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We report a new layered Na(Mn0.25Fe0.25Co0.25Ni0.25)O2 compound with O3 oxygen stacking. It delivers
180 mAh/g initial discharge capacity and 578 Wh/kg specific energy density with good cycling capability at
high cutoff voltage. In situ X-ray diffraction (XRD) shows a reversible structure evolution of O3-P3-O3′-O3″
upon Na de-intercalation. The excellent capacity and cycling performance at high cutoff voltage make it an im-
portant model system for studying the general issue of capacity fading in layered Na cathode compounds.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Layered sodiummetal oxides have attracted considerable interest as
cathodes for Na-ion batteries partly due to the fact that all seven layered
NaTMO2with the O3-structure, where TM is a single oxidizable 3d tran-
sition metal ion from Ti, V, Cr, Mn, Fe, Co, Ni [1], can be easily synthe-
sized, and show the capability to intercalate Na ions reversibly [2–7].
This is very different from their Li analogues, where only LiCoO2 and
LiNiO2 reversibly intercalate Li ions [8]. Furthermore, different transi-
tion metal ions can be easily mixed in the TM layer to make new
NaTMO2 compounds [9–15]. Among them, O3-Na(Fe0.5Co0.5)O2 (denot-
ed hereafter as FC) shows a capacity around 160 mAh/g with excellent
capacity retention when cycled below 4.0 V and an average voltage of
3.14 V [11]. O3-Na(Ni0.5Mn0.5)O2 (denoted hereafter as NM) shows an
initial discharge capacity of 185 mAh/g and average voltage of 3.22 V,
partly due to a long high voltage plateau around 4.0 V [12,16]. But
capacity retention of NM is poor if the 4.0 V plateau is included in the
galvanostatic cycling.

We report here in this communication a new quaternary O3-
structured compound with composition Na(Mn0.25Fe0.25Co0.25Ni0.25)O2

(denoted hereafter as MFCN), with theoretical capacity of 239 mAh/g
and initial discharge capacity of 180 mAh/g over an average discharge
voltage of 3.21 V.More importantly, its capacity retention is significantly
. This is an open access article under
improved over NM and FC even when cycled with high charge voltage
cutoff. In-situ lab X-ray diffraction (XRD) to reveal the structure evolu-
tion of MFCN in the first electrochemical cycle shows a reversible O3-
P3-O3′-O3″ phase transformation. Our result shows the opportunity to
further improve the electrochemical performance of layered NaTMO2

compounds by designing new combinations of transition metal ions in
the TM layer.

2. Experimental

Stoichiometric amounts of Na2CO3 (99.95% Alfa Aesar), Mn2O3

(99.99% Sigma-Aldrich), Fe2O3 (99.99% Alfa Aesar), Co3O4 (99.7% Alfa
Aesar), and NiO (99.99% Sigma-Aldrich) powder were mixed and
pressed into a pellet. MFCN was synthesized by sintering the pellet at
900 °C in an oxygen gas flow for 12 h. The pellet was quenched to
room temperature and transferred immediately into an Ar-filled
glovebox. An XRD sample was sealed with Kapton film inside the
glovebox and then scanned from 10° to 85° 2θ angle on a PANalytical
X'pert PRO diffractometer equipped with a Cu Kα radiation source.
Structure analysis using the Rietveld method was carried out using
Highscore Plus.

The X-ray absorption spectroscopy (XAS) at theMn, Fe, Co and Ni K-
edge were collected in a transmission mode at beamline X18A of the
National Synchrotron Light Source (NSLS) at Brookhaven National
Laboratory. Energy calibration was carried out using the first inflection
point of the reference spectrum of Mn, Fe, Co and Ni-metallic foils
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. (a) The powder XRD refinement of O3-Na(Mn0.25Fe0.25Co0.25Ni0.25)O2 (MFCN)
using R-3 m symmetry. The goodness of fit is 4.35 and Rwp is 2.18. The inset table
shows the refined lattice parameters. The background from 10 to 30° is from the Kapton
film used to seal the XRD sample. The electron diffraction pattern in the inset is taken
along the [003] zone axis, which is perpendicular to the ab TM plane. (b) XANES spectra
at theMn, Fe, Co, Ni K-edges of pristineMFCN and different transitionmetal oxide samples
with standard valence states, includingMnO (Mn2+), Mn2O3 (Mn3+), MnO2 (Mn4+), FeO
(Fe2+), Fe2O3 (Fe3+), CoO (Co2+), LiCoO2 (Co3+), LiNi1/3Co1/3Mn1/3O2 (Ni2+), LiNiO2

(Ni3+), Li0.2Ni1/3Co1/3Mn1/3O2 (Ni4+).

Table 1
Mn, Fe, Co and Ni K-edge EXAFS structure parameters of pristine MFCN.

TM in MFCN Path r/Å σ 2/10−3 Å2 ΔE/eV R

Mn Mn–O 1.92(8) ± 0.014 3.56 ± 1.72 −0.70 ± 2.53 0.003
Mn–TM 2.94(7) ± 0.005 2.95 ± 1.03
Mn–Na 3.03(1) ± 0.122 17.65 ± 11.48

Fe Fe–O 2.01(1) ± 0.006 6.10 ± 10.70 0.12 ± 1.62 0.001
Fe–TM 2.94(9) ± 0.004 3.89 ± 6.59
Fe–Na 3.21(1) ± 0.059 58.65 ± 42.42

Co Co–O 1.94(5) ± 0.010 4.18 ± 1.36 0.47 ± 1.97 0.002
Co–TM 2.91(8) ± 0.009 4.62 ± 0.87
Co–Na 3.03(3) ± 0.046 40.30 ± 24.19

Ni Ni–O 2.05(4) ± 0.007 6.81 ± 1.23 −1.56 ± 0.88 0.001
Ni–TM 2.94(9) ± 0.005 4.11 ± 0.70
Ni–Na 3.31(4) ± 0.036 13.24 ± 5.65

r: bond length; σ 2: Debye–Waller factor (disorder); ΔE: inner shell potential shift; R: R-
factor.

Fig. 2. (a) Galvanostatic charge and discharge profiles at 1st, 2nd, 5th and 10th cycles for
MFCN. (b) Discharge capacity of MFCN cycled between 1.9–4.3 V at different cycles com-
paredwith NM cycled between 1.9–3.8 V and FC cycled between 1.9–4.0 V, all at C/10 rate.
(c) Discharge capacity of MFCN cycled between 1.9–4.3 V at different cycles compared
with NM and FC cycled between 1.9–4.2 V, all at C/10 rate.
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whichwere simultaneously collected during eachmeasurement. The X-
ray absorption near edge structure (XANES) and extended X-ray
absorption fine structure (EXAFS) spectra were processed using the
Athena and Artemis software package [17,18].

The cathodefilmwasmade bymixingMFCNpowder, Super P carbon
black (Timcal) and dry PTFE (DuPont) with the weight ratio of 80:15:5.
A Swagelok batterywas assembled using glass fiber (Whatman GF/F) as
a separator, Na metal (99.95% Sigma-Aldrich) as an anode and 1 M
NaPF6 (98%, Sigma-Aldrich) in EC:DEC (anhydrous, 1:1 volume ratio)
as an electrolyte with the moisture level less than 3 ppm. The galvano-
static cycling was tested on Solartron 1470E at C/10 rate between 1.9–
4.3 V on the cathode film with the loading of 2.2 mg/cm2.

The in-situ lab XRD was taken on a Bruker D8 X-ray diffractome-
ter equipped with a Mo source from a homemade in-situ electro-
chemical cell with Be window at MIT. The in-situ cell was charged
galvanostatically at C/50 rate between 2.0 to 4.5 V on Solartron

image of Fig.�2
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1287 with each XRD pattern scanned from 6.5° to 30.5° 2θ (equivalent
to 14.1° to 69.7° on Cu source) for 1 h, corresponding to 2% Na compo-
sition resolution per pattern. The phases in the in-situ XRD spectrawere
identified by Rietveld refinement.

3. Results and discussion

Fig. 1a shows that the XRD pattern is without any impurity peaks
and the XRD refinement is fit well by using R-3m symmetry and assum-
ing a randommixture of the TM ions in the TM layer. The refined struc-
tural parameters are shown in the inset of Fig. 1a. Table 1 shows the
least-square fitting results from Fourier transformed (FT) EXAFS spectra
on the Mn, Fe, Co, Ni K-edges of pristine MFCN. The interatomic dis-
tances from XRD refinement for TM–O, TM–TM and TM–Na ions are
2.009 Å, 2.954 Å and 3.153 Å, respectively, consistent with the values
of 1.985 Å, 2.941 Å and 3.147 Å averaged from the bond lengths listed
in Table 1. The electron diffraction pattern in the inset of Fig. 1a is
taken perpendicular to the ab plane of pristine MFCN and shows no su-
perstructure reflection, indicating no long range ordering for transition
metal ions. These results are consistent with a solid solution of the four
transition metal ions mixed in the TM layer of MFCN.

By comparing the edge positions in XANES (Fig. 1b) with standard
samples of transition metal oxides the valence states of Mn, Fe, Co, Ni
in pristineMFCN are determined as 4+, 3+, 3+, and 2+, respectively.
The TM–O bond lengths of different TM ions in Table 1 also agree well
with the ion radii of the TM ions with the valence states determined
by XANES. The measured valence states of the four transition metal
ions inMFCN are the same as in theNMand FC systems [11,16]. Howev-
er, both the electrochemical performance and the structural evolution of
MFCN show some significant differences from the two binary TM
systems, indicating that MFCN is not a simple combination of NM and
FC.

Fig. 2a shows the galvanostatic charge and discharge profiles of
MFCN between 1.9 V–4.3 V at C/10 rate. The initial discharge capacity
of 180 mAh/g occurs over an average discharge voltage of 3.21 V, mak-
ing the specific energy density ≈578 Wh/kg. Fig. 2b shows the cycling
performance of MFCN between 1.9 and 4.3 V compared with NM cycled
Fig. 3. In-situ lab XRD taken at 1 hour scanning rate per pattern shows the characteristic hkl pea
discharge profiles at C/50 rate (middle). The lattice parameter evolution (right) is calculated fro
Kα2 emissions in the Mo X-ray source.
between 1.9–3.8 V and FC cycled between 1.9–4.0 V, all at C/10 rate.
MFCN shows a higher initial discharge capacity with comparable
cyclability to NMand FC. Fig. 2c compares the cyclability ofMFCN cycled
between 1.9–4.3 V with NM and FC cycled between the same limits of
1.9–4.2 V, and at C/10 rate. BothNMand FC showmuchmore significant
capacity fading compared with MFCN. It has been speculated that the
capacity fading of NM and FC cycled above 4.0 V is due to electrolyte de-
composition [11,12,16]. However, the improved cycling performance of
MFCN over NM and FC in the same type of electrolyte and high cutoff
voltage range suggests that the different cycling performance between
these compounds also has an intrinsic issue.

Fig. 3 shows the characteristic hkl peak evolution of the phases in
MFCN in the first galvanostatic cycle between 2.0–4.5 V together with
the in-situ charge and discharge profiles. The lattice parameter evolu-
tion calculated from the in-situ XRD measurement is also shown in
Fig. 3. The (003) peaks of the O3 phase shift to lower angle and the
(01–4) peaks to higher angle upon Na de-intercalation, corresponding
to the typical expansion of the interplanar distance and decrease of
the intra-planar distance. Two-phase coexistence of O3 and P3 occurs
for 20–26% Na de-intercalation, followed by the transition to the P3
phase beyond 26% Na de-intercalation. The transition is characterized
by a significant intensity decrease of the (01–4) peak of O3 and an in-
crease of the (015) peak of P3. At 66% Na de-intercalation the P3
phase transforms to a new hexagonal O3 phase labeled as O3′ associat-
ed with a shift of the (003) peak back toward higher angle, correspond-
ing to a decrease of the interplanar distance. Beyond 80% Na de-
intercalation the (003) peak experiences large shifts to high angle
forming another new hexagonal O3 phase labeled as O3″ with signifi-
cant peak broadening, corresponding to highly decreased average
inter-slab distances even below the value of the fully sodiated state.
We suspect that stacking faults between the slabs cause the peak broad-
ening. The phase transition processes are reversible upon discharge as
shown in Fig. 3.

One feature of the structural evolution ofMFCN is that nomonoclinic
distortion is observed during Na de-intercalation. This is very differ-
ent from the NM system where multiple phase transitions between
hexagonal and monoclinic phases are observed [12,16]. Monoclinic
k evolution in different phases (left), corresponding to the in-situ galvanostatic charge and
m in-situ XRD refinement. The double peaks in 01–4 and 015 peaks are from the Kα1 and

image of Fig.�3
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distortions usually arise from anisotropic Na ordering such as the
stripe ordering [19], Jahn–Teller distortion of the TM ions, or the cou-
pling between them [19]. The absence of anisotropic Na ordering in
MFCNmay be a result of Na site disorder caused by the perturbations
of the TMdisorder. The particular TMcomposition inMFCNalso reduces
the amount of active Jahn–Teller ions, with only 25% Ni in the TM layer
as compared with 50% in the NM system. These factors may largely
suppress any monoclinicity, giving a much smoother electrochemical
profile for MFCN compared with the more stepwise-like profile in the
NM system.

Although FC shows excellent cycling performance when cycled
below 4.0 V cutoff voltage [11], our result shows that the cyclability
drops significantly when the cutoff voltage is increased to 4.2 V, which
may indicate some structural instability and irreversibility of FC at
high voltage and/or very low Na composition. On the contrary, our in-
situ XRD of MFCN shows that the high voltage O3′ and O3" phases are
reversible in the initial cycle, consistent with the reversible features
observed in the first charge and discharge electrochemical profiles.
However, we also notice that the O3" phase region of MFCN above
4.25 V is not fully reversible in the following cycles as observed in
Fig. 2a. It is thus also important to understand themechanism of capac-
ity fading in the O3" phase of MFCN in future studies.

4. Conclusion

A new Na ion battery cathode material with composition
Na(Mn0.25Fe0.25Co0.25Ni0.25)O2 is synthesized by the solid state
reaction and shows an initial discharge capacity of 180 mAh/g
and specific energy density of 578 Wh/kg. At high cutoff voltage the
cycling performance of MFCN is noticeably better than that for the
Na(Fe0.5Co0.5)O2 and Na(Ni0.5Mn0.5)O2, indicating a difference in the in-
trinsic properties of these compounds. The structural evolution inMFCN
shows reversible phase transitions in the high voltage range and the ab-
sence of monoclinic distortions. The results show that MFCN is a high
capacity cathode material and an important model system to investi-
gate the general issue of capacity limits and fading of layered Na-TM
cathodes for Na-ion batteries.
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