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Abstract 

 

Lung parenchyma surrounding an atelectatic region is thought to 
be subjected to increased stress compared with the rest of the lung. 

Using 37 hexagonal cells made of linear springs, Mead et al.(J  Appl 
Physiol  28 : 596-608, 1970) measured a stress concentration greater 

than 30% in the springs surrounding a stiffer central cell. We re-
examine the problem using a 2D finite element model of 500 cells 

made of thin filaments with a non-linear stress-strain relationship. We 

study the consequences of increasing the central stiff region from one 
to nine contiguous cells in regular hexagonal honeycombs and random 

Voronoi honeycombs. The honeycomb structures were uniformly 
expanded with strains of 15%, 30%, 45% and 55% above their 

resting, non-deformed geometry. The curve of biaxial stress vs. 
fractional area change has a similar shape to that of the pressure-

volume curve of the lung, showing an initial regime with relatively flat 
slope and a final regime with decreasing slope, tending towards an 

asymptote. Regular honeycombs had little variability in the maximum 
stress in radially oriented filaments adjacent to the central stiff region.  

In contrast, some filaments in random Voronoi honeycombs were 
subjected to stress concentration approximately 16 times the average 

stress concentration in the radially oriented filaments adjacent to the 
stiff region. These results may have implications in selecting the 

appropriate strategy for mechanical ventilation in ARDS and defining a 

"safe" level of alveolar pressure for ventilating atelectatic lungs. 
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1-Introduction  

Atelectasis, or alveolar collapse, causes a reduction of lung 

functional residual capacity and is a common clinical condition that 

occurs during general anesthesia for surgery (Brismar et al., 1985) 

and in disease states such as the acute respiratory distress syndrome 

(ARDS) (Gattinoni et al., 1986a, 1986b; Pelosi et al., 1994). ARDS is a 

syndrome characterized by localized regions of air-less lung tissue 

adjacent to expanding lung units (Gattinoni et al. 1986a, 1986b; Pelosi 

et al., 1994).  Ironically, the mainstay of treatment for ARDS, namely 

positive pressure ventilation via a mechanical ventilator, has been 

found to cause or exacerbate lung injury.  Although the exact 

mechanism for the injury still remains speculative, it has been 

hypothesized that high inflation pressures causing alveolar 

overdistension (Webb et al., 1974) and low end-expiratory pressures 

allowing airway closure, alveolar collapse and cyclic re-opening 

(Muscedere et al., 1994) may be the cause of what is termed 

ventilator-associated lung injury (VALI).  Airway closure and alveolar 

collapse are also thought to potentiate VALI by reducing the number of 

alveoli available to distribute the tidal volume, thus increasing the 

likelihood of alveolar overdistension.  Additionally, it has been 

postulated that atelectasis may cause stress concentrations in the 

tissues near the interface between the region of collapsed or non-
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inflating alveoli and the surrounding ventiled alveoli (Denny and 

Schroter, 2006: Mead et al, 1970).  

2-Previous Work  

 The stress concentration around a non-inflating region was first 

estimated by Mead (Mead et al., 1970) using a mechanical model 

consisting of a two-dimensional hexagonal array of coil springs, which 

was subjected to uniform tension at its outer boundary. They found 

the stress in the spring elements increased by about 50% with 

complete collapse of a central cell, giving rise to a condition of stress 

concentration in those members. Afterwards they compared 

predictions of stresses during lung expansion based on the 

mathematical model to changes seen with goat lung lobule inflation 

with a glued pleural disk and concluded that the mathematical model 

underestimated the stress (Takishima and Mead, 1972).  Other 

investigators (Menkes et al. 1972a, 1972b) have found similar 

underestimation of stress concentration in the mathematical model 

and more sophisticated models of lung micro-mechanics have been 

published (Fung, 1988; , Kimmel et al. , 1987; Wilson and Bachofen, 

1982). However, these models or continuum mechanics analyses give 

only estimates of average behavior and none have quantitatively 

examined the concentration of stress around a region of atelectasis in 

heterogeneous structures. 
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The aim of this research is to re-examine Mead's estimate of 

stress concentration around a non-inflating region of the lung using 

finite element analysis, with an asymmetric structure more like that of 

the lung. We model inflation of the lung around an existing atelectatic 

region, which does not inflate, while the rest of the lung around it 

does.  The stresses within the atelectasis are not supported by the 

alveolar walls, but by a reduction in pressure of the intra-alveolar fluid, 

which, depending on surface tension and viscous forces, may not 

change in volume as the lung is dynamically inflated in mechanical 

ventilation.  When the collapsed region expands little, it may be 

approximated as being rigid relative to the surrounding tissue.  

In this paper we provide quantitative information on the stress 

concentration of stress bearing tissue elements in the parenchyma 

around such a region.  We compare concentrations seen in a 

homogeneous hexagonal structure, similar to that of Mead's model, 

with those taking place in random structures, closer to the structure of 

the lung.   We also analyze the impact of using linear and non-linear 

tissue elasticity in the calculations. The model is not intended to 

explain the process of atelectasis formation, parenchymal instability or 

its associated phenomena. However, our analysis is unique in that it 

demonstrates that individual stress bearing elements within a random 
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structure can be exposed to much higher stresses than the average 

stress around a non-expanding region and may also be much greater 

than those estimated for a uniform structure.  

 

3-Cellular Materials Modeling 

Many materials, both natural and synthetic, have a cellular 

structure made up of an interconnected network of filaments, struts or 

plates.  Natural cellular materials include cork, wood and trabecular 

bone, as well as lung alveoli, of interest here.  Engineering cellular 

materials include structural honeycombs and foams. The mechanical 

behavior of both two-dimensional, honeycomb-like materials with 

prismatic cells and three-dimensional, foam-like materials with 

polyhedral cells has been successfully described by modeling their 

mechanisms of deformation and failure (Gibson and Ashby, 1997). 

Random Voronoi cellular structures are typically used to model 

materials made of heterogeneously shaped cells. Although 2D models 

do not give identical results as 3D models Ma, Breen and Bates (Ma et 

al., 2013) utilized 2D non-linear springs to provide insights about 

network behavior a hexagonal-like array of the lung parenchyma, Ito 

(Ito et al, 2006) used a similar 2D network of hexagonal arrays and 

analyzed how the distribution of forces changes and the maximum 

force increases by adding non-linearity. Suki and Bates (Suki and 
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Bates, 2008) used a 2D Voronoi-like array of non-linear springs to 

model the lung parenchyma. They applied both springs running along 

the elements between the nodes and rotational springs at the nodes 

between adjacent cells. For the mechanical behavior of the lung tissue 

they considered a stress–strain curve with exponential stiffening. Here, 

we model two-dimensional cellular structures made of hexagonal and 

Voronoi cells, using an approach similar to Ma, Breen and Bates (Ma et 

al., 2013), Ito et al. (Ito et al, 2006) and Suki and Bates (Suki and 

Bates, 2008) respectively, where the filaments also represent the 

stress bearing elements in the parenchyma. 

 

3.1 Generation of Voronoi and hexagonal models 

 Voronoi structures were initially developed to represent 

crystallization from a set of random nucleation points from which all 

the crystals begin to grow at the same time and continue to grow at 

the same rate. Two-dimensional Voronoi structures are created by 

drawing the perpendicular bisectors of lines connecting seed points 

generated with a uniform random distribution, as illustrated in Fig. 1. 

The Voronoi cell corresponding to an individual seed point is formed by 

the polygon of perpendicular bisectors that are closer to that seed 

point than to any other. In this study, we used hexagonal arrays and 

Voronoi honeycombs with approximately 500 cells within a square with 
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sides of approximately 22 cells. Voronoi honeycombs were generated 

using software developed by Silva and co-workers (Silva and Gibson, 

1997; Silva et al. 1995).  To produce cells with approximately uniform 

size, nucleation points closer than a critical distance, equal to 0.7 of 

the average edge length, were eliminated.  

For both the hexagonal and Voronoi honeycombs the value of 

the filament thickness was set to give a constant thickness, normalized 

by the unit length, equal to 0.01. It is worth noting that the filament 

thickness is only used for the purpose of calculating the stress in the 

filament. For a 2D honeycomb, each filament is a two-dimensional 

object, with a length and a thickness. Given the normalization of the 

results by the stress in the filament for a honeycomb without 

atelectasis, the actual thickness of the filament becomes unimportant. 

Indeed, it is the relative differences in stress and not the actual value 

of stress within each filament that is relevant. To approximate the 

geometry of the stress bearing filaments in the lungs, we made the 

filaments slim by setting filament thickness to unit length ratio 

constant and equal to 0.01. In our case, for two dimensional filaments, 

one can think of the stress as the axial tensile force in each member 

divided by the product of the filament thickness times a unit depth out 

of the plane of the honeycomb. Non-expanding regions were defined 

by assigning exaggerated high stiffness to the filaments within a small 
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central region of the honeycomb.  The high stiffness of the central 

region prevents it from deforming, simulating the lack of inflation of an 

atelectatic region that does not re-expand with lung inflation.  These 

regions consisted of either a single central cell or that cell plus all its 

contiguous neighbors (Fig. 2a, b).  Thus the diameter of these 

atelectatic regions was about 1/22 or 1/7 the size of the modeled 

square structure.  Twelve Voronoi honeycombs were generated and 

analyzed, each from a different set of random seed points to quantify 

how the results varied among different Voronoi honeycombs. The 

results were averaged as described in the section 3.5 Stress 

Normalization of this article. 

 

3.2 Tissue elasticity  

The stress-strain curve of the cell wall tissue was first modeled 

as linear elastic.  The Young’s modulus of the filaments representing 

the cell walls in the central stiff region was assumed to be 1000 times 

that of the surrounding filaments, which in practice essentially makes 

them rigid relative to the surrounding filaments.  

In the lung, stress bearing elements are mostly made of collagen 

and elastin filaments, a combination that becomes stiffer as the less 

elastic collagen filaments straighten at high strains. In other words, at 

lower strains most of the stress in the tissue is borne by filaments of 
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elastin that are reasonably compliant, but as strain increases the 

collagen filaments that are initially soft start to straighten and assume 

the load-bearing role.  Thus, in a second model, cell walls were 

represented by non-linear elastic filaments, with a strain-dependent 

Young’s modulus as given by (West, 1977): 

E 
0.8Eo

0.8  
     (1) 

Where E is the Young’s modulus at a given strain, E0 is the Young’s 

modulus at zero strain and  is the strain of the honeycomb wall 

(defined as the increase in length over the initial relaxed length).  We 

note that eq (1) gives similar results for the dependence of modulus 

on strain as the constitutive equation proposed by Denny and Schroter 

(Denny and Schroter, 1997). Note that E approaches infinity when  

approaches 0.8; the model becomes invalid for strains equal to or 

greater than 0.8.  Also a strain of 0.5 results in an increase of 125% in 

area of the two-dimensional structure and in an increase of 237.5% in 

volume for a three-dimensional structure. 

 

3.3 Finite element analysis 

Finite element analysis has been widely used to calculate the 

properties of materials with a cellular structure such as engineering 

honeycombs and foams. For instance, the elastic moduli and strength 

of random Voronoi honeycombs and of periodic closed-cell foams with 
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tetrakaidecahedral cells have been calculated in this way (Silva and 

Gibson, 1997; Silva et al., 1995; Simone and Gibson, 1998). Finite 

element analysis is especially well suited to study the effect of local 

inhomogeneities in the cellular structure on the mechanical response 

(Chen et al., 1999; 2001; Guo et al. 1994, 1999; Silva and Gibson, 

1997). Here, the commercial finite element software ABAQUS (Hibbit 

Kartlsson & Sorensen, Inc. Pawtucket, RI.), was used to analyze the 

stresses in each member of the hexagonal and Voronoi honeycombs.   

The outer shape of the structure analyzed was a square with 

length equivalent to that of approximately 22 contiguous cells.  At the 

outer boundary of this square, we imposed equal biaxial displacements 

with incremental uniform displacements corresponding to engineering 

strains of 15, 30, 45 and 55%, where the engineering strain is 

expressed as the ratio of total deformation to the initial dimension of 

the material body in which the forces are being applied. 

Equal biaxial displacement is considered the two-dimensional 

equivalent of volumetric expansion of three-dimensional polyhedral 

cells (e.g. pentagonal dodecahedra or tetrakaidecahedra) that have 

previously been used to model the lung (e.g. Denny and 

Schroter,1997; Kimmel et al. , 1987). Our two-dimensional model is a 

representation of both the mode of deformation of the filaments (axial 
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deformation) as well as the stress-strain behavior of the filament 

material (equation 1). 

To solve for local filament stress we made the following 

simplifying assumptions: 

● The lung tissue network was represented by beam elements 

in a plane. 

● The bending moments were negligible throughout the 

structure. 

● The geometry of the outer boundary remained similar under 

the applied displacements; that is, its shape remained square. 

● Non-linear geometric large deformations were assumed 

during the simulations. 

We used three node quadratic beam elements type B22 from ABAQUS 

Finite Element Analysis software. In order to reduce the computational 

time in the cases with non-linear elasticity, field variables were created 

to allocate the desired initial Young’s modulus to each member of the 

structure and to track changes in the Young’s modulus in each filament 

as the applied strain increased.  In the first increment of applied 

strain, the modulus of each filament was assigned the appropriate 

initial Young’s modulus.  For all increments after the first increment of 

strain, the internal strain in each member varied.  For the second and 

subsequent strain increments, the Young’s modulus in each filament 
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was recalculated using equation (1).  The process was iterated until 

the desired final displacement was reached for the whole structure. 

Finite Element Analysis requires that the equations of equilibrium are 

satisfied, so that there is a force balance at each node, it is standard 

practice to apply either forces or displacements to the nodes of the 

structure in a incremental manner up to the desired maximum force or 

displacement. In our case, we chose to apply incremental 

displacements to the boundary of the model. 

 

3.4 Cell wall grouping and orientation 

The stress concentration on individual elements depended not 

only on their distance to the atelectatic region, but also on the relative 

orientation of them.  For that reason, filaments were grouped as a 

function of their orientation and their distance, r, from the center of 

the honeycomb.  Three different orientations (radial, intermediate and 

tangential) were defined based on the magnitude of the angle  

between the filament orientation and the radial vector from the center 

of the model to the center of that member:  filaments with 0o <<30o 

were defined to be in the radial orientation; those with 30o<<60o 

were defined to be intermediate orientation and those with 60o<<90o 

were defined to be in the tangential orientation. 
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Nine different radial locations were defined by concentric rings 

around the central stiff region, equally radially spaced in increments of 

two average filament lengths. The average filament length is the sum 

of all individual filament lengths divided by the total number of 

filament in the structure. 

3.5 Stress Normalization 

Stress Normalization is a standard procedure in calculating stress 

concentration (for example, around a stiff inclusion or a hole) to 

compare the stresses in the structure with the stiff inclusion or the 

hole to those in the uniform structure, without the stiff inclusion or the 

hole. 

For each level of global strain, the effect of a stiff atelectatic 

region on local stress distribution of surrounding filaments was 

characterized by normalizing the stress in each filament by that 

measured in the same structure at the same strain but with the central 

filaments having values of Young’s modulus equal to the rest of the 

structure. In other words, stress was normalized to that of each 

filament during equivalent expansion of the system without the central 

atelectasis. The effect of a non-expanding (and thus stiff) central 

atelectatic region on the local stress distribution of surrounding 

elements was thus characterized by the relative increase in force in 

each element compared with that estimated for the same structure but 
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with an expanding central region. This normalized stress gave an index 

of the stress concentration caused by the central stiff region. 

For each condition and model studied, the normalized stress on 

the Voronoi honeycomb filaments, binned by orientation (radial, 

intermediate and tangential) and radial distance (r) from the 

atelectatic region, were characterized by the following three measures: 

their average, their individual maximum (ind max), and the average of 

the maximum for the 12 Voronoi honeycombs (avg max), and the 

respective standard deviations (Table 2).  

 

4 Results 

For the regular hexagonal honeycomb with non-linear cell wall 

elasticity (and no central stiff region), the two-dimensional equivalent 

of the pressure-volume curve is the stress-area curve shown in Fig. 3.  

The equivalent continuum stress applied at the boundary, , is the 

total normal force at a boundary (calculated from the normal 

component of force in each member along one side of the boundary, 

divided by the current cross-sectional area of the boundary). We 

assume that the structure has unit depth in the third dimension. The 

structure is in equilibrium, so that the component of the expansion 

force normal to one face of the structure is equal and opposite to that 

on the opposite face. This equivalent stress is then normalized with 
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respect to the initial (unstressed) Young's modulus of the cell 

filaments, Eo.  The shape of the curve is qualitatively similar to that of 

the lung pressure-volume curve, showing a regime of relatively 

constant slope at low strains, and a regime of decreasing slope 

approaching an asymptote at high strains.  We note that the filament 

modulus goes to infinity at a member strain of 0.8 (eqn 1), limiting the 

change in area of the honeycomb relative to the initial area to values 

less than 2.24 because the applied stress approaches infinity. 

The two-dimensional bulk modulus of the regular honeycomb can 

be calculated from: 



K2D 
d
dA

Ao


Ao
dA

d

     (2) 

Fitting a second order polynomial to the A/Ao versus /Eo curve of 

Fig. 3, we obtain the following equation: 

∆𝐴

𝐴𝑜
= 𝛼 (

𝜎

𝐸𝑜
) + 𝛽 (

𝜎

𝐸𝑜
)
2
   (3) 

 

Where: 

8.33 × 103 

−7.57 × 106 

The Equation (3) was obtained from the results of non-linear finite 

element analysis simulations involving large deformations and non-
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linear variation of the Young’s modulus with strain given by equation 

(1). 

Taking the derivative dA/d and substituting into eq (2) we obtain: 

𝐾2𝐷

𝐸𝑜
=

1

𝛾+𝛿(
𝜎

𝐸𝑜
)
     (4) 

Where: 

𝛾 = 8.33 × 103 

𝛿 = −1.51 × 107 

For the regular hexagonal honeycomb with the linear elastic cell wall 

(and no inclusion), the values of the coefficients of the eq. (3) were 

found to be =0 and =6.4x107. This equation represents an 

approximation of the finite element results for the change in area, 

A/Ao, as a function of normalized stress. For values of equivalent 

stress associated with the maximum strains imposed, (/Eo < 0.0002), 

the relative increase in area scales with the square of the stress, a 

non-realistic condition for the lung.  For the results of the non-linear 

elastic filaments in equation (3), however, the coefficient  of the 

quadratic term is negative and the slope of the curve decreases as the 

values of /Eo increase, resulting in a global stiffening of the system 

with inflation that resembles the pressure-volume relationship for 

lung.   
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The linear elastic cell wall models, which simulate the mechanical 

behavior of the hexagonal models of previous related research (Mead 

et al., 1970; Wilson, 1972) do not give physiologically plausible results 

since their approximation by equations (3), with =0, has a parabolic 

shape with a positive coefficient , and scales with the square of the 

stress imposed. As a consequence, the slopes of these curves increase 

with /Eo resulting in unstable behavior.  

 Applied equal biaxial tensile strain induces axial loads in each 

member of a regular hexagonal honeycomb so that each cell remains a 

regular hexagon with all struts equally lengthened.  The presence of a 

central stiff region distorts the hexagonal shape of the cells adjacent to 

the inclusion, causing a stress concentration (Fig. 2a, b right).  As 

the size of the inclusion is made greater, the radial distance over 

which the hexagonal shape is distorted increases.  For both sizes of 

the local stiff region studied here, the cell deformation reverts to the 

regular hexagonal pattern well within the boundary of the model, 

indicating that edge effects are small. 

The decay of the average normalized stress in the radial 

members of the regular hexagonal honeycomb, is plotted in Fig. 4.  

For the regular hexagonal honeycombs, the radially oriented members 

immediately adjacent to the stiff region are subjected to nearly 

identical stress and have the highest strain and stress concentration.  
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The equivalent continuum solution for the radial stress concentration 

around a rigid cylindrical inclusion in a linear elastic medium under 

equal biaxial tension is also plotted (Goodier, 1933).  The stress 

concentration in the radial members immediately adjacent to the stiff 

region increased with both the applied strain and the size of the stiff 

region and was generally higher for the non-linear elastic filament 

modulus (eq 1) than for the linear elastic model with constant filament 

modulus (Table 1, Fig. 5). 

To achieve the same strain in the honeycomb with the stiff 

region, the stress remote from the stiff region is slightly higher than 

that in the honeycomb with spatially uniform values of Young's 

modulus.  As a result, the average normalized stress plotted in Fig. 4 

decays to a value slightly higher than unity. 

For the Voronoi honeycombs with non-linear cell wall elasticity 

(and no local stiff region), the change in area as a function of stress is 

shown in Fig. 3, where the curve that represents the Voronoi 

honeycombs was plotted from a representative sample of Voronoi 

arrays. The overall shape of the curve is again similar to that of the 

regular hexagonal honeycomb as well as that of the dog lung 

pressure-volume curve (Lai-Fook et al., 1976), and the bulk modulus 

can be calculated from it in the same way.  In this case, we found the 
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coefficients of eq. (3) as =8.3 X 103 and =-8.00 X 106 and the 

coefficients of eq.  (4) as  =8.3 X 103 and =-1.6 x 107. 

Eq (3) gives stress-area curves that are similar to measured pressure-

volume curves in the lung (Mead et al., 1970) and eq. (4) gives a 

dependence for the bulk modulus on stress similar to that measured in 

the dog lung (Lai-Fook et al., 1976) and these two equations provide a 

similar set of curve shapes either for the regular hexagonal 

honeycomb or for the random Voronoi honeycomb. 

 For the Voronoi honeycomb with the linear elastic cell wall (and 

no local stiff region), the finite element results for the change in area, 

A/Ao, as a function of normalized equivalent stress, /Eo, can be 

approximated by Eq. (3) with coefficients =0 and =2.7x108. Similar 

to the case of the regular hexagonal honeycomb, for values of 

normalized equivalent stress, /Eo, associated with the maximum 

strains imposed in this simulation, there is a quadratic increase in area 

with increasing stress, resulting, as mentioned previously, in an 

unstable behavior. In contrast, the results for the non-linear elastic 

filaments, and also the pressure-volume relationship for lung, the 

curves reach a plateau value. 

 As for the regular honeycomb model, the local stiff region in the 

Voronoi honeycomb gives rise to a stress concentration, which, on 

average, is larger in the radially oriented members in given “band” (at 
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a particular radial distance from the center of the model) compared 

with members in either the tangential or intermediate orientations.  

Due to the heterogeneity of the structure, there is a distribution of 

stresses in the radial members adjacent to the stiff region.  In Table 

2, we report three normalized stresses: 

● the average normalized stress in the radial members in the cells 

adjacent to the stiff region for all 12 Voronoi honeycombs 

● the average, over all 12 Voronoi honeycombs, of the maximum 

normalized stress in the radial members adjacent to the stiff 

region in each Voronoi honeycomb 

● the individual maximum normalized filament stress of all the 

filaments in all 12 Voronoi honeycombs (this was always a 

filament in the radial orientation but is not always adjacent to 

the stiff region) 

The average normalized stress in the radial members adjacent to the 

stiff region increases slightly with strain and with the size of the stiff 

region; the increases are more pronounced for the non-linear elastic 

filaments than the linear elastic filaments, as might be expected. The 

variability between the average stress values of the 12 Voronoi 

honeycombs was analyzed and the standard deviation of the 

normalized stresses in any orientation, at any radial distance among 

the 12 Voronoi honeycombs was in the range of 0.024 to 0.045. 
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The decay in the average normalized stresses in the radially 

oriented members in the Voronoi honeycombs are plotted in Fig. 6, 

along with the equivalent continuum solution for a rigid cylindrical 

inclusion in a linear elastic medium under equal biaxial tension:  The 

finite element analysis of the discrete Voronoi honeycomb is again 

similar to the continuum analysis.  The Voronoi honeycombs with the 

single cell stiff region are less well represented by the continuum 

analysis than those for the multiple cell stiff region, as might be 

expected.  For the non-linear elastic case with 55% applied strain, we 

were not able to obtain a solution due to lack of convergence in the 

iterative solution.  

 

5 Discussion 

The consequences of non-expanding lung parenchyma in 

atelectasis can range from a temporary alteration in lung function to 

serious lung tissue damage. At the simplest level, atelectasis can 

result in hypoxemia when unoxygenated blood flows through the 

capillaries of unaerated alveoli. More recently, a more dangerous 

consequence of atelectasis has been theorized to occur during ARDS 

(Dreyfuss and Saumon, 1998). Based on the original work of Mead 

(Mead et al., 1970), it has been postulated that the heterogeneity in 

lung expansion during ARDS may result in a concentration of stress in 
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tissues around the atelectatic regions causing injury at otherwise 

acceptable levels of distending pressures. 

Using a network of springs similar to Mead, Wilson (Wilson, 

1972) developed a continuum mechanics analysis of a two-dimensional 

mechanical model of lung parenchyma and described the analysis of 

deformation of an elastic tube embedded in an elastic continuum made 

up of a hexagonal array of linear springs. Applying the finite element 

method, we solved the continuum mechanics deformation problem of 

hexagonal array of linear springs described in his work. The values of 

additional tension applied to the inner springs in his paper, which 

corresponds to our values of stress concentration, were found to be 

quantitatively consistent with Wilson’s results. 

Different approaches have been used to model geometrically 

complex, three-dimensional, foam-like structures such as: structural 

analysis of polyhedral unit cell models, dimensional analysis of cells 

that deform and fail by the same mechanisms as foams, finite element 

analysis of random Voronoi and non-Voronoi structures, and 

continuum approximations of those structures. Unit cell models have 

been used to analyze the response of idealized polyhedral cells to 

mechanical loading (Ko, 1965, Takishima et al., 1972; Wilson and 

Bachofen, 1982). Unit cell models of lung parenchyma have been 

proposed by Kimmel and co-workers (Kimmel and Budiansky, 1990; 
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Kimmel et al., 1987), who analyzed a pentagonal dodecahedral cell, 

and by Denny and Schroter (Denny and Schroter, 1995, 1997, 2000, 

2006), who analyzed tetrakaidecahedral cells, and more recently by L. 

Wiechert and Wall, who used micro scale multi-physics approach to 

analyze tetrakaidecahedral cells (Wiechert and Wall, 2010 ). Here we 

present an analysis of random Voronoi structure that is likely to 

represent more accurately the human lung in both the healthy and 

injured states, and compare it with results from hexagonal 

honeycombs and continuum approximations. 

In the hexagonal honeycomb with the linear elastic filaments, 

the decay in the stress concentration with radial distance away from 

the inclusion is similar to that for the continuum analysis of a rigid 

cylindrical inclusion in a linear elastic medium under equal biaxial 

tension (Fig. 4a, b).  However, in the honeycomb model, the stress 

concentration depends on the applied strain and the size of the local 

stiff region, unlike the continuum solution.  In the honeycomb with a 

local stiff region of a given size, the members close to the stiff region 

realign towards the radial direction to accommodate the difference in 

stiffness between the stiff region and the bulk of the honeycomb, with 

the degree of realignment increasing with the applied strain.  The 

changing structure of the honeycomb gives rise to the strain 

dependence of the stress concentration.  Similarly, for a given strain, 
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as the size of the local stiff region increases, the distortion of the 

regular hexagonal network increases, so that again, the changing 

structure of the honeycomb produces a dependence of the stress 

concentration on the size of the local stiff region.  We note that as the 

size of the stiff region increases in the linear elastic regular hexagonal 

honeycomb, the strain dependence decreases, and the stress 

concentration is closer to the continuum solution.  In the limit of a 

local stiff region with higher number cells (with roughly 10 cells across 

its diameter) and a sufficiently large model (with roughly 10 inclusion 

diameters, or 100 cells, in the radial direction), we expect the 

honeycomb result to approach the continuum solution.   

For the honeycomb with the larger stiff region, the stress 

concentration at the outer boundary of the model is affected by strain 

more than in the other cases. As mentioned previously, the size of 

these non-expanding regions are respectively (for one cell and for a 

set of 6 to 9 contiguous cells) about 1/22 and 1/7 the size of the 

square structure (Fig. 2a, b left) or the circle inscribed within it. The 

corresponding approximate ratios of the non-expanding area over the 

rest of the model containing normally expanding cells, Ar, are 0.002 

and 0.018.  In the case of 6 to 9 contiguous stiffened cells the non-

expanding area is about 9 times larger than the area of the one rigid 

cell structure. This means that for the same total increase in the area 
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of the system, the reduced deformation of the larger stiffened area 

would have the effect of reducing the number of expanding hexagons 

and increasing the stress throughout the system, including those at 

the boundary of the square structure.   

For the Voronoi honeycomb models, the maximum stress 

occurred in the radially oriented filaments adjacent to the stiff region.  

The average stress in these members was almost identical to those of 

the regular hexagonal honeycomb for both linear and non-linear elastic 

filaments. (Table 1, Fig. 5).  For the reasons described above, the 

stress concentration increases with increasing strain (by about 15% 

for the linear filament and about 20% and 30% for the non-linear 

filament with 1 and 7 cells respectively) and with increasing size of the 

stiff region (by about 10% for the linear filament and about 12% for 

the non-linear filament).  

In the Voronoi honeycomb models, the average stress in the 

radial members adjacent to the stiff region was slightly lower but 

generally within 6% of that of the regular hexagonal honeycomb, for 

the same configuration and strain (e.g. linear elastic filament, 1 stiff 

cell, 15% strain), suggesting that the average response of the random 

honeycomb is similar to that of the regular hexagonal honeycomb 

(Tables 1, 2).  The variation in the filament stresses in the Voronoi 

honeycomb was much larger than that in the regular hexagonal 
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honeycomb, however.  For instance, for the case of the non-linear 

elastic filament, with 6-9 cells in the stiff region, at 45% strain, the 

average, over all 12 Voronoi honeycombs, of the maximum radial 

stress concentration in the members adjacent to the stiff region was 

2.43.  The stresses in the Voronoi honeycomb were much more 

variable than in the regular honeycomb. The average maximum stress 

in the 12 simulations was 2.43, almost 3 times the stress 

concentration given by the regular honeycomb model (1.54), but it 

could reach a maximum of 16 times in a individual filament (9.59). For 

the Voronoi honeycombs, the decay in average stress concentration 

with radial distance away from the stiff region was similar to that for 

the regular hexagonal honeycombs.  For the linear elastic Voronoi 

honeycomb, the dependence of the stress concentration on strain 

decreases with increasing size of the local stiff region, and the stress 

concentration approaches that of the linear elastic continuum solution 

as the size of the local stiff region increased (Fig. 6 a,b).  For the 

non-linear Voronoi honeycomb, the average stress concentration 

adjacent to the local stiff region is smaller than that of the regular 

hexagonal honeycomb (Fig. 6 c,d). 

We compared our finite element results with the continuum 

solution for the stress concentration around a rigid cylindrical inclusion 

in a linear elastic medium under equal biaxial displacement.  As 
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mentioned previously, in our analysis, we model the inflation of the 

lung around an existing non-expanding region that was already 

collapsed and did not inflate as the rest of the lung inflated.  The 

appropriate two-dimensional continuum comparison is that for the 

stress concentration around a rigid cylindrical inclusion in a linear 

elastic medium under equal biaxial displacement.  The lung mechanics 

literature has often made use of the Lame continuum solution for the 

stresses in a thick cylinder with a central hole under differing internal 

and external pressures.  This solution is relevant to the mechanics of 

the interaction of the bronchi and pulmonary vessels and the lung 

parenchyma surrounding them (see, for instance, Lai-Fook (Lai-Fook, 

1979; Lai-Fook et al. 1977) and the review by Kamm (Kamm, 1999)) 

and could be applied to modeling stress concentrations around a rigid 

region, as described in this study.  If the external cylinder of Lame’s 

formulation is made very large, and the pressure within the hole is 

reduced to the point where the hole achieves the size of the rigid 

inclusion, Lame's solution gives equivalent results to the continuum 

solution of Goodier (Goodier, 1933) used here.  

We also note that continuum models also have their own 

limitations in describing the mechanics of random structures with 

discrete stress bearing elements:  by their nature, they cannot 

describe the variability in the stresses in individual stress bearing 
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elements.  One strength of the finite element analysis described in this 

study is the ability to obtain a quantitative description of the variability 

in the stresses in filaments at the same radial distance from the 

inclusion. 

The maximum stress concentration around a rigid spherical 

inclusion in a linear elastic medium under external outward pressure 

(the equivalent three-dimensional continuum result) is 1.62 (Fig. 7).  

For the two-dimensional case, we found that the average stress 

concentration in the radial members adjacent to the stiff region in the 

Voronoi honeycomb was similar to both the average stress 

concentration in the radial members of the regular hexagonal 

honeycomb adjacent to the stiff region and to the stress concentration 

given by the 2D continuum analysis.  Extrapolating our honeycomb 

results to three dimensions, we suggest that the average stress 

concentration in a three-dimensional random Voronoi structure will be 

very close to the continuum value of 62% and that the average 

maximum stress may reach approximately 3 times this value, but it 

may reach a maximum of 16 times in a individual filament. These are 

much higher stress concentrations than the value of 50% suggested 

by Mead. 

Our study has a number of limitations. We analyzed two-

dimensional, rather than three-dimensional structures.  As discussed 
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above, we have suggested an extrapolation of the two-dimensional 

results to three-dimensions, using the continuum solutions and the 

variability we found in the random two-dimensional Voronoi structure.  

A three-dimensional Voronoi structure sufficiently large to eliminate 

edge effects would have roughly 100,000 filaments, which is 

computationally possible with HPC cluster computing.  We hope that 

the two-dimensional model presented here serves to motivate a 

similar work in three-dimensions. 

In the models presented here, we did not simulate the creation 

of atelectasis from an inflated state, but we expanded the lung models 

bi-axially from an initially unstressed state. The results of Finite 

Element Analysis simulations showed that, unlike the hexagonal 

honeycombs structures, a small number of tangential filaments of the 

Voronoi honeycomb structure were under slight compression due to 

the high anisotropy of the structure. However, that amount of 

compression was negligible compared with the tension of radial 

members. In addition, the choice of very slim filaments resulted in 

negligible bending moments on the filament joints. By expanding the 

lungs to the same volume as without the stiff region, we are assuming 

that lung volume does not change, which is unlikely to happen unless 

the area of atelectasis is small.  A slight reduction in lung volume 

would tend to lessen the magnitude of the stress concentration. 
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A second limitation in our model was that we did not include the 

effect of surface tension on the stress concentrations. Surface tension 

effects are complex and depend on the microstructure of the alveolus 

and the thickness of the fluid layer. Typically surface tension should 

create a force that, for a given degree of lung expansion, would 

increase the required inflation pressure, or, for a given degree of 

inflation pressure would reduce the stress load on the stress bearing 

alveolar filaments.  However the magnitude of this effect depends on 

the radius of curvature of the air-liquid interface at the alveolus.  If the 

deformation of alveolar shape in regions near the atelectatic region 

elongates the alveolus in the radial direction away from the 

atelectasis, the radius of curvature of the air-liquid interface near the 

collapsing units would tend to be reduced.  This would tend to increase 

the surface tension and make the system unstable promoting the 

growth of the atelectasis and thus increase the stress of radial 

filaments, further exaggerating the stress concentration on them.  

Furthermore, it has been suggested that, as an approximation, surface 

tension effects can be combined with tissue elasticity, so that the 

additional stiffness arising from area changes in the fluid layer may be 

incorporated into the non-linear tissue elasticity (Kimmel et al., 1987 ; 

Lanir, 1983).  We note that our results for the normalized stress 

concentrations were dependent on the cell wall elasticity: we obtained 
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moderately higher stress concentrations results for non-linear elasticity 

in the solid cell wall material.  This suggests that incorporation of 

surface tension effects could further exaggerate the magnitude of the 

stress concentration.  It will be useful to substantiate these 

speculations in future modeling. 

A further limitation of our model was that we assumed the walls 

of the honeycombs to be initially straight, with no externally applied 

stress and with no internal stress in the walls.  In contrast, in the lung, 

the alveolar walls are straightened by slight pressurization of the lung.  

We suggest that our results may not have been substantially affected 

by this assumption for the degree of lung inflations studied given the 

normalization of the data, taking the stresses in the near field 

members relative to those in the far field at a particular level of global 

strain which was always positive. 

 

6 Conclusion 

The two-dimensional approximation of our model with non-linear 

elasticity gives a reasonable representation of the behavior 

experimentally measured in the lung in terms of the pressure-volume 

behavior as well as the dependence of bulk modulus on pressure.  This 

is not the case for the models with linear elasticity.  In the regular 

hexagonal model, the radially oriented filaments adjacent to the stiff 
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region undergo the highest stress concentration; as a result of the 

regularity of the hexagonal model, all of these members undergo 

identical stress.  The stress decay in the radial members of the regular 

hexagonal honeycomb approximately follows the continuum analysis 

for a rigid cylindrical inclusion in a linear elastic medium.  In the 

Voronoi honeycombs, the average stress concentration in the radially 

oriented members adjacent to the stiff region is very close to that in 

the regular hexagonal honeycomb (and in the continuum analysis).  

However, due to the inhomogeneity in the structure, there is a large 

variation in the stress concentration of individual members. As 

mentioned previously, the average maximum stress is almost 3 times 

the stress concentration given by the regular honeycomb, but in an 

individual member may reach approximately 16 times the average 

stress.  The continuum analysis of a rigid sphere in a linear elastic 

continuum of Goodier (Goodier, 1933) gives the maximum stress 

concentration adjacent to the sphere as 1.62.  Extrapolation of our 

two-dimensional results to a three-dimensional Voronoi structure 

suggests that the average stress concentration in the radially oriented 

members should be slightly higher than 1.62 and that the average 

maximum stress could be almost 3 times this value, but in individual 

members this magnitude could be could about 16 times.  These are 
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considerably higher than Mead’s estimate of a stress concentration of 

50%. 

In the lungs this would translate into the finding that in 

atelectatic regions, ventilation with pressures that could be considered 

safe in homogeneous lungs can result in substantially higher stresses, 

and injury, to parenchyma adjacent to the atelectasis.  For example, 

ventilation with pressures limited to less than 30 cm H2O could result 

in average local stress concentrations in individual stress bearing 

elements equivalent to a uniform stress of roughly 48 cm H2O (1.62 x 

30 cm H2O) and much greater in some filaments considering the 

additional concentration caused by the non-uniformity of the alveolar 

walls.  These results may have implications in selecting the 

appropriate strategy for mechanical ventilation in ARDS and defining a 

"safe" level of alveolar pressure for ventilating atelectatic lungs. 

 

References 
 

 

Andrews EW, Gioux G, Onck PR and Gibson LJ  Size effects in 
ductile cellular solids Part II: Experimental Results.  Int. J. Mech. 

Sci.,43:701-713, 2001. 
 

Brismar B, Hedenstierna G, Lundquist H, Strandberg A, 
Svensson L and Tokics L. Pulmonary densities during anesthesia 

with muscular relaxation--a proposal of atelectasis. Anesthesiology 62: 

422-428, 1985. 
 

Chen C, Lu, TJ and Fleck, NA- Effect of imperfections on the yielding 
of two-dimensional Foams-J Mech Phys Solids 47 2235-72 -1999 



 

36 
 

 

Chen C, Lu, TJ and Fleck NA- Effect of inclusions and holes on the 
stiffness and strength of honeycombs- International Journal of 

Mechanical Sciences  43 pp 487-504 2001 
 

Denny E and Schroter RC The mechanical behaviour of a 
mammalian lung alveolar duct model  J. Biomech. Eng. 117: 254-261, 

1995. 
 

Denny E and Schroter RC Relationships between alveolar size and 
fibre distribution in a mammalian lung alveolar duct model.  J. 

Biomech. Eng. 119: 289-297, 1997. 
 

Denny E and Schroter RC Viscoelastic behavior of a lung alveolar 
duct model J. Biomech. Eng. 122: 143-.151, 2000. 

 

Denny E and Schroter  RC - A model of non-uniform lung parenchyma 
distortion Journal of Biomechanics 39 652–663, 2006 
 
Dreyfuss D and Saumon G. Ventilator-induced lung injury: lessons 

from experimental studies. Am J Respir Crit Care Med 157: 294-323, 
1998. 

 
Fung YC. A model of the lung structure and its validation. J Appl 

Physiol 64: 2132-2141, 1988. 
 

Gattinoni L, Mascheroni D, Torresin A, Marcolin R, Fumagalli R, 

Vesconi S, Rossi GP, Rossi F, Baglioni S, Bassi F and et al. 
Morphological response to positive end expiratory pressure in acute 

respiratory failure. Computerized tomography study. Intensive Care 
Med 12: 137-142, 1986a. 

 
Gattinoni L, Presenti A, Torresin A, Baglioni S, Rivolta M, Rossi 

F, Scarani F, Marcolin R and Cappelletti G. Adult respiratory 
distress syndrome profiles by computed tomography. J Thorac Imaging 

1: 25-30, 1986b. 
 

Gibson LJ and Ashby MF Cellular Solids: Structure and Properties.  
Second Edition. Cambridge University Press 1997.  

 
Goodier JN, Concentration of Stress Around Spherical and Cylindrical 

Inclusions and Flaws, J. Appl. Mech, 55: 39-44, 1933. 

 



 

37 
 

Guo XE, McMahon TA, Keaveny TM, Hayes WC and Gibson LJ -

Finite Element Modeling of Damage accumulation in Trabecular Bone 
under Cyclic Loading-J Biomechanics Vol 27 No 2, pp 145-155, 1994 

 
Guo XE, and Gibson LJ- Behaviour of intact and damaged 

honeycombs: a finite element study- International Journal of 
Mechanical Sciences 41 pp 85-105 1999 

 
Hibbit Kartlsson & Sorensen, Inc. Pawtucket, RI. - ABAQUS User´s 

Manual.  www.abaqus.com November 2013 
 

Ito S, Bartolák-Suki E, Shipley JM, Parameswaran H, Majumdar 
A, and Suki B Early Emphysema in the Tight Skin and Pallid Mice 

Roles of Microfibril-Associated Glycoproteins, Collagen, and Mechanical 
ForcesAm J Respir Cell Mol Biol Vol 34. pp 688–694, 2006 

 

Kamm RD Airway wall mechanics.  Ann. Rev. Biomed. Eng.1: 47-72, 
1999. 

 
Kimmel E and Budiansky B. Surface tension and the dodecahedron 

model for lung elasticity. J Biomech Eng 112: 160-167, 1990. 
 

Kimmel E, Kamm RD and Shapiro AH. A cellular model of lung 
elasticity. J Biomech Eng 109: 126-131, 1987. 

 
Ko WL Deformations of foamed elastomers. J. Cellular Plastics 1: 45-

50, 1965.  
 

Lai-Fook SJ A continuum mechanics analysis of pulmonary vascular 
interdependence in isolated dog lobes.  . J. Appl. Physiol.: Respirat. 

Environ. Exercise Physiol. 46: 419-429, 1979. 

 
Lai-Fook SJ, Wilson TA, Hyatt RE and Rodarte JR Elastic constants 

of inflated lobes of dog lungs.  J. Appl. Physiology 40: 508-513, 1976. 
 

Lai-Fook SJ, Hyatt RE, Rodarte JR, and Wilson TA Behavior of 
artificially produced holes in lung parenchyma.  J. Appl. Physiol.: 

Respirat. Environ. Exercise Physiol. 43: 648-655, 1977. 
 

Lanir Y Consitutive equations for the lung tissue. J. Biomech Eng 105: 
374-380, 1983. 

 

http://www.abaqus.com/


 

38 
 

Ma, B., Breen, B. and Bates, J.H.T. Influence of parenchymal 

heterogeneity on airway-parenchymal interdependence. Respiratory 
Physiology & Neurobiology. 2013 - In Presss 

http://dx.doi.org/10.1016/j.resp.2013.06.005 
 

Mead J, Takishima T, and Leith D-Stress distribution in lungs: a 
model of pulmonary elasticity. J  Appl Physiol  28 : 596-608, 1970 

 
Menkes H, Gamsu G, Schroter R and Macklem PT. 

Interdependence of lung units in isolated dog lungs. J Appl Physiol 32: 
675-680, 1972a. 

 
Menkes H, Lindsay D, Wood L, Muir A and Macklem PT. 

Interdependence of lung units in intact dog lungs. J Appl Physiol 32: 
681-686, 1972b. 

 

Muscedere JG, Mullen JB, Gan K and Slutsky AS. Tidal ventilation 
at low airway pressures can augment lung injury. Am J Resir Crit Care 

Med 149: 1327-1334, 1994. 
 

Onck PR, Andrews EW and Gibson LJ  Size effects in ductile cellular 
solids Part I: Modelling.  Int. J. Mech. Sci., 43: 681-699, 2001. 

 
Pelosi P, D'Andrea L, Vitale G, Pesenti A and Gattinoni L. Vertical 

gradient of regional lung inflation in adult respiratory distress 
syndrome. Am J Respir Crit Care Med 149: 8-13, 1994. 

 
Silva M J and Gibson LJ- The effects of non-periodic microstructure 

and defects on the compressive strength of two-dimensional cellular 
solids- Int J Mech. Sci. 39, 549-563, 1997 

 

Silva MJ, Hayes C, WC and Gibson LJ-The Effects of Non-Periodic 
Microstructure on the Elastic Properties of Two-Dimensional Cellular 

Solids- Int. J. Mech. Sci. Vol 37 No11, pp 1161-1177, 1995 
 

Simone AE, and Gibson LJ- Effects of Solid Distribution on the 
Stiffness and Strength of Metallic Foams Acta mater. Vol 46 No6 pp 

2139-2150 1998 
 

Suki B, Bates JTH Extracellular matrix mechanics in lung 
parenchymal diseases Respiratory Physiology & Neurobiology 163, 33–

43 2008 
 



 

39 
 

Takishima T and Mead J. Tests of a model of pulmonary elasticity. J 

Appl Physiol 33: 576-581, 1972. 
 

Webb HH and Tierney DF. Experimental pulmonary edema due to 
intermittent positive pressure ventilation with high inflation pressures.  

Protection by positive end-expiratory pressure. Am Rev Respir Dis 
110: 556-565, 1974. 

 
West John B, Regional Differences in the Lung - Academic Press 1977 

pp 281-322 
 

Wiechert L and Wall WA- A nested dynamic multi-scale approach for 
3D problems accounting for micro-scale multi-physics Comput. 

Methods Appl. Mech. Engrg. 199 1342–1351 2010 
 

Wilson TA A continuum analysis of a two-dimensional mechanical 

model of the lung parenchyma.  J. App Physiol 33: 472-478, 1972. 
 

Wilson TA and Bachofen H. A model for mechanical structure of the 
alveolar duct. J Appl Physiol 52: 1064-1070, 1982. 

 
 
 



 

1 
 

Figure Captions 

 

Figure 1 Construction of a two-dimensional Voronoi structure. The 
solid lines are the perpendicular bisectors. The dashed lines 

are the lines connecting the seed points. 
 

Figure 2 Left Regular hexagonal honeycombs (top) and Voronoi 
honeycombs (bottom) showing the location and number of 

stiff central cells representing atelectatic regions (filled cells). 
Simulations were conducted in both architectures for a single 

central rigid cell (a) or for a central cell and the surrounding 
first layer of cells (b). Right - Typical deformations of the 

non-linear elastic filaments of the hexagonal (top) and 
Voronoi honeycombs (bottom) for one central rigid cell (a) 

and multiple central rigid cells (b). (Case for a biaxial strain of 
55% with magnification factor of 2.5). 

 

Figure 3 Plots of applied strain (A/Ao) against "true biaxial stress" 

(the sum of filament forces divided by the current area) 

normalized by the initial filament modulus of elasticity, Eo, for 
non-linear elastic filaments defined by equation (1). Data 

obtained from simulations expanding the hexagonal (filled 
squares) and Voronoi (open squares) models (with no central 

stiff region).The shape of the plots resembles the pressure-
volume relationship for the lung.  

 

 

Figure 4    The average normalized stress in the radial members of 

the regular hexagonal honeycombs plotted against the radial 
distance (before deformation) from the center of the 

inclusion, normalized by the inclusion radius, r/a. (a) Linear 
elastic, 1 stiff cell (b) linear elastic, 7 stiff cells (c) non-linear 

elastic, 1 stiff cell (d) non-linear elastic, 7 stiff cells. The 

dashed line in each figure is the 2D solution for a rigid 
cylindrical inclusion in a linear elastic continuum.  

Strain=15% (  ), strain=30% (   ), strain=45% (  ), 
strain=55% (   ).  

 

Figure 5 Normalized stress concentration in the radial members 
immediately adjacent to the stiff region for the regular 

hexagonal honeycombs. 
 

Figure 6  The average normalized stress in all radially oriented 
members in all 12 Voronoi honeycombs plotted against 

distance from the center of the stiff region (a) Linear elastic 
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filament, 1 stiff cell, (b) linear elastic filament, 6-9 stiff cells 

(c) non-linear elastic filament, 1 stiff cell (d) non-linear elastic 
filament, 6-9 stiff cells. The bold line in each figure is the 2D 

solution for a rigid cylindrical inclusion in a linear elastic 
continuum. Strain=15% ( ), strain=30% ( ), strain=45% (  ), 

strain=55% (   ).  
 

Figure 7 The radial stress, normalized by the remote stress, plotted 

against the radial distance from the center of the inclusion, 

normalized by the inclusion radius, for the 2D and 3D 
continuum solution for a cylinder and a sphere in a linear 

elastic medium. 
 





(a) 



(b) 



A/A

0

0.5

1

1.5

2

2.5

0.00 1.00 2.00 3.00 4.00 5.00 6.00

( /E)*10
-4

hexagonal-finite element analysis

Voronoi-finite element analysis

(S/Eo)*10-4 



(a) 

Figure  5(b) 

1

1,2

1,4

1,6

0 5 10 15

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 s

tr
e
s
s

Radial distance normalized by inclusion radius, r/a

hexagonal linear 1cell

---2D linear elastic  
continuum  solution

1

1,2

1,4

1,6

0 5 10 15

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 s

tr
e
s
s

Radial distance normalized by inclusion radius, r/a

hexagonal  linear 7cells

---2D linear elastic 
continuum  solution

1.6 

1.4 

1.2 

1.6 

1.4 

1.2 

    (b) 



(c) 

(d) 

1

1,2

1,4

1,6

0 5 10 15

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 s

tr
e
s
s

Radial distance normalized by inclusion, r/a

hexagonal non-linear 1cell

--- 2D linear elastic 
continuum  solution

1

1,2

1,4

1,6

0 5 10

N
o

rm
a

liz
e

d
 a

v
e

ra
g

e
 s

tr
e

s
s

Radial distance normalized by inclusion radius, r/a

hexagonal non-linear 7cells

--- 2D linear elastic 
continuum  solution

1.6 

1.4 

1.2 

1.6 

1.4 

1.2 



1

1,1

1,2

1,3

1,4

1,5

1,6

0 10 20 30 40 50 60

N
o
rm

a
liz

e
d
 S

tr
e
s
s
 C

o
n
c
e
n
tr

a
ti
o
n

Strain (%)

non-linear-7cells

non-linear-1cell

linear-7cells

linear-1cell

1.6 

1.5 

1.3 

1.1 

1.2 

1.4 



       (a) 

           (b) 

1

1,2

1,4

1,6

0 5 10 15 20

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 o

f 
a
v
e
ra

g
e
 

s
tr

e
s
s

Radial distance normalized by inclusion radius, r/a

Voronoi linear 1cell

---2D linear elastic 
continuum solution

1

1,2

1,4

1,6

0 5 10 15 20N
o

rm
a

liz
e

d
 a

v
e

ra
g

e
 o

f 
a

v
e

ra
g

e
 

s
tr

e
s
s

Radial distance normalized by inclusion radius, r/a

Voronoi linear  6-9 cells 

---2D linear elastic 
continuum solution

1.6 

1.4 

1.2 

1.2 

1.4 

1.6 



                 (c) 

                  (d) 

1

1,2

1,4

1,6

0 5 10 15 20

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 o

f 
a
v
e
ra

g
e
 s

tr
e
s
s

Radial distance normalized by inclusion radius, r/a

Voronoi 1cell non-linear

---2D linear elastic 
continuum solution

1

1,2

1,4

1,6

0 5 10 15 20

N
o

rm
a

liz
e

d
 a

v
e

ra
g

e
 o

f 
th

e
 a

v
e

ra
g

e
 s

tr
e

s
s

Radial distance normalized by inclusion radius, r/a

Voronoi non-linear 6-9 cells

---2D linear elastic 
continuum solution 

1.6 

1.4 

1.2 

1.6 

1.4 

1.2 



1.7 

1.6 

1.5 

1.4 

1.3 

1.1 

1.2 



Table 1  Normalized stress in the radial members adjacent to 

the stiff region in the regular hexagonal honeycombs 

 

Strain Linear elastic 

filament 

1 cella 

Linear elastic 

filament 

7 cellsb 

Non-linear 

elastic 
filament,  

1 cell 

Non-linear 

elastic 
filament,  

7 cells 
     

15% 1.06 1.18 1.13 1.22 

30% 1.17 1.27 1.29 1.38 

45% 1.20 1.32 1.34 1.54 

55% 1.22 1.34 1.39 1.58 
 
a 1 cell in the stiff region 

b 7 cells in the stiff region 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2  Normalized stress in the radial members adjacent to 

the stiff region in the Voronoi honeycombs 

 

 Linear elastic 

filament 

1 cella 

Linear elastic 

filament 

6-9 cellsb 

 

Non-linear 

elastic 
filament 

1 cell (eqn 1) 

Non-linear 

elastic 
filament 

6-9 cells (eqn 
1) 

     

STRAIN =15% - - - - 

Average 1.05 (0.024) 

 

1.17 (0.030) 1.10 (0.030) 1.20 (0.029) 

avg max 1.09 (0.037) 1.26 (0.043) 1.17 (0.040) 1.30 (0.045) 

ind max 1.20 1.37 1.23 1.41 

     

STRAIN=30% - - - - 

Average 1.13 (0.025) 1.24 (0.040) 1.17 (0.030) 1.32 (0.030) 

avg max 1.21 (0.023) 1.36 (0.051) 1.27 (0.057) 1.48 (0.059) 

ind max 1.25 1.48 1.34 1.63 

     

STRAIN=45% - - - - 

Average 1.15 (0.034) 1.27 (0.044) 1.22 (0.040) 1.52 (0.040) 

avg max 1.23 (0.026) 1.41 (0.053) 1.36 (0.078) 2.43 (2.265) 

ind max 1.28 1.52 1.46 9.59 

     

STRAIN=55% - -   

Average 1.16 (0.037) 1.28 (0.045)   

avg max 1.24 (0.026) 1.43 (0.057)   

ind max 1.30 1.53   

 
a 1 cell in the stiff region   b 6-9 cells in the stiff region 

 

values in brackets are standard deviations 

 

average = the average normalized stress in the radial members in 

the cells adjacent to the stiff region for all 12 Voronoi honeycombs 

 

avg max = the average, over all 12 Voronoi honeycombs, of the 
maximum normalized stress in the radial members adjacent to the 

stiff region in each Voronoi honeycomb 

 

ind max = the individual maximum normalized filament stress of all 

the filaments in all 12 Voronoi honeycombs (This was always a 

filament in the radial orientation.) 
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