wee1 binding results in inappropriate mitotic entry [23,
24, 34, 38].

In contrast to the selectivity of Cdc25B/C for binding to 14-3-3 isoforms other than σ, it
appears that Wee1 binds directly to14-3-3σ [38, 39], likely in addition to other 14-3-3
proteins. 14-3-3 σ, a unique isoform that appears to have first arisen in birds, appears to play
an especially important role in G2/M checkpoint maintenance. Hermeking, Chan, Vogelstein
and colleagues made the important finding that 14-3-3σ was potently up-regulated by p53 in
colorectal carcinoma cells after ionizing radiation, where it functioned in parallel with p21
to ensure that DNA damaged cells maintained a G2 arrested state [40–43]. Cells lacking
14-3-3 σ could initiate, but were unable to maintain a G2 arrest after irradiation [40], while
cells lacking both 14-3-3σ and p21 showed both accelerated cell death and enhanced
sensitivity to doxorubicin-induced DNA damage and 5-fluorouracil treatment [41]. Possible
targets of 14-3-3σ may be Cyclin/Cdk1 and Cdk2 complexes themselves [40, 44], although
neither of these targets was detected in an unbiased proteomic screen for 14-3-3σ ligands
[39]. Importantly, 14-3-3σ likely functions, at least in part, through enhancing the activity of
p53 as part of a coherent feed-forward loop ([45]; see below), as well as through enhancing
the stability of the Cdk inhibitor protein p27Kip1 by blocking its AKT-mediated
ubiquitination and degradation [46]. 14-3-3 regulation of p27Kip1 is more complex,
however, since 14-3-3 bound p27Kip1 becomes re-localized in the cytoplasm, where it is
presumably nonfunctional in suppressing Cdk activity [47]. This potentially allows tumor
cells with high levels of PI 3-kinase/AKT activity to bypass G1 arrest (see below), while
maintaining a sufficient total concentration of intracellular p27 to arrest the cell if DNA
damage occurs subsequently.

14-3-3-binding sites on Cdc25, Wee-1, and a variety of other checkpoint modulators are
generated through the action of DNA damage-responsive basophilic kinases, particularly the
kinases Chk1, Chk2, and MK2 [22, 26, 48–52]. It is thought that Chk1 predominantly
responds to single strand breaks, lesions created during replication fork collapse, and bulky
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DNA adducts induced by UV irradiation, while Chk2 is thought to be the major kinase
responding to double strand breaks, although these kinases appear to participate to varying
extents in all three DNA damage responses [53]. Intriguingly, in fission yeast Chk1 itself
binds to 14-3-3, and this binding appears to be important for phosphorylating and activating
Chk1, and targeting it to the nucleus after DNA damage [54]. Recent data have now
revealed that a third DNA damage kinase, the p38MAPK-activated kinase MK2, is critical
for prolonged G2 arrest in tumor cells that are defective in p53 signaling [48, 49, 55]. The
major direct targets of MK2 appear to be the Cdc25B and C phosphatases, which MK2
directly phosphorylates on their 14-3-3-binding motifs [48, 49, 56], and whose persistent
14-3-3-binding and nuclear exclusion requires persistent MK2 kinase activity. Importantly,
the mechanism responsible for prolonged MK2 activity after DNA damage involves another
example of a coherent feed-forward loop, in this case involving MK2-mediated
phosphorylation of RNA binding proteins, which stabilize the production of the cell cycle
regulator Gadd45α, which in turn binds to p38MAPK to maintain prolonged MK2 activity
[55]. The fact that this pathway is critical for preventing inappropriate checkpoint release
and mitotic catastrophe in p53-defective cells suggests that it may be a useful therapeutic
target to preferentially kill p53-defective tumor cells [49].

2.2 G2/M Checkpoint Release
Re-entry into the mitosis from G2 upon completion of DNA repair appears to involve Cdk1
and Plk1-dependent inactivation of the four upstream kinase pathways responsible for
14-3-3-dependent inactivation of CyclinB/Cdk1 itself - the ATM-Chk2 pathway, the ATR-
Chk1 pathway, the p38MAPK-MK2 pathway (all of which target Cdc25 for binding to
14-3-3), and the Wee1 pathway (Figure 1B). Inactivation of the ATR-Chk1 pathway occurs
through Plk1 mediated phosphorylation of Claspin, an adaptor protein that facilitates ATR-
dependent Chk1 activation. Plk1 phosphorylation releases Claspin from damaged chromatin
[57], and targets it for ubiquitin-mediated degradation [58–60]. Inactivation of the ATM-
Chk2 pathway involves the Cdk1 and Plk1 dependent inactivation of the adaptor protein
53BP1 (that facilitates sustained Chk2 activation by ATM as well as direct inactivation of
Chk2 itself in both mammalian cells and yeast [61, 62]. Inactivation of the p38MAPK-MK2
pathway is less well understood, but likely involves the dephosphorylation and inactivation
of p38MAPK by the phosphatase Wip1 [63, 64], which also dephosphorylates the DNA
damage marker histone γH2AX along with other ATM/ATR and DNA-PK targets [65, 66].
Inactivation of the Wee1 pathway involves the Cdk1 and Plk1 phosphorylation of Wee1,
which targets it for ubiquitin-mediated proteolysis [67, 68]. These mechanisms function
together to block upstream signals that target Cdc25B/C and Wee1 for 14-3-3 binding, thus
shutting off the G2/M checkpoint regulated by 14-3-3-mediated Cdc25 inactivation and
Wee1 activation, and allowing cells to re-enter the cell cycle.

The process of checkpoint release is still under active investigation. This is particularly
important since it appears that G2/M checkpoint bypass may be an early event that triggers
the progression from carcinoma in situ to full blown cancer [69]. In addition, the G2/M
checkpoint appears to be an error-prone checkpoint, since both normal cells and tumor cells
are released from G2 into M-phase despite the presence of a finite number of unrepaired
DNA breaks [70], resulting in genomic instability. Taken together, these findings suggest
that modulation of 14-3-3 function to enhance G2 arrest may be a viable mechanism to limit
tumor cell proliferation and progression.

An important observation made by Kornbluth and colleagues was that 14-3-3 binding to
Xenopus Cdc25 phosphorylated on S287 protected this mitotic phosphatase from premature
dephosphorylation and activation [71]. In addition, protein phosphatase 1 was required to
dephosphorylate Xenopus Cdc25 at S287 (the 14-3-3 binding site corresponding to S216 in
human Cdc25C) [72]. Interestingly, the removal of 14-3-3 from Cdc25 preceded S287
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dephosphorylation, implying that a phosphatase-independent pathway is responsible for the
initial 14-3-3 removal from Cdc25, followed only later by dephosphorylation and loss of the
14-3-3 binding site on Cdc25. These authors postulated that the accumulation of
phosphorylated intermediate filament proteins during mitosis may compete with Cdc25C for
14-3-3 binding, with a shift in the equilibrium away from 14-3-3:Cdc25C as the abundance
of phosphorylated forms of intermediate filament proteins accumulate in mitosis. These
findings agree well with a prior report from Tzivion et al. [73] that treatment of COS-7 cells
with the phosphatase inhibitor Calyculin-A resulted in marked accumulation of
14-3-3:phosphovimentin complexes, displacing many of the other 14-3-3-bound ligands, and
a series of strong papers from Omary and colleagues that showed binding of phosphorylated
epithelial keratins K8/18 to 14-3-3 is increased during mitosis, where it may contribute to
mitotic progression, at least in hepatocytes during liver regeneration [74, 75]. These studies
raise the possibility that intermediate filament phosphorylation during mitosis may function
to facilitate the release of specific ligands from 14-3-3 whose function is important during
cell division by competitive binding, although additional mechanisms are likely to be
operative during the initial stages of checkpoint release when mitotic kinase activity may not
be high enough to produce an abundance of phosphokeratins and phosphovimentin.
Importantly, the 14-3-3 strongest binding motif on Cdc25B and C corresponds to the
sequence RSPSMP, where the bolded highlighted Ser is the critical 14-3-3-binding
phosphorylation site. Once cells have entered mitosis, Cdk activity results in
phosphorylation of the preceding Ser residue (RSPSMP), which renders these Cdc25
molecules incapable of binding to 14-3-3 proteins [76, 77], and thereby ensuring that mitotic
progression is strictly unidirectional.

The fact that Cdk1 is intimately involved in nearly all of the G2 checkpoint release
mechanisms discussed above shows that, like checkpoint establishment, checkpoint release
also involves a feed-forward loop when viewed from a systems biology perspective.

2.3 Mitotic roles of 14-3-3 proteins
In addition to from blocking mitotic entry, 14-3-3 proteins appear to contribute substantially
to enhancing progression once cells have entered mitosis through stimulating the process of
cytokinesis. Parker and colleagues showed that 14-3-3 binding to protein kinase C epsilon
(PKCε) during mitosis activates it in a lipid-independent manner, locking PKCε in an open
active conformation near the actomyosin ring. The resulting PKCε activity is crucial during
telophase to down-regulate RhoA activity at the midbody, and allow cells to complete
abscission. Loss of the 14-3-3 binding sites on PKCε, loss of PKCε expression, expression
of a catalytically dead form of PKCε or expression of a dominant negative form of 14-3-3
results in cytokinesis delay or failure and the production of multinucleated cells [78]. The
cancer relevance of this phenomenon is unclear, since PKCε is generally thought to be a
potent oncogene and its expression is upregulated in certain tumors and tumor-derived cell
lines [79].

Our laboratory showed that 14-3-3σ plays an important role in cytokinesis by facilitating the
mitotic switch from cap-dependent to cap-independent translation. Notably, 14-3-3σ is a
tumor suppressor protein that is frequently lost in tumors of epithelial origin [80], inhibiting
the ability of such cells to efficiently complete cytokinesis. This ultimately leads to the
production of tetraploid cells that may serve as early precursors of cancer [81]. In normal
epithelial cells, completion of normal cytokinesis occurs as a consequence of binding of the
translation initiation factor eIF4B to 14-3-3σ during mitosis, impairing eIF4B function, and
culminating in a switch from cap-dependent to cap-independent (IRES mediated) mRNA
translation during mitosis. During mitosis, a variant form of Cdk11, termed p58-PITSLRE,
is then translated in a cap-independent manner [82]. This cap-independent form is
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specifically required to complete the final stages of cell division [83, 84]. In the absence of
14-3-3σ, only the cap-dependent interphase form of Cdk11, p110-PITSLRE is produced,
rendering 14-3-3σ-defective cells unable to sever the cell-cell attachment at the terminal
midbody stage (abscission) of cell division [81]. These findings are particularly significant
given the finding that the expression of 14-3-3σ is suppressed in normal breast tissue
adjacent to the sites tumors arose (see below). In this case, loss of 14-3-3 probably
contributes to ‘field cancerization’ by facilitating the development of pre-cancerous
tetraploid lesions that subsequently undergo genomic instability during the tumorigenic
process.

2.4 G1/S Checkpoint control
The remaining Cdc25 phosphatase that has not been discussed at length, Cdc25A, is best
appreciated for its role in regulating the G1/S transition by controlling CyclinE and CyclinA/
Cdk2 activity. Cdc25A has been generally accepted as being primarily regulated in response
to DNA damage by Chk1-dependent phosphorylation and β-TrCP-mediated ubiquitination
and proteosomal degradation [85–87]. Other kinases however, including CK1, GSK-3β, and
Plk3 have also been implicated in this process [88–90]. In addition to its role in the G1/S
transition, Cdc25A also appears to play a role in facilitating the G2/M transition by
activating CyclinB/Cdk1 [91]. Piwnica-Worms and colleagues showed that Cdc25A has two
14-3-3-binding sites, and that mutants of Cdc25A that are defective in 14-3-3 binding have
an enhanced ability to activate Cyclin B/Cdk1 [92]. One of the two 14-3-3-binding sites sits
near the C-terminal region of Cdc25A, immediately adjacent to a putative Cyclin B docking
site, suggesting that 14-3-3 binding disrupts the interaction of Cdc25A with its substrate.
These data suggest that 14-3-3-binding to Cdc25A may be important for short-term control
of Cyclin/Cdk complexes involved in both G1/S and G2/M progression, while ubiquitin-
mediated destruction of Cdc25A may be a mechanism of long term inhibition of Cyclin/Cdk
activation in response to larger amounts of genotoxic stress. Unfortunately, the structural
basis for 14-3-3-mediated effects on Cdc25 phosphatases remains unclear, largely because
the 14-3-3-binding sites are primarily localized in relatively unstructured regions of Cdc25
between the N-terminal regulatory domain and the C-terminal phosphates domain.

An additional role for 14-3-3 proteins in the G1/S transition has emerged from a recent
finding that 14-3-3τ seems to facilitate the MDM2-dependent but ubiquitin-independent
degradation of the Cdk inhibitor p21 to facilitate S-phase entry [93] (Figure 1B). Thus
14-3-3 proteins appear to have roles in both suppressing and enhancing the G1/S transition,
likely as a function of which client proteins are bound, depending on the relative levels of
activity of different 14-3-3 motif-generating kinases.

3. 14-3-3 proteins and apoptosis
3.1 14-3-3 binding to Bcl-2 family members

An important role for 14-3-3 proteins in apoptosis emerged from a series of studies
examining the interaction of 14-3-3 proteins with BH3 domain-containing proteins,
particularly BAD and BAX. Early work identified BAD as a BH3 domain-only protein that
was the 14-3-3 binding target of an IL-3 dependent survival mechanism in the hematopoetic
cell line FL5.12 [94]. BAD binding to 14-3-3 proteins was found to involve the AKT-
dependent phosphorylation of two sites on BAD [95], although additional kinases also may
be involved [96]. The mechanism by which 14-3-3 facilitates the inactivation of BAD
involves both transient sequestration of BAD to prevent it from binding to and inactivating
the pro-survival protein Bcl-XL, along with holding BAD in a conformation that enhances
the phosphorylation of an additional residue in its BH3 domain to result in a more
permanent state of inactivation [97].
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14-3-3 proteins were later shown to bind to, and functionally inactivate the critical pro-
apoptotic effector BAX, in a phospho-independent manner [98]. The binding involves
sequences at both the N- and C-terminus of BAX, and precludes BAX from transiting to the
mitochondria, where it would otherwise interact with BAK to induce permeabilization of the
mitochondrial outer membrane and trigger the release of cytochrome C and SMAC/
DIABLO to activate caspases to kill the cell [99]. More recent work has now shown that this
14-3-3:BAX interaction is controlled by the stress MAP kinase JNK, which directly
phosphorylates 14-3-3 on Ser-184 (14-3-3ζ notation) near the end of helix α7 to block BAX
binding [100].

3.2 14-3-3-mediated control of signaling components and transcription factors involved in
the apoptotic response

JNK, which triggers the release of BAX from 14-3-3, as well as p38MAPK, are activated, in
part by the upstream MAP kinase kinase kinase ASK1 (apoptosis stimulating kinase 1)
[101], which is itself negatively regulated by 14-3-3 binding [102]. ASK1 is activated
downstream of the TNFα receptor and FAS. TNFα receptor-mediated apoptosis is
negatively regulated by the zinc finger protein A20 [103], and just like ASK1, A20 is also a
client protein whose function is repressed by binding to 14-3-3 [104]. Signaling from TNF
receptor family members to BAX involves formation of a complex between the receptors
and the proteins MOAP-1 and RASSF1A, a process that is inhibited by 14-3-3 binding to
RASSF1A [105, 106]. Finally, in response to growth factor deprivation, and potentially
other pro-apoptotic stimuli, members of the FOXO family of transcription factors drive the
expression of a pro-apoptotic gene expression program [107]. Not surprisingly, then, a
number of FOXO transcription factors have been shown to be under the control of 14-3-3
proteins, where their binding is regulated by AKT-dependent phosphorylation [108–111].
Intriguingly, both AKT-dependent phosphorylation of FOXO proteins and 14-3-3 binding
appears to occur in the nucleus [110], resulting in both an inability of FOXO proteins to bind
to DNA [112–114] and facilitating their export out of the nucleus through a combination of
masking NLS sequences and exposing NES sequences [110]. Thus, 14-3-3 proteins control
the induction of apoptosis at multiple levels, from effector BH3 domain-containing proteins
to upstream activators and transcription factors. In good agreement with this, Masters and Fu
showed that blocking of the 14-3-3 binding cleft with a peptide inhibitor (see below)
enhanced the apoptotic response of multiple cell lines in culture [115] while Muslin and
colleagues showed that transgenic expression of a dominant negative form of 14-3-3 could
increase the apoptotic response of cardiomyocytes in the hearts of mice to cardiac pressure
overload. The observation that direct phosphorylation of 14-3-3 by JNK disrupted binding of
14-3-3 to BAX and Forkhead transcription factors (and likely other 14-3-3 targets such as
A20 and ASK1) [116], again illustrates the importance of feedforward and feedback loops in
14-3-3 mediated control of cell fate, since once a threshold of JNK activity has been
exceeded, one would expect additional release of ASK1 and RASSF1A to enhance further
JNK activity, BAX release and activation, and transcription of FOXO-driven apoptotic
genes, while release of A20 would limit subsequent upstream input into this pathway from
the TNF receptor, and allow additional pro- and anti-apoptotic pathways to be integrated
into the overall response.

3.3 Therapeutic targeting 14-3-3:liagnd binding by drugs
The idea that global interference of 14-3-3 proteins with their target ligands could be used
therapeutically was first explored by Fu and colleagues through the use of a non-
phosphorylated 20 amino acid binding peptide, R18, that was isolated from a phage display
library by virtue of its strong binding to 14-3-3 [117]. Difopein, a high affinity 14-3-3
antagonist, was then constructed by linking two R18 peptides together with a linker, thereby
blocking both binding sites within a functional 14-3-3 dimer. Treatment of several cancer
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cell lines with Difopein resulted in enhanced apoptosis both alone, and when administered in
combination with cisplatin [115], although the death was additive and not synergistic. An
alternative approach taken by our laboratory involved the use of photo-activatable caged
phosphopeptides to allow timed inhibition of 14-3-3 proteins, and this was shown to
enhance UV-induced cell death [118]. Such an approach might have utility in various form
of photodynamic therapy, such as that used for treatment of mycosis fungoides. However, a
general caveat of both of these approaches is their non-isoform specificity, and the potential
for significant toxicity in normal non-cancerous tissue. The recent surge of interest in RNAi-
mediated therapeutics might be an ideal strategy for targeting specific members of protein
families, such as particular 14-3-3 isoforms whose up-regulation may directly contribute to
the oncogenic behavior of tumor cells and their resistance to anti-cancer agents.

Recently, the first non-peptidic 14-3-3 small molecule inhibitor was reported [119], and
shown to enhance the apoptotic cell death of chronic myelogenous leukemia cells [120]. An
alternative approach to killing cancer cells might be to block their proliferation by
stabilizing the interaction of cell cycle regulators such as Wee1 and Cdc25 with 14-3-3
proteins. Interestingly, two small plant toxins, fusicoccin A and cotylenin A, bind to 14-3-3
and stabilize the interaction between 14-3-3 proteins and a subset of client proteins [121,
122], raising the possibility that this approach might be adapted for use in mammalian cells
[123].

4. Conclusions
By functioning as master regulators of protein kinase signaling cascades and effector
proteins involved in cell cycle control and apoptosis, 14-3-3 proteins function as signal
transduction ‘integrators’ that connect signals to phenotypes. The diversity of 14-3-3
isoforms and their interactions reveals an abundance of potential drug targets that could be
used to therapeutically treat diseases caused by aberrant cell proliferation such as cancer, as
well as those diseases resulting from excessive inflammation and cell death, including
degenerative diseases associated with aging. Examination of the signaling pathways in
which 14-3-3 proteins participate reveals the striking importance of feedforward and
feedback loops in the fine control of 14-3-3 regulated signaling networks.

Highlights

1. Checkpoint kinases use 14-3-3 proteins to establish and maintain a G2 cell cycle
checkpoint by targeting Cdc25 and Wee1.

2. Cdk1 and Plk1 inactivate checkpoint kinase pathways targeting Cdc25B and
Wee1 binding to 14-3-3 to drive mitotic entry.

3. 14-3-3 proteins prevent apoptotis by binding to BH3-containing proteins, FOXO
transcription factors and apoptotic kinases.

4. JNK directly phosphorylates 14-3-3 proteins to block their anti-apoptotic effects
and drive cell death.
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Figure 1. The role of 14-3-3 in G2/M checkpoint activation, maintenance, and release
(A) 14-3-3 proteins inhibit cyclinB-Cdk1 activators and activate Cdk1/cyclin B inhibitors.
See text for details. (B) Mitotic reentry following recovery from the G2 checkpoint involves
dissociation of the 14-3-3 proteins from the ligands shown in panel A and inactivation of the
upstream kinase pathways responsible for their 14-3-3 binding. Dynamic balance between
14-3-3 mediated Cdk1/cyclin B inhibition and Cdk1/Plk1-mediated recovery maintains cells
in a state of temporary arrest that is likely to be defective in tumor cells. In addition, a role
for 14-3-3 in p21 degradation has been shown to be involved in G1/S progression and could
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also be important in M phase entry from G2, rationalizing the observation that 14-3-3
proteins are overexpressed in certain tumor types.
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Figure 2. Roles for 14-3-3 proteins at multiple points in the apoptotic signaling network
14-3-3 proteins bind numerous effectors of apoptosis, shaded orange, yellow and green, to
inhibit their pro-apoptotic function (see text for details). Apoptotic activation is facilitated
by JNK-mediated phosphorylation of 14-3-3, triggering release of these apoptotic effectors.
This can occur, for example, through a feedforward loop activated through the TNF-α
receptor.
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