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Abstract

A random channel approach is developed for reaction-diffusion processes in disordered sys-

tems. Although the starting point of our research is the kinetic study of the decay and

preservation of marine organic carbon, our approach can be used for describing other dis-

ordered kinetic catalytic processes with random pathways. We consider a generic catalytic

mechanism with two species: a) a catalyst, which is continuously produced by a variable

number of independent sources randomly distributed in space; this catalyst diffuses from the

sources and is degrading according to a first-order kinetic law; the generation, the degrada-

tion and the diffusion of the catalyst balance each other out and a stationary concentration

field is generated; b) an active species, which decays according to a second order kinetic law:

the decay rate is proportional to the product of the concentrations of the catalyst and the

concentration of the active species. We show that the catalyst concentration field can be

represented by the sum of a random number of Yukawa-like potentials. The average value

of the survival function of the active species can be expressed as a grand canonical average
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of a nonlinear functional of the catalyst field and can be evaluated exactly. We show that

a good approximation is given by a nearest neighbor approach, where only the contribution

of the closest source is taken into account for the computation of the random concentration

field of the catalyst. We discuss the application of the model to the problem of decay and

preservation of marine organic carbon. With minor adaptation the model can be applied to

other problems of disordered kinetics, such as spatially distributed heterogeneous catalytic

processes.

Key words: Disordered kinetics, Random channel kinetics, Reaction-diffusion, Enzyme

kinetics

PACS: 82.39.Fk, 82.39.-k, 82.20.Uv, 89.75.Da

1. Introduction

In disordered kinetics there are two different approaches. The first one is the random rate

approach [1], which is based on the assumption that the equations of deterministic chemical

kinetics can be applied, where we assume that the rate coefficients are no longer constant,

but random. The simple case is that of static disorder where the rate coefficients are time-

independent random variables. A more complex situation is that of dynamic disorder where

the rate coefficients are random functions of time. A second approach is that of random

channel kinetics [2, 3, 4], where there are different reaction pathways, which produce the

same effect; to each pathway there corresponds a reaction channel and the total reaction

rate is the sum of the reaction rates corresponding to the different channels. The random

channel approach can also involve static or dynamic disorder.

Although the physical picture in these two approaches are different, in some cases there is

a simple mathematical correspondence between them [5]. The random rate approach is less

specific and at the same time less informative than the random channel approach. Although

formally it is always possible to attach an equivalent random rate model to a random channel

model and vice versa, some random rate processes do not have alternate pathways.

Recently Rothman and Forney [6] have introduced a disordered kinetic model for the

decay and preservation of marine organic carbon. Surprisingly, even though their physico-

chemical model is very close to the random channel approach, their mathematical description
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is based on the random rate theory. In this paper we show that the physical picture behind

their model can be used as a starting point for a general reaction diffusion approach for

catalytic reactions with random channel kinetics. With minor adaptations our approach can

be applied for the description of spatially distributed catalytic processes.

The structure of the paper is the following. In Section 2 we give a formulation of our

approach, which is solved in Sections 3 and 4. In Section 5 we discuss a nearest neighbor

approach, which is somewhat similar to the original approach of Rothman and Forney and

which provides a good approximation to our exact solution. Finally, in Section 6, we discuss

briefly the implementation of the theory for the description of the kinetics of the decay and

preservation of marine organic carbon.

2. Formulation of the problem

We study the decay of an active species with a local concentration g, which decays under

the influence of a catalyst with concentration c. The catalyst is produced by a random

number of spatially distributed sources. Each source u = 1, 2, . . . , q is characterized by a

position vector ru and a flux density vector ju corresponding to a differential solid angle

dΩ attached to a given orientation. We assume that the emission of catalyst by sources is

isotropic and can be characterized by the total fluxes Ju =
∫

judΩ. We consider the case of

static disorder for which the number of sources q and their position vectors and total fluxes

r1,J1; .....; rq,Jq are random variables whose stochastic properties are characterized by a set

of grand canonical probability densities (Ref. [7], Ch. 2)

Q0, . . . , Q1(r1,J1), . . . , Qq(r1,J1; . . . ; rq,Jq). (1)

Here Q0 is the probability that there are no sources, Q1 is the probability density corre-

sponding to exactly one source, at location r1 with flux J1, and so on. The entire set of Q’s

obey the normalization condition

Q0 +
∞∑

q=1

1

q!

∫
r1,J1

. . .

∫
rq ,Jq

Qq(r1,J1; . . . ; rq,Jq)dr1dJ1 . . . drqdJq = 1. (2)
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We assume that the different sources are independent. Thus their statistical properties are

described by a Poissonian point process for which [7]

Q0 = exp(−m); Qq(r1,J1; . . . ; rq,Jq) = exp(−m)ϕ(r1,J1) . . . ϕ(rq,Jq), (3)

where ϕ(r,J ) is an average density of sources, that is ϕ(r,J )drdJ is the average number of

sources with a position vector between r and r+dr and a total flux between J and J +dJ ,

and

m =

∫
r,J

ϕ(r,J )drdJ (4)

is the total number of sources.

The catalyst is undergoing a first order decay process, characterized by a rate constant

α and an isotropic diffusion process with a diffusion constant D. We assume that the

influx of the catalyst is balanced by the losses through diffusion and decay and that a time-

independent and space-dependent concentration field of the catalyst eventually emerges. The

mass balance for the catalyst leads to a reaction-diffusion equation with random sources:

D∇2c(r, t)− αc(r, t) +
∞∑

q=1

Jqδ(r− rq) = 0. (5)

Eq. (5) is an unusual type of space-dependent Langevin equation, where the stochastic

properties of the noise sources are not given in terms of correlation functions, but in terms

of a Poissonian point process described by Eqs. (3)-(4)

The concentration g = g(r, t) of the active species is also a random field. Its decay obeys

the second order kinetic equation

∂g/∂t = −εgc, (6)

where ε is a second-order rate coefficient. The underlying physical picture is that the decay

of g is determined by its contact with the diffusing field c of catalyst. Catalyst is emitted by

randomly distributed sources with randomly distributed strength, and remains active over

a typical time α−1. The active species g does not diffuse; it is instead fixed in space, e.g., to

the solid granular surfaces within a porous medium.

The main observable we intend to evaluate from the theory is the average value of the

concentration field g of the active species. In general it is also of interest to know other

stochastic properties of this field.
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3. Analytic solutions

The first step is to solve the kinetic equations for a given configuration of the sources.

The stationary reaction-diffusion (5) is linear and thus the concentration field c(r, t) can be

represented as a linear functional of the sources,

c(r, t) = cst(r) =

∫
r′

χ(r, r′)
∞∑

q=1

Jqδ(r− rq)dr
′ =

∞∑
q=1

Jqχ(r, rq), (7)

where the susceptibility function χ(r, rq) can be determined in terms of the Green function

G(r, t|r′, t′) of the nonstationary diffusion equation

∂tG(r, t|r′, t′) = D∇2G(r, t|r′, t′) + δ(r− r′)δ(t− t′), (8)

with proper boundary conditions which express the property that the fluxes at the boundaries

of the system vanish. We start out from the nonstationary form of the reaction-diffusion

equation for the catalyst,

∂

∂t
c(r, t) = D∇2c(r, t)− αc(r, t) +

∞∑
q=1

Jqδ(r− rq), (9)

and make the substitution

c(r, t) = ζ(r, t) exp(−αt) (10)

resulting in
∂

∂t
ζ(r, t) = D∇2ζ(r, t) + exp(αt)

∞∑
q=1

Jqδ(r− rq). (11)

It follows that

c(r, t) = exp(−αt)

∫ t

t′

∫
r′

exp(αt′)G(r, t|r′, t′)
∞∑

q=1

Jqδ(r
′ − rq)dr

′dt′

=
∞∑

q=1

Jq

∫ t

t′
exp [−α(t− t′)] G(r, t|rq, t

′)dt′ (12)

For t →∞ we obtain the stationary solution (7) where

χ(r, r′) =

∫ ∞

t′
exp [−α(t− t′)] G(r, t|r′, t′)dt′. (13)
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An important particular case is that of unlimited space; in this case the Green function

G(r, t|r′, t′) is given by

G(r, t|r′, t′) = [4πD(t− t′)]−ds/2 exp{−|r− r′|2/[4D(t− t′)]}, (14)

where ds is the space dimension. In this case the susceptibility function can be expressed in

terms of a characteristic reaction-diffusion length rc and of a relative displacement vector f :

rc = (D/α)1/2, f = (r− r′)/2rc. (15)

We have

χ(r, r′) = χ(f) = α−1r−ds
c Ids(f), (16)

where f = |f | is the absolute value of the relative displacement vector and

Ids(f) = (4π)−ds/2

∫ ∞

0

η−ds/2 exp

(
−η − f 2

η

)
dη (17)

where η = αt. As expected, for infinite space with a constant reaction rate, a constant diffu-

sion coefficient, and isotropic diffusion the process is translationally invariant and isotropic

and the susceptibility function χ(r, r′) depends only on the absolute value of the displace-

ment vector |r − r′|. In the Appendix we show how the functions Ids(f) can be computed

for different space dimensions ds. In particular, for three dimensional space we have

I3(f) = (4f)−1 exp(−2f), (18)

and thus

χ3(r, r
′) =

exp(−|r− r′|/rc)

2αr2
c |r− r′|

. (19)

The next step is the integration of the kinetic equation for the active species. For a

time-independent, stationary concentration field for the catalyst this integration is straight-

forward:

g(r, t) = g(r, 0) exp[−εcst(r)t] = g(r, 0) exp

[
−εt

∞∑
q=1

Jqχ(r, rq)

]
. (20)

The final step is to take an average of the concentration of the active species over all

possible values of the positions rq of the sources of catalyst and of the corresponding fluxes
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Jq . This average is taken in terms of the grand canonical probability densities (1). We

obtain

〈g(r, t)〉 = g(r, 0)Q0 + g(r, 0)×
∞∑

q=1

1

q!

∫
r1,J1

. . .

∫
rq ,Jq

exp

[
−εt

∞∑
q=1

Jqχ(r, rq)

]
Qq(r1,J1; . . . ; rq,Jq)dr1dJ1 . . . drqdJq,

(21)

where 〈. . .〉 denotes the ensemble average with respect to the number of sources of catalyst

and their positions and output fluxes. All terms in Eq. (21) can be easily factored if we

assume that the positions and the intensity of the sources are independently distributed

random variables, described by a point process of the Poissonian type (Eqs. (3)). By inserting

Eqs (3) into Eq. (21) we obtain

〈g(r, t)〉 = exp(−m)g(r, 0) + exp(−m)g(r, 0)×
∞∑

q=1

1

q!

q∏
q′=1

{∫
rq′ ,Jq′

ϕ(rq′ ,Jq′) exp
[
−εtJq′χ(r, rq′)

]
drq′dJq′

}
.

(22)

From Eq. (22), by merging all terms in an exponential we obtain the following expression

for the average concentration of the active species:

〈g(r, t)〉 = g(r, 0) exp

{
−
∫

r′,J
ϕ(r′,J )

{
1− exp

[
−εtJ χ(r, r′)

]}
dr′dJ

}
. (23)

Eq. (23) expresses the kinetic behavior of the average concentration at different times

and positions in space. It is the main result of this paper, which makes it possible to

establish a relation between the theory and observation; for example, by comparing observed

concentrations as functions of time, we can extract rate coefficients. This equation is a space-

dependent generalization of Huber’s basic random channel model [3]. Its derivation can be

used as a model for computing the fluctuations of the concentration of the active species.

This problem will be dealt with in section 4.

In disordered kinetics it is customary to define an effective reaction rate, which is defined

as the time derivative of the logarithm of the relative value of the average concentration of

the active species:

κeff(r, t) = − ∂

∂t
ln

[〈
g(r, t)

〉
g(r, 0)

]
. (24)
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We notice that Eq. (24) can be rewritten as a formal first order kinetic equation, with an

apparent rate coefficient dependent on position and time:

∂

∂t

〈
g(r, t)

〉
= −κeff(r, t)

〈
g(r, t)

〉
. (25)

For our approach we have

κeff(r, t) =
∂

∂t
Ψ1(r, t) = ε

∫
r′,J

J χ(r, r′)ϕ(r′,J ) exp
[
−εtJ χ(r, r′)

]
dr′dJ , (26)

where

Ψ1(r, t) =

∫
r,J

ϕ(r′,J )
{

1− exp
[
−εtJ χ(r, r′)

]}
drdJ , (27)

is the phase of first order of the disordered reaction. We notice that in general the average

concentration of the active species as well as the effective rate coefficient and the phase of

the disordered reaction depends on both space and time. For our model, this is a finite-

size effect; for large systems, for which the boundary effects can be neglected, these three

quantities are position-independent.

In conclusion, we have developed a simple approach for computing average values for the

concentration of the active species. The results derived in this section will be used in the

geochemical application discussed in Section 6.

4. Concentration fluctuations

The method developed in Section 3 for computing the average concentration of the active

species can be easily extended for computing other statistical properties of the concentration

fluctuations. The generalization is straightforward due to the multiplicative structure of

Eq. (20) for the fluctuating concentration field g(r, t). We start by computing the moments

of the concentration field g(r, t) at a single position and time. We raise Eq. (20) to the

wth power, where w is a positive real number, not necessarily an integer, and compute the

average value of gw(r, t), by using the Poissonian grand canonical probability densities (3).

The computation leads to intermediate equations similar to Eqs. (21) and (22); we can also

merge the terms of an expansion into an exponential, resulting in a generalization of Eq. (23):

〈gw(r, t)〉 = gw(r, 0) exp
[
−Ψw(r, t)

]
. (28)
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where

Ψw(r, t) =

∫
r′,J

ϕ(r′,J )
{

1− exp
[
−εtwJ χ(r, r′)

]}
dr′dJ , (29)

is a one-position phase of wth order of the disordered recation. If we restrict the value of w

to positive integers, then Eq. (28) makes it possible to evaluate other stochastic properties

of the concentration field, for example central moments or cumulants. In particular, we get

the following expression for the dispersion of the concentration field of the active species:〈
∆g2(r, t)

〉
=

〈
[g(r, t)− 〈g(r, t)〉]2

〉
= g2(r, 0)

[
exp(−Ψ2(r, t))− exp(−2Ψ1(r, t))

]
. (30)

The computation of the correlation functions at different times and positions can be

carried out in a similar way. We express the product
∏w

w′ g(rw′ , tw′) as

w∏
w′=1

g(rw′ , tw′) =

(
w∏

w′=1

g(rw′ , 0)

)
q∏

q′=1

exp

[
−ε

w∑
v=1

Jq′tvχ(rv, rq′)

]
, (31)

and take an average over all possible numbers, positions, and intensities of the source by

assuming that the sources obey the Poissonian statistics of Eq. (3). We obtain〈
w∏

w′=1

g(rw′ , tw′)

〉
= exp(−m)

(
w∏

w′=1

g(rw′ , 0)

)
+ exp(−m)

(
w∏

w′=1

g(rw′ , 0)

)
×

∞∑
q=1

1

q!

q∏
q′=1

{∫
rq′ ,Jq′

ϕ(rq′ ,Jq′) exp

[
−ε

w∑
v=1

Jq′tvχ(r, rq′)

]
drq′dJq′

}
.

(32)

By merging the terms into an exponential we then obtain an equation similar to Eq. (28):〈
w∏

w′=1

g(rw′ , tw′)

〉
=

(
w∏

w′=1

g(rw′ , 0)

)
Ψw(r1, t1; . . . ; rw, tw), (33)

where

Ψw(r1, t1; . . . ; rw, tw) = exp

{
−

{∫
r′,J

ϕ(r′,J )

{
1− exp

[
−ε

w∑
v=1

J tvχ(rv, r
′)

]
dr′dJ

}}}
(34)

is the wth order multi-position phase of the disordered reaction, which is a generalization of

Ψw(r, t) given by Eq. (29). In particular we have

Ψw(r, t) = Ψw(r1, t1; . . . ; rw, tw). (35)
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The validity ranges of Eqs. (28) and (33) are partially overlapping. Neither is more general

than the other, and they become identical if w a positive integer and r1 = · · · = rw = r

and t1 = · · · = tw = t. An unexpected feature of Eq. (33) is that it does not contain any

singularities if at least two of the positions and/or times are identical. Such singularities occur

for the correlations of stochastic additive variables described by random point processes [7].

However, they do not occur in the case of our model because of the multiplicative structure

of the equations.

From Eq. (33) we get the following expression for the correlation functions of the con-

centration field evaluated at different positions and times: 〈
∆g(r1, t1)∆g(r2, t2)

〉
=〈[

g(r1, t1)− 〈g(r1, t1)〉
][

g(r2, t2)− 〈g(r2, t2)〉
]〉

=

∆g(r1, 0)∆g(r2, 0) [exp(−Ψ2(r1, t1; r2, t2))− exp(−Ψ1(r1, t1)−Ψ1(r2, t2))] .

(36)

As expected, Eq. (36) includes Eq. (30) as a particular case.

In conclusion, in this section we have developed methods for computing the stochastic

properties of the fluctuations of the concentration field for the active species. If the statistical

variations of the concentration fields are available experimentally, the equations derived in

this section can be used for extracting further kinetic information from experimental data.

5. Nearest neighbor approximation

In this section we suggest a simple approach, based on the assumption that the main

contribution of catalyst concentrations comes from the nearest source. We limit ourselves

to the evaluation of the average value of the concentration field of the active species. This

model is similar to the original model of Rothman and Forney [6]. We assume that the main

contribution of the concentration field of the catalyst in Eq. (7) comes from the nearest

source so that

cst(r) = J χ(r, rn), (37)

where rn is the position vector of the nearest source and J is its intensity. We introduce the

displacement vector ∆r = rn − r, which expresses the relative position of the source with

respect to the point where the concentrations are evaluated. We denote by φ the volume
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concentration of sources. The first step is to express the probability p(∆r)d∆r that the

nearest source is at a relative distance between ∆r and ∆r + d∆r , where ∆r = |∆r|. This

probability can be evaluated by expressing the possibility that the first source lies in a shell

between two ds-dimensional spheres of radii ∆r + d∆r. We have

p(∆r + d∆r) = p(∆r)

(
1− dsπ

ds/2(∆r)ds−1d∆r

Γ(1 + ds/2)
φ

)
, (38)

from which we get the differential equation:

dp(∆r)

d∆r
=
−dsπ

ds/2(∆r)ds−1φ

Γ(1 + ds/2)
p(∆r),

∫ ∆rmax

∆rmin

p(∆r)d∆r = 1, (39)

where ∆rmin and ∆rmax are the minimum and the maximum values of the relative distance

∆r. Here ∆rmin and ∆rmax are cutoff values introduced for physical consistency. In the case

of carbon decay [6], ∆rmin corresponds to the typical size of a bacterium, whereas ∆rmax is the

longest distance at which the enzymes released from bacteria have a measurable contribution

to the decay process. By solving this equation it follows that

p(∆r) = Z−1dsπ
ds/2(∆r)ds−1φ

Γ(1 + ds/2)
exp

[
−πds/2(∆r)dsφ

Γ(1 + ds/2)

]
, (40)

where

Z = exp

[
−πds/2(∆rmin)

dsφ

Γ(1 + ds/2)

]
− exp

[
−πds/2(∆rmax)

dsφ

Γ(1 + ds/2)

]
(41)

is a partition function which ensures that the probability density is properly normalized to

unity and Γ(x) =
∫∞

0
yx−1 exp(−y)dy, x > 0, is Euler’s gamma function. We also assume

that we know the probability density of the intensity of a source:

B(J )dJ , with

∫
B(J )dJ = 1. (42)

Now we have all elements necessary for computing the average concentration field of the

active species. Eqs. (20) and (37) lead to

g(r, t) = g(r, 0) exp
[
−εJ χ(r, rn)t

]
, (43)

from which we obtain the following expression for the average concentration field:

〈
g(r, t)

〉
= g(r, 0) exp

[
−ΨMF(r, t)

]
, (44)
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where the mean field phase factor ΨMF(r, t) is given by:

ΨMF(r, t) = − ln

{∫
dJB(J )

∫
d∆r p(∆r) exp

[
−εJ χ(r, r + ∆r)t

]}
. (45)

This nearest neighbor theory is attractive for its simplicity. However its validity range

is limited; in particular, it is a mean field theory which cannot be used for computing

position-position correlation functions or other stochastic properties of the concentration

field attached to two or more positions in space.

6. Application to the decay and preservation of marine organic carbon

Finally we apply our theory to the problem which motivated its study: the decay and

preservation of marine organic carbon [6]. In this problem, organic detritus mixed within

granular sediment (e.g., mud) beneath the seafloor is degraded through contact with diffusing

hydrolytic enzymes emitted by bacteria. Our assumption of randomly distributed catalytic

sources therefore corresponds to randomly dispersed microbes, and the active species is the

organic carbon undergoing decay.

We assume a given volume concentration φ of bacteria (which can be as high as 109 cm−3),

and neglect the fluctuations of the intensity of the emitted enzyme flux. Under these cir-

cumstances the average density of sources is given by

ϕ(r′,J ) = δ(J − Jm)φ, (46)

where Jm is the typical value for the flux of hydrolytic enzymes. The susceptibility function

χ3(r, r
′) is given by Eq. (19), which is derived in the Appendix for isotropic diffusion in

unlimited three-dimensional space. Following Rothman and Forney we employ the two cutoff

distances ∆rmin and ∆rmax (see Eq. (39)) to compute the the average concentration fields.

The stochastic properties of the concentration of the organic matter are determined by

the different phase factors of the disordered reaction. These phase factors are dimensionless

quantities; their expressions can be considerably simplified by introducing a few dimension-

less variables. The one-position, wth order phase factor is given by

Ψw(τ) = φ̃

∫ xmax

xmin

{
1− exp

[
−τw

exp(−x)

2x

]}
4πx2dx. (47)
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Here we have used the characteristic diffusion length rc = (D/α)1/2 (where α is the enzyme

inactivation rate) to form the dimensionless average concentration

φ̃ = φr3
c (48)

of hydrolytic bacteria, and the dimensionless distances

x = ∆r/rc, xmin = ∆rmin/rc, and xmax = ∆rmax/rc. (49)

Dimensionless time is given by

τ =
εJmt

αr3
c

. (50)

A dimensionless equation for the wth-order multi-position phase can also be derived. The

computations are more complicated because the integrals over position vectors cannot be

fully reduced to integrals over distances, because the cosine theorem applied to differences

among vectors leads to angle-dependent integrals; an expansion in spherical and Bessel

functions is required.

The application of the nearest neighbor theory leads to a simplified equation for the first

order phase factor

ΨMF(τ) = − ln

{∫ xmax

xmin

p̃(x) exp

[
−τ

exp(−x)

2x

]
dx

}
, (51)

where

p̃(x) = 4πZ−1φ̃x2 exp

[
−4

3
πx3φ̃

]
, (52)

is the probability density of the dimensionless distance x and the partition function Z is

given by

Z = exp

[
−4

3
(xmin)

3φ̃

]
− exp

[
−4

3
(xmax)

3φ̃

]
. (53)

The range of variation ∆r covers a few orders of magnitude and, under these circum-

stances, it makes sense to consider a uniform distribution for ∆r between ∆rmin and ∆rmax.

In terms of dimensionless variables we have

p(x) =
ϑ(x− xmin)− ϑ(x− xmax)

xmax − xmin

(54)

where ϑ(x) is Heavisides step function.
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The first observable we want to evaluate is the effective rate of decay κeff(r, t) defined by

Eq. (26) or the corresponding dimensionless variable

κ̃eff(τ) =
αr3

c

εJm

κeff =
∂

∂τ
Ψ(τ), (55)

where the phase factor Ψ(τ) = Ψ1(τ) is given by Eq. (47) for w = 1 for the random

channel model, and by Eq. (51) (i.e., Ψ(τ) = ΨMF(τ)) for the nearest neighbor model.

Other quantities of interest include the phase of the reaction Ψ and the survival function

g/g(0) = exp(−Ψ). In the following we focus on time dependent behavior rather than

absolute values and for this reason we consider the dependence of these variables in terms

of the dimensionless time τ rather than the dimensional time t. Going back to dimensional

time it may be possible to evaluate some of the parameters of the model, but here we do not

pursue this problem.

We start out from the experimental data. Rothman and Forney showed that the effective

decay rate can be approximately fit to a hyperbolic law in time (Ref. [6], Fig. 4):

κeff(t) ∼ t−1. (56)

Eq. (56) holds for many orders of magnitude for the time scale, but is not valid for very

small times and displays a singularity for t = 0, which is obviously an artifact. To avoid

the effects of this singularity we introduce a small cutoff value corresponding to a minimum

time tmin and consider that Eq. (56) describes the data adequately for any times larger than

tmin. In terms of dimensionless time, we have

κ̃eff(τ) = γτ−1 for τ ≥ τmin =
εJmtmin

αr3
c

, (57)

where γ is a dimensionless proportionality factor.

A first case corresponds to the mean field theory with the uniform distribution of distances

given by Eq. (54). In this case our approach reduces to the original model considered by

Rothman and Forney. By using the properties of the exponential integral function, they

showed that the tail of the effective decay rate should behave approximately as t−1, that

is, they provided a theoretical justification of the experimental equation (56). They showed

that there is a small logarithmic correction to this hyperbolic law, but its contribution to

the data is less important compared to the main ∼ t−1 term.
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The other two cases correspond to the nearest neighbor model with the probability density

(52) for the dimensionless distance x and to the random channel model. In both cases

we failed to find simple analytical estimates for the asymptotic behavior at large times.

However, the time-dependent behavior can be easily estimated numerically. In both cases

the dimensionless functions of interest depend on three different parameters, which makes

an exhaustive investigation difficult. By sampling random values of these three variables we

have shown that the tail of κ̃eff(τ) can be represented reasonably by two simple fit functions:

κ̃eff(τ) ∼ τ−1 (58)

and

κ̃eff(τ) ∼ τ−λ. (59)

We carried out 128 computations for each model, by randomly sampling values for the three

parameters. For both models, plots of ln κ̃eff(τ) versus ln τ are slightly curved, roughly indica-

tive of the logarithmic correction in the model of Rothman and Forney, but the simulation

data can nevertheless be fit with good accuracy to straight lines. The range of the correlation

coefficent for the fit was 0.972 ≤ R ≤ 0.991 (Eq. (58)) and 0.980 ≤ R ≤ 0.989 (Eq. (59))

for the nearest neighbor model and 0.977 ≤ R ≤ 0.996 (Eq. (58)) and 0.984 ≤ R ≤ 0.999

(Eq. (59)) for the random channel model. For both models the equation with an arbitrary

exponent, Eq. (59), leads to a better fit, but the difference is rather small. The exponent λ

tends to be slightly smaller than unity; in our simulations the range of variation for λ was

0.89 ≤ λ ≤ 0.96 for the nearest neighbor model and 0.81 ≤ λ ≤ 0.98 for the random channel

model.

The two fitting equations, Eqs. (58) and (59), lead to different types of kinetic behavior

for the survival function g/g(0). From Eq. (58) we find

g(τ)

g(0)
= exp

(
−
∫ t

0

κ̃eff(τ)dτ

)
=
(τmin

τ

)γ

exp(Ψ(τmin)), τ ≥ τmin. (60)

Consequently the kinetics of the process are fractal, characterized by the scaling exponent γ.

In the second case we introduce a proportionality factor ζ in Eq. (59):

κ̃eff(τ) = ζτ−λ. (61)
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Our simulations suggest that the fractal exponent λ is smaller than one and thus the singu-

larity in Eq. (61) for τ = 0 does not lead to a singularity in the phase factor and there is no

need for a cutoff value. In this case the kinetics of the process are described by a stretched

exponential survival function:

g(τ)

g(0)
= exp

(
− ζ

1− λ
τ 1−λ

)
, (62)

where the scaling exponent 1− λ is between zero and one.

An interesting aspect, not clarified by our limited simulations, is related to the propor-

tionality coefficients in Eqs. (58) and (59). These two equations only describe the main trend

of the time dependence of the effective rate coefficients. Indeed, the proportionality factors

are not constants, but slowly varying functions of time.

In conclusion, our simulations suggest that both fractal and stretched exponential kinetics

are able to fit the theoretical predictions of our models. This situation appears to apply also

to some extent to the experimental data: interpretations have been given in terms of fractal

kinetics [6], but the data do not easily distinguish between λ = 1 and λ somewhat smaller

than one. For similar reasons we cannot yet determine the relative efficacy with which the two

versions of the nearest neighbor model and the random channel model fit the data. In order

to learn more, further geochemical investigations are needed. The theoretical approaches

developed in this paper should serve as a starting point for new research.

7. Conclusions

In this paper we have developed techniques for analyzing random channel kinetics for

reaction diffusion systems. Although our research has been motivated mainly by the study

of the decay and preservation of marine organic carbon, the methods developed here can

be adapted to other reaction-diffusion systems with random channel kinetics. Possible ap-

plications are the study of heterogeneous catalytic reactions with surface reconstruction [8],

recombination kinetics in subdifussive media [9], or inhomogeneous reactions in cell biochem-

istry.
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Appendix

We start out by expressing Eq. (17) in a more symmetrical form, by carrying out the

transformation of variable η = x2:

Ids(f) = 2(4π)−ds/2

∫ ∞

0

x1−ds exp

(
−x2 − f 2

x2

)
dx. (A1)

The integral I1(f) can be computed directly, because for ds = 1 the integral in Eq. (A1) has

a symmetric structure. By putting y = f/x we come to:

I1(f) = 2(4π)−1/2

∫ ∞

0

exp

(
−x2 − f 2

x2

)
dx =

∫ ∞

0

fy−2 exp

(
−y2 − f 2

y2

)
dy. (A2)

It follows that, through differentiation with respect to f , we obtain:

∂

∂f
I1(f) = −2(4π)−1/2

∫ ∞

0

fx−2 exp

(
−x2 − f 2

x2

)
dx, (A3)

from which, by using the integral expression in Eq. (A2), we can derive a differential equation

in I1(f):
∂

∂f
I1(f) = −2I1(f). (A4)
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The integral I1(f) can be easily evaluated in the particular case f = 0. From Eq. (17) it

follows that:

I1(0) = (4π)−1/2

∫ ∞

0

η−1/2 exp(−η)dη = (4π)−1/2Γ(1/2) = 1/4. (A5)

By integrating Eq. (A4) with the initial condition (A5) we come to:

I1(f) = I1(0) exp(−2f) = 2−2 exp(−2f). (A6)

By differentiating Eq. (A1) with respect to f , we obtain:

∂

∂f
Ids(f) = −2f2(4π)−ds/2

∫ ∞

0

x1−(ds+2) exp

(
−x2 − f 2

x2

)
dx = −2fIds+2(f). (A7)

From Eq. (A7) we can compute I2(f) in terms of I1(f). We have:

I2(f) = −(2f)−1 ∂

∂f
I1(f) = (4f)−1 exp(−2f). (A8)

The integral I2(f) for two dimensions can be computed in a similar way. We start out

by formally introducing an integral I0(f) defined by Eq. (A1) and finally computing from

Eq. (A7) applied for ds = 0. Since in this article we do not use the expression for I2(f), we

skip the derivation in order to save space.
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