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Abstract 

 

Porous ceramic materials are of considerable interest for a variety of chemical and industrial 

applications in extremely harsh conditions, particularly at very high temperatures for long times. A 

modified gelcasting process employing agar as a natural gelling agent and polyethylene spheres as 

pore formers was exploited to produce porous ceramic bodies. Alumina and alumina-ZrO2 (AZ) 

powders were used to prepare samples having a porosity of about 65-70-75 vol%. The composite 

powder was produced by a surface modification route, i.e. by coating a well dispersed alpha-

alumina powder with a zirconium chloride aqueous solution. Upon thermal treatment, ultra-fine 

tetragonal zirconia grains formed on the surface of the alumina particles. SEM observations and 

image analysis were used to characterize the microstructure of porous samples and uniaxial 

compressive tests were used to measure their mechanical behavior.  
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Introduction 

Porous and cellular ceramics find application in many industrial and biological processes, such as 

high-temperature thermal insulation, support for catalytic reactions, filtration of particulates from 

diesel engine exhaust gases and from hot corrosive gases, and bio-compatible scaffolds for bone 

substitution. In order to reach the desired properties, the development of a specific structure with 

controlled volume fraction, size, type and geometry of pores is required.  

Complex ceramic shapes can be generally prepared through several methods. Green and fired parts 

can be machined to the desired shape; however, this is rather time consuming and very expensive 

especially for fired parts. Moreover, machining is not always applicable to complex shapes such as, 

for example, turbine rotors. Alternatively, complex shapes can be made by injection molding a 

ceramic powder in a vehicle of a polymeric or wax-like binder (such as paraffin, for example). This 

method, too, has disadvantages: the binder removal times are rather long and the process often 

induces cracks or warpage in the molded parts [1,2]. Slip casting techniques can be also used for the 

production of porous ceramics, but density variations can take place. In addition, these techniques 

give low-strength green bodies that cannot be easily machined prior to sintering.  

To overcome the drawbacks of these preparation methods, and to satisfy the criteria of 

homogeneity, reproducibility, reliability and processability required for complex shape commercial 

ceramics, processing by gelcasting has been developed [3]. Gelcasting is a near-net-shape forming 

method that combines slip processing with polymer chemistry. It was initially set up using organic 

media [1] and then later, water [2]. In this process, a small amount of organic gel-formers are 

dissolved in water to obtain the so-called premix solution. Next, the ceramic powder is dispersed in 

the premix solution and then cast in a nonporous mold. As in other slip processes, efficient de-

airing of the slip and careful mold filling are required to avoid the introduction of defects that may 

limit the strength and other physical properties [4]. By the action of temperature or/and chemical 

cross-linking reactions, the gel-formers create a strong polymer hydrogel, which permanently 

immobilizes the ceramic particles in the desired shape of the mold cavity. After demolding, the part 

is dried, then the polymer is burned out and the sample is sintered. Gelcast green bodies have a high 

strength, allowing them to be easily machined before sintering [5]. Moreover, the complexity of the 

shapes obtainable by gelcasting is limited only by the ability to design and fabricate the molds [4].  

The original study on gelcasting involved polymerization of acrylamide monomers as gel-formers. 

Monofunctional acrylamide, CH2=CHCONH2 (AM) and difunctional N,N’-

methylenebisacrylamide, (CH2=CHCONH)2CH2 (MBAM) have been used as the reactive organic 



	   3	  

monomers; however, industry has been reluctant to use acrylamide, as it is a known neurotoxin. 

Hydroxyethyl methacrylate (HEMA) [6], glycerol monoacrylate [7], acrylic acid [8], N,N-dimethyl 

acrylamide (DMAA) [9], epoxy resin [10], urea formaldehyde [11] and dimethylformamide [12], as 

well as alternative natural gelling agents, such as, for example, agar [13], agarose [13], carrageenan 

gums [13], egg white [14], chitosan [15], gelatin [16,17], sodium alginate [18], polyvinyl alcohol 

[19], glutin-urea [20] and glucose [21] have been extensively tested in these last years.  

Environmently friendly natural gel-formers also have the advantage that their gelation takes place 

with changes in temperature (on heating with methylcellulose derivatives or on cooling with 

agaroids and gelatine) without the use of catalysts and initiators, as in the case of synthetic 

monomers. 

Gelcasting was initially set-up for preparing dense components. More recently, the process was 

modified to fabricate porous ceramics, by combining it with foaming techniques [19], or sponge 

methods [22], or even exploiting particle stabilization with short chain surfactants [23], as well as 

adding a fugitive phase such as, for example, carbon powders [24], commercial polyethylene [25] 

or polystyrene [26] spheres. The pore forming agent is generally selected on the basis of its shape 

and size distribution and it is added into the slurry with a controlled volume fraction with respect to 

the ceramic content. In this way, it is then possible to strictly control the pore shape, size and 

volume fraction of the final ceramic components [25]. 

The current paper deals with the exploitation of a modified gelcasting process [25,27], using an agar 

as a natural gelling agent and polyethylene spheres as pore formers. Porous ceramic bodies made of 

pure alumina (A) and alumina-10 vol% ZrO2 (AZ) were prepared, by employing a bi-phasic AZ 

powder obtained through a surface modification method [28-32]. Alumina-zirconia composite 

ceramics are widely used for various structural applications, due to their increased mechanical 

properties produced by the dispersion of fine ZrO2 grains inside the alumina matrix. In fact, the 

dispersion of 5–20 vol% tetragonal zirconia particles in the alumina matrix can significantly 

improve the fracture toughness of the neat matrix due to the tetragonal/monoclinic transformation 

of the zirconia phase under loading [33-35]. Most of the current applications of alumina-zirconia 

composites are based on dense, fully sintered materials, without porosity. It is challenging, 

however, to use this composition also for the preparation of porous ceramics, and thus to combine 

the generally superior mechanical properties of the gelcast material with the functionalities of 

cellular materials (light weight, low thermal conductivity, low elastic modulus and, possibly, fluid 

permeability) [36,37].   

While the toughening effect of grains of the second phase in dense alumina matrices has been well 

investigated, few papers are available on porous alumina-based composites [38-43]. 
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Materials and methods 

A commercial α-alumina powder (A, TM-DAR TAIMICRON, supplied by Taimei Chemicals Co., 

Japan) was used to develop a 90 vol% alumina and 10 vol% of ZrO2 (AZ) composite by surface 

modification [28,44]. First, the alumina powder was dispersed in distilled water under magnetic 

stirring with a solid load of 65 wt% for 5 days. Particle size distribution was determined using a 

laser granulometer (Fristch Analysette 22). Then, the precursor of the second phase, a 3M ZrCl4 

(Fluka, > 98% purity) aqueous solution, is drop-wise added to the alumina slurry to obtain the AZ 

composite powder. The amount of ZrCl4 was calculated assuming that zirconia was fully tetragonal 

in the final composites, so that a α-Al2O3 to ZrCl4 weight ratio of 1:0.636 was employed.  

The addition of zirconium chloride decreased the pH of the suspension to values lower than 1. Thus,  

to avoid possible corrosion of the spray-dryer (Mini Spray Dryer Buchi B-290) steel parts, it was 

necessary to add a basic complexing agent to increase the pH to about 4.5. For this reason, tribasic 

ammonium citrate (Sigma, ≥ 97% purity) was also added to the doped alumina suspension. After 

homogenization under magnetic stirring for 2 h, the suspension was diluted down to 4 wt% and 

spray dried. 

The dried doped powder was then calcined at 600°C to induce chloride decomposition as well as 

solid-state reaction to yield the final phases. More details about the composite powders elaboration 

can be found in [28-30,44]. The powders were analyzed by X-ray diffraction (Philips PW 1710) 

with a Cu Kα anticathode (λ=0.154056 nm) in the 5-70° range in 2 theta, a scan speed of 0.04°/step 

and a time per step of 2.5 s. 

The doped powder was then dispersed by ball milling with a solid load of 65 wt%. An agar (A7049 

from Sigma-Aldrich) was used as the gelling agent, and polyethylene spheres (Clariant Italia SpA) 

were used as the fugitive phase. To control the pore diameter in the final components, polyethylene 

spheres were sieved in the range 224-355 µm and then added to the dispersed ceramic slurry in 

suitable amounts to obtain fired ceramics with about 65-70-75 vol%  porosity. SEM observations 

(SEM, Hitachi S2300) were used to measure the size distribution of the PE spheres by means of 

image analysis software (Scandium by Soft Image System) on about 300 spheres.  

The agar was dissolved into distilled water at 90°C, cooled down to 60°C and then added to the 

ceramic suspension, at the same temperature. In this way an amount of gelling agent of 0.5 wt%, 

with respect to the final water content, and a final ceramic solid content of 50 wt% and 44 wt% for 

alumina and the biphasic composite powder, respectively, were reached. It is important, in this 

process, to have as high as possible solids loading in the slurry to minimize shrinkage and warpage 
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during drying and to enhance fired density. At the same time, it is necessary that the suspension 

remains fluid and pourable [4]. For this reason, the viscosity of the ceramic slurries at 60°C was 

measured using a viscometer (Brookfield HBDV-II), before and after the agar addition. After a pre-

shear, the apparent viscosity was measured at shear rates ranging from 6.12 to 245 s-1, maintaining 

each value constant for 10 s. 

Casting of the suspensions was carried out under vacuum (about 10-2 Pa) to remove air bubbles 

entrapped in the ceramic suspension. Cylindrical Plexiglas molds having internal diameter of 1.5 

cm and height of 5 cm were used. The drying step is a crucial step of the gelcasting process and it 

has to be done at high relative humidity (RH > 90%) until shrinkage has stopped to minimize 

warpage and cracking [4] due to non-uniform and differential drying in various regions because of 

the solvent gradient [45]. Then, the drying rate is increased either by raising the temperature or 

decreasing the RH, or a combination of both. In our case, the cast samples were first dried at high 

RH for two days, and after demolding the RH was slowly decreased.  

Some dense gelcast materials were prepared without the PE spheres in the ceramic suspension and 

submitted to dilatometric studies (Netzsch 402E), heating up to 1500°C with a holding time of 3 

hrs, with a heating rate of 10°C/min up to 1100°C and 2°C/min up to the maximum temperature. A 

10°C/min cooling rate was finally used. 

On the basis of the dilatometric studies, porous materials were sintered at 1400°C for 1 h in the case 

of A samples, and at 1550°C for 3 hrs in the case of AZ samples (in all the cases with a heating rate 

of 2°C/min and a cooling rate of 5°C/min [46]). To control the thermal decomposition of 

polyethylene spheres without damaging the green ceramic structure, various intermediate steps 

below 600°C were carried out [25, 47].   

The density of the green and fired components was evaluated using weight and geometrical 

measurements as well as Archimedes method (for sintered samples only). The total porosity and the 

closed porosity were calculated as follow: 

!"#$%  !"#"$%&'   % = 1− !"#$"%&'()*  !"#$%&'
!"#$%#&'()*  !"#$%&'

×100 (1) 

!"#$%&  !"#"$%&'   % = 1− !"#$%&'(')  !"#$%&'
!"#$%#&'()*  !"#$%&'

×100    (2) 

The materials microstructures were observed by scanning electron microscopy. The image analysis 

(Scandium by Soft Image System), performed on several SEM micrographs of polished surfaces of 

the fired components (measuring about 400 pores for each composition), allowed evaluation of the 

pore size distribution. These results, obtained from 2D sections, led to a pore size distribution 

related, but not equivalent, to the real diameters in the 3D space. 
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The mechanical properties were investigated by uniaxial compressive tests (Instron 4201; the 

measurements were made in displacement control mode and the load was applied at a crosshead 

rate of 1 mm/min). 

 

 

Results 

X-Ray diffraction patterns of the powders reveal the presence of α-alumina phase and of the 

tetragonal ZrO2 for AZ.  

The dispersion of the ceramic powder suspensions was verified by laser granulometry: the particle 

size distributions of the A and AZ dispersions reach almost the same values of the diameters 

corresponding to 10, 50, 90% and is equal to 0.30, 0.45 and 0.87 µm, respectively for A and to 0.30, 

0.49 and 1.03 µm, respectively for AZ. 

In addition, to establish the solid load suitable for the gelcasting procedure, the viscosities of 

ceramic suspensions having different weight fractions of powder were measured, before and after 

the agar addition. Figure 1 shows the effect of the gelling agent, using the alumina slurry as an 

example. Even if a very low viscosity is measured for the ceramic suspension, a significant increase 

is recorded after the agar addition. The A and AZ slurries with a solid load of 50 wt% and 44 wt%, 

respectively, are characterized by an apparent viscosity lower than 1000 mPa.s at 20 s-1, which is 

suitable for the casting process [48].  

On the basis of these results, after dispersion, the ceramic solid content of the A and AZ 

suspensions is then corrected to the final values of 50 wt% and 44 wt%, respectively.  

 

 
FIGURE 1: Viscosity of dispersed suspensions of alumina, with a solid content of 50 wt%, before 

and after agar addition 
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The SEM observations of the PE spheres revealed that sieving was not effective in assuring a 

controlled selection of particle diameters: the particle size distribution (Figure 2) showed that a non 

negligible fraction of spheres had diameters below 224 µm. 

 
FIGURE 2: Particle size distribution of the selected fraction of PE spheres 

 

To investigate the densification behavior, some dense A and AZ materials were prepared by the 

gelcasting procedure described above, without adding the PE spheres in the ceramic suspension, 

and were submitted to dilatometric analyses.  

 
FIGURE 3: Dilatometric curves of dense gelcast A and AZ materials 

 

As shown in Figure 3, at 1500°C for 3 hrs, the AZ sample undergoes a higher shrinkage (about 

29%) than the A material (about 18%). Notwithstanding this, the AZ specimen reaches a lower 

density (of about 94 TD%, referred to the theoretical value of 4.19 g/cm3), starting from a green 

density of about 40 TD% than the A bar (of about 99 TD%, referred to the theoretical value of 3.98 
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g/cm3), starting from a green density of about 50 TD%. On the basis of these results, the sintering 

conditions are fixed at 1400°C for 1 h in the case of the gelcast A materials to limit the possible 

grain growth, and at 1550°C for 3 hrs for gelcast AZ samples to further increase the fired density. In 

these conditions, both gelcast dense materials reached a density of around 93 TD%. 

SEM observations on a dense AZ gelcast sample showed that the process is able to lead to a fine 

grained microstructure with a homogeneous distribution of the second phase (Figure 4). 

 

 
FIGURE 4: SEM micrograph of the microstructure of the dense gelcast AZ sample after sintering at 

1550°C for 3 hrs (alumina grains appear in dark, zirconia ones in white) 

 

For each ceramic powder, porous components with different amounts of PE are then prepared. 

The mean values of the relative densities, before and after sintering, and porosity for the two 

compositions are reported in Table 1. In the case of the green components, the theoretical densities 

are estimated by applying the rule of mixtures for composite systems, on the basis of the ceramic 

and PE volume fractions and using density values of 0.93, 3.98 and 4.19 g/cm3 for PE, A and AZ, 

respectively. 

 

TABLE 1: Mean values of the relative densities and porosity 
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Green 
geometrical 

density 
[g/cm3 (%TD)] 

Fired 
geometrical 

density 
[g/cm3 (%TD)] 

Total 
porosity 

[%] 

Fired Archimedes 
density 

[g/cm3 (%TD)] 

Closed 
porosity 

[%] 

A65 
1.14±0.11 
(58.7±4.5) 

1.51±0.20 
(38.0±5.0) 

62 2.25±0.27 
(56.6±6.8) 

43 

A70 
1.01±0.04 
(53.2±2.6) 

1.17±0.05 
(29.5±1.4) 

70 2.49±0.20 
(62.6±5.0) 

37 

A75 
0.80±0.04 
(47.2±2.4) 

0.67±0.05 
(16.9±1.3) 

83 3.48±0.16 
(87.5±4.0) 

12 

AZ65 
1.09±0.04 
(54.4±3.2) 

1.86±0.10 
(44.3±2.3) 

56 2.57±0.05 
(61.9±1.9) 

38 

AZ70 
1.04±0.05 
(53.7±3.0) 

1.69±0.14 
(40.4±3.3) 

60 2.57±0.06 
(64.1±2.2) 

36 

AZ75 
0.84±0.06 
(48.0±3.4) 

1.15±0.11 
(27.3±2.6) 

73 3.15±0.13 
(75.1±3.2) 

25 

 
 

As illustrated in Table 1, even if the PE amount is strictly controlled, lower porosity volumes are 

created during the sintering treatment of the AZ materials.  

The SEM observations of the porous materials revealed a good distribution of the macro-pores 

(Figure 5a-f) and the presence of a diffuse micro-porosity with dimensions of about 1 µm (Figure 

5g and h), probably due to the use of the agar as the gelling agent [50]. 
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FIGURE 5: SEM images of: a) A65, b) A70, c) A75, d) AZ65, e) AZ70, f) AZ75 samples; higher 

magnification images of: g) A and h) AZ struts  

 

The SEM image analysis reveals that the porous materials present a different pore size distribution, 

as illustrated in Figure 6; in fact A samples show larger pore diameters, with a mean value of about 

190 µm, whereas lower values are determined for the AZ specimens, in which a mean diameter of 

130 µm is observed.  
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FIGURE 6: Apparent pore size distribution of A and AZ materials by SEM images  

 

The compressive stress-strain curves for the A and AZ materials, at porosities of 60 and 70 vol% 

are shown in Fig. 7. The maximum stress reaches mean values of 24.4 and 35.1 MPa for A and AZ, 

respectively, when the porosity is about 60 vol%. On the other hand, maximum stress mean values 

of 3.7 and 4.5 MPa were reached for A and AZ, respectively, when the porosity is about 70 vol%. 

 

 
FIGURE 7: compressive curve of A and AZ samples with a porosity of: a) 60 vol% and b) 70 vol% 

 

Figure 8 shows the mechanical behavior of the A and AZ samples as a function of the relative 

density.  
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FIGURE 8: Compressive strength as a function of the relative density of A and AZ materials, 

plotted on log scales.  

 

For the two investigated compositions, the compressive strength increases with the relative density 

decreases. The power dependence of strength on relative density from log-log plot of Figure 6 are 

equal to 3.3 and 4.4, respectively for A and AZ samples. 

 

Discussion 

The pore dimensions in the porous ceramics depend on the starting particle size distribution of the 

PE spheres (which was the same for all the porous materials) and on the shrinkage that the ceramic 

walls undergo during sintering. As shown in Figure 3, the AZ material undergoes the highest 

shrinkage; consequently, the pore size distribution of this type of porous material is shifted to lower 

values (Figure 6). On the other hand, larger pores are observed (Figure 6) in the case of A materials, 

compatible with the limited shrinkage (Figure 3). 

As shown in Figure 7, the stress-strain curves of the porous ceramics made in this study are typical 

of foams: a linear elastic region is recorded at low stresses, then the ceramic struts progressively 

break and damage accumulates layer by layer [36]. The materials undergo a progressive collapse, 

with the formation and propagation of cracks in the cell walls [49]. The porosity and the 

composition of the ceramic influence the mechanical behavior of these materials. 

On the ground of SEM observations, shown in Figure 5, it is possible to observe an increase in the 

interconnections among the pores, and consequently a decrease of the volume fraction of the solid 

phase, as the amount of the fugitive phase increases.  

An estimation of the average wall thickness and its dependence on the relative porosity can be 

obtained using the following equation [49]: 
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where: e is the wall thickness, 

Φ  the mean pore diameter evaluated by image analysis, 

Pmax the maximum porosity, calculated with the maximal packing of pores without interpenetration 

and equal to 0.8 [49], 

p the total porosity reported in Table 1. 

 

When the pore volume increases, the mean distance between two neighboring pores and, 

consequently, the wall dimensions decrease [49]. This is shown for the A and AZ materials in 

Figure 9, which also highlights the influence of the pore diameter. In fact, the AZ components 

present smaller pores and, consequently, smaller struts among them with respect to the A samples. 

 
FIGURE 9: The wall sizes as a function of the total porosity of A and AZ materials, according to 

equation (3). 

 

Moreover, considering that in this type of porous material the mechanical properties also depend on 

the distribution of the solid in the cell walls [49]. The diffuse micro-porosity present in the strut 

microstructure (Fig. 5g and h) of the A and AZ materials, decreases the mechanical properties of the 

solid cell wall. 

From a compositional point of view, considering the effect of the dispersion of fine ZrO2 grains in 

an alumina matrix on its mechanical behavior [33-35], the formation and propagation of the cracks 

in the ceramic walls of the porous components could be controlled by the exploitation of alumina-

zirconia composites. 
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The different compressive behavior of A and AZ components are mainly evident at lower porosity 

levels, as illustrated in Figure 7. In fact, for 60 vol% samples, the area under the stress strain curves 

is higher for AZ with respect to A compositions, and as it is proportional to the work of fracture, 

one can expect that the composite porous ceramics present not only higher compressive strengths, 

but are also less brittle. This result is probably due the effective reinforcement of the second phase. 

This behavior is also observed in the stress-strain curves of the 70 vol% porous materials (Figure 

7b), even if the decrease in wall thickness makes it less evident. 

The calculated values of n, the exponent indicating the power dependence of strength on relative 

density from log-log plot of Figure 6, equal to 3.3 and 4.4, respectively for A and AZ samples, are 

different from the exponent of the Gibson and Ashby model (1.5) for open cellular ceramics with a 

constant cell size. Such a difference can be attributed to the different nature of the porosity, which 

in these materials is not exclusively open, as in the case of Gibson and Ashby model, and to the cell 

features (size distribution, non-periodic and disordered distribution, volume fraction of solids in the 

cell faces), as well as to the presence of closed voids or defects in the struts, as reported in the 

literature [51, 52, 53]. These n values are close to the one obtained by Colombo et al. on silicon 

oxycarbide ceramic foams (3.6) [53]. 

 

Conclusions  

The modified gelcasting process based on an agar as natural gelling agent and polyethylene spheres 

as pore formers, is useful for the production of homogeneous porous composite materials. SEM 

observations on a dense AZ gelcast sample showed that the process leads to a fine grained 

microstructure with a homogeneous distribution of the second phase. The porosity features such as 

the amount of porosity, the pore shape and size distribution can be easily controlled by adding a 

fixed amount of polyethylene spheres sieved in a restricted dimensional range. For all the examined 

compositions, the strength decreases by decreasing the relative density. From a compositional point 

of view, considering the effect of the dispersion of fine ZrO2 grains in an alumina matrix on its 

mechanical behavior, the formation and propagation of the cracks in the ceramic walls of the porous 

components could be controlled by the exploitation of alumina-zirconia composites. 
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Figures caption 

 

FIGURE 1: Viscosity of dispersed suspensions of alumina, with a solid content of 50 wt%, before 

and after agar addition 

 

FIGURE 2: Particle size distribution of the selected fraction of PE spheres 

 

FIGURE 3: Dilatometric curves of dense gelcast A and AZ materials 

 

FIGURE 4: SEM micrograph of the microstructure of the dense gelcast AZ sample after sintering at 

1550°C for 3 hrs (alumina grains appear in dark, zirconia ones in white) 

 

FIGURE 5: SEM images of: a) A65, b) A70, c) A75, d) AZ65, e) AZ70, f) AZ75 samples; higher 

magnification images of: g) A and h) AZ struts  

 

FIGURE 6: Apparent pore size distribution of A and AZ materials by SEM images  

 

FIGURE 7: compressive curve of A and AZ samples with a porosity of: a) 60 vol% and b) 70 vol% 

 

FIGURE 8: Compressive strength as a function of the relative density of A and AZ materials, 

plotted on log scales.  

 

FIGURE 9: The wall sizes as a function of the total porosity of A and AZ materials, according to 

equation (3). 

 


