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Abstract
The precise causal factors for obsessive-compulsive disorder (OCD) are not known, however,
decades of research have honed in on the cortico-striatal-thalamo-cortical (CSTC) circuitry in the
brain as a critical pathway involved in obsessions and the intimately linked compulsive-repetitive
behaviors. Recent progress in human and mouse genetics have led to the identification of novel
candidate susceptibility genes, which in turn have facilitated a more focused approach to
unraveling the nature of circuitry dysfunction in OCD. The ability to perform invasive techniques
in genetic animal models of OCD will be crucial for rapid advances in this field, and as such we
review the most recent developments and highlight the importance of searching out common
circuitry defects underlying compulsive-repetitive behaviors.
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Introduction
Despite the fact that the causes of OCD remain elusive, in recent years this disorder, once
considered relatively obscure, has experienced a reemergence in the public consciousness.
This is underscored by the creation of not one, but two separate reality/documentary-style
television shows dedicated to this topic within the past two years (“OCD Project” which
aired on VH1 and “Obsessed” which aired on A&E). Perhaps this is the result of a growing
acceptance that OCD is not obscure, but rather, ranks among the most prevalent
neuropsychiatric disorders such as major depression, schizophrenia, and bipolar disorder.
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It is estimated that the lifetime prevalence of OCD is 1–3% in the general population [1,2],
suggesting that within each of our social networks we may find family members, friends, or
colleagues that live with this often debilitating condition. While there are several treatment
options currently available [3,4], the stark reality is that there remains a significant
percentage of OCD sufferers that are either non-responsive or only partially responsive to
the available treatment paradigms. Furthermore, last-resort invasive procedures such as deep
brain stimulation or surgical procedures have had mixed success in alleviating severe
symptoms [5], and thus these options remain an empirical art that is far from being
mastered. This highlights the importance of continued research into the precise causes of
OCD and continued exploration of novel targets that have promise to one day bring relief to
all in need.

Theoretical framework for circuitry dysfunction in OCD
Diverse functional brain imaging technologies have allowed researchers to delve deep into
the brains of OCD patients to seek out aberrations in neural circuits that control behavior.
Over the past 25 years these noninvasive imaging approaches have consistently identified
abnormal patterns of activity in a particular circuit, the CSTC loop [6] (Figure 1), and these
studies have been highly influential in synthesizing the modern views on the neurobiology
of OCD. Perhaps equally important over this span were emerging views on basal ganglia
circuitry function, such as the description of numerous parallel and partially closed loops
through the CSTC pathway proposed to sub-serve discrete motor or cognitive functions [7].
This model has been revised to incorporate the proposed opposing functions of the “direct”
versus “indirect” projection pathways of the basal ganglia as well as compartmentalization
of function with respect to neurochemically defined striosome and matrix [8–11]. One
prominent hypothesis, which integrates the human OCD imaging findings with these earlier
models on basal ganglia circuitry function, posits that hyperactivity of the orbitofrontal-
subcortical loops caused by a disruption in the balance of activity through these opposing
basal ganglia pathways (specifically, excessive direct pathway activation) underlies the
manifestation of OCD symptoms [6].

While surely this represents an oversimplification of the neural circuitry that gates
obsessions and compulsive behavior, it provides a useful theoretical framework for devising
testable hypotheses on the mechanisms of circuitry dysfunction in OCD. Surprisingly,
despite the accumulating evidence for the involvement of the CSTC circuit dysfunction and
the proposed role of basal ganglia circuitry imbalance, there has been a marked absence of
direct experimental evidence in the past two decades to support or refute this idea. The most
likely explanations include ethical issues that preclude the majority of invasive procedures
in human patients and the lack of well-established alternative animal models for exploring
such detailed mechanistic insights. In this light, we concisely review the most recent
progress specifically toward development of novel genetic animal models of OCD and
explore intersections with recent human genetics studies on OCD. Comprehensive reviews
on the various other animal models relevant to OCD-like behaviors have been covered
elsewhere [12–16].

Recent insights from genetic mouse models
Sapap3 null mice

SAP90/PSD95-associated protein 3 (SAPAP3) belongs to a family of four homologous
genes encoding SAPAP proteins that are widely yet differentially expressed in the nervous
system [17]. SAPAP3 is localized to the postsynaptic density (PSD) at excitatory synapses
and is the only family member strongly expressed in the striatum. Genetic deletion of
Sapap3 in mice caused behavioral abnormalities consisting of increased anxiety and
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compulsive self-grooming to the point of facial hair loss and skin lesions [18]. Sapap3 null
mice were also found to have defects in glutamatergic transmission at cortico-striatal
synapses, and both synaptic and behavioral defects were rescued by virus-mediated
reintroduction of SAPAP3 specifically into the striatum [18], thus confirming the critical
role of cortico-striatal circuitry function to the expression of compulsive grooming behavior.
Repeated administration of fluoxetine (which is known to be effective in treating human
OCD) successfully alleviated compulsive grooming and anxiety.

These findings on Sapap3 null mice prompted two recent genetic studies of Sapap3 and
OCD. Züchner et al. [19] performed Sapap3 gene re-sequencing analysis in OCD and
trichotillomania (TTM) case samples. This study identified seven rare non-synonymous
heterozygous Sapap3 variants. The combined load of these rare Sapap3 mutations was
significantly higher in OCD/TTM cases compared to controls. These findings await further
validation, including analysis of the functional relevance of these rare mutations.
Additionally, a relatively large family-based gene association study of Sapap3 in OCD and
grooming disorders has also been conducted [20]. The evidence suggests that multiple
variations in the Sapap3 gene are associated with grooming disorders. No direct association
between Sapap3 variants and OCD was reported, although it is noteworthy that grooming
disorders without OCD were uncommon in this study. With this in mind the authors suggest
the possibility that Sapap3 variants may be involved in a subtype of OCD involving
pathological grooming behaviors.

Slitrk5 null mice
Slit and Trk-like proteins (Slitrks) represent a relatively newly discovered family of
structurally related transmembrane proteins that are predominantly expressed in the CNS
and regulate neurite outgrowth and neuronal survival. Although not consistently replicated,
prior work supports a link between Slitrk1 and Tourette syndrome [21] as well as TTM [22],
and Slitrk1 was shown to be highly expressed in significant portions of the CSTC circuitry
[23]. However, Slitr1 null mice display only limited behavioral abnormalities such as
moderately elevated anxiety [24]. In contrast, more recently described mice in which the
Slitrk5 coding region was replaced with the LacZ reporter gene (a null/reporter allele)
exhibit compulsive self-grooming and increased anxiety [25]. The LacZ expression allowed
unequivocal determination of the predominantly neuronal expression pattern throughout
cortex and striatum. Slitrk5 was found to localize to the PSD and mutant mice further
displayed significant alterations in striatal ionotropic glutamate receptor subunit expression
in PSD enriched fractions and functional disruption of cortico-striatal glutamatergic
transmission. The compulsive grooming was corrected by chronic fluoxetine treatment.
These findings bear striking similarity to those reported for the Sapap3 null mice, and in
both models virtually all homozygous mutants develop overgrooming-induced facial lesions
at 3–6 months of age, with less severe defects including delayed appearance of lesions in
heterozygous mice [18,25]. In addition, the Slitrk5 mice had reduced striatal volume and
dendritic complexity of striatal medium spiny neurons, and elevated neuronal activity
(indicated by elevated FosB expression) specifically in orbito-frontal cortex, providing
further evidence to strengthen the relevance of this model to OCD in humans. The collective
findings on Slitrk1 and Slitrk5 may point to a common pathway to neuropsychiatric
disorders through disruption of Slitrk gene function in the CNS [26].

Hoxb8 null mice
The investigations focused on Hoxb8 mutant mice over the past decade have provided
unexpected discoveries and striking insights concerning the causes of compulsive grooming
in mice. In 2002, the Capecchi lab reported that Hoxb8lox mutant mice exhibited
compulsive grooming and fur loss with 100% penetrance [27]. The mutant mice engaged in
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excessive self-grooming as well as excessive grooming of wildtype cage-mates, and this
phenotype was identical on two different genetic backgrounds, thus providing strong
evidence for a specific role of Hoxb8 in normal grooming behavior. This was unexpected
given that Hoxb8 is a member of a large family of transcription factors best known for their
important roles in establishing body patterning during embryonic development. However,
Hoxb8 expression is detected in adult brain, including regions comprising the CSTC
circuitry. It was not until 2010 that we learned the expression of Hoxb8 which is evident in
brain did not in fact originate from brain, but rather, came from bone marrow-derived
microglia that migrate into the brain in the postnatal period [28]. Cell-type specific
disruption of Hoxb8 restricted to this microglia progenitor population fully recapitulated the
grooming defects. Remarkably, bone marrow transplantation from Hoxb8 mutants into
wildtype mice led to increased grooming and fur loss in a subset of mice, while bone
marrow transplantation from wildtype mice into Hoxb8 mutants completely rescued the
pathological grooming in a subset of mice. Further studies are needed to clarify exactly how
Hoxb8 deficient microglia impact neural circuitry involved in grooming behavior, although
it is already recognized that microglia have diverse roles in regulating brain function [29].
The evidence on Hoxb8 in mice reminds us that although OCD is believed to be a disorder
caused by dysfunctional neurons within CSTC circuits, the underlying causal insults need
not be exclusively neuronal or even waged by cells that originate in the brain at all. This
finding adds food for thought in the ongoing debate concerning a subtype of childhood-onset
OCD that is thought to be precipitated by autoimmune dysfunction following streptococcal
infections [30].

Slc1a1/EAAC1 null mice
The neuronal excitatory amino acid transporter EAAC1 has a dual role in regulating
neuronal function through limiting glutamate diffusion in extrasynaptic regions [31], and
mediating neuronal cysteine transport, an essential rate-limiting step in the production of the
endogenous antioxidant glutathione [32]. EAAC1 null mice exhibit a range of neuronal
defects largely due to increased vulnerability to oxidative stress in multiple brain regions
[32,33]. Given that the strongest and most well-replicated findings of genetic linkage in
OCD center on Slc1a1 [34], the gene that encodes EAAC1, it is of great interest whether
EAAC1 null mice exhibit OCD-like behaviors. It has been reported that EAAC1 null mice
beyond one year of age exhibit increased aggression and excessive self-grooming, and
approximately 30% of these mice develop fur loss [32] (Dr. Raymond Swanson, personal
communication). This is intriguing given the neuronal perisynaptic localization and strong
expression in the CSTC circuitry [35]. In addition, EAAC1 functionally interacts with
NMDA receptor subunits [36], which is interesting given that a GRIN2B variant was
previously reported to be associated with OCD [37], and since NMDAR subunit expression
in the PSD fraction is significantly altered in Sapap3 null mice [18]. One rare variant in
Slc1a1 has been identified in a single OCD family to date [38]. EAAC1 homozygous loss-
of-function mutations are exceedingly rare in humans and cause the renal condition
dicarboxylic aminoaciduria. It is provocative that one such patient self-reported lifelong
obsessive-compulsive behaviors but declined formal psychological evaluation [39].

The elevated widespread oxidative stress observed in EAAC1 null mice was alleviated by
treatment with N-acetyl-cysteine (NAC), a cell-permeable amino acid that can normalize
neuronal glutathione levels [32,33]. It is of great interest that NAC is currently being
explored in clinical trials for the treatment of OCD on the basis of putative anti-
glutamatergic properties relating to transporter activity [4], and recent studies indicate an
improvement in symptom severity with NAC treatment in SSRI-refractory OCD and TTM
patients [40,41]. It would seem the importance of EAAC1-dependent glutathione synthesis
may be under-appreciated in this context. In light of the weak evidence to support EAAC1

Ting and Feng Page 4

Curr Opin Neurobiol. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



null mice as a bona fide model for OCD-like behaviors but strong evidence of genetic
linkage for Slc1a1 in OCD, EAAC1 functional deficits may confer broad susceptibility
when coincident with other rare mutations in a variety of genes important for CSTC
circuitry function.

In search of a common neural circuitry defect
Despite the varying degrees to which each genetic mouse model recapitulates core aspects of
the human condition of OCD, some notable commonalities have emerged. First, no single
model is sufficient to recapitulate the entirety of the human condition of OCD. This is
especially true given that the presence and content of obsessional thinking that is intimately
tied to compulsive behavior is perhaps impossible to assess in a mouse [12]. Thus, it is
important to focus on robust and easily quantifiable behaviors—in this case compulsive
grooming—for which we can pinpoint and probe the underlying neural circuitry defects.
Second, with respect to the genes that are disrupted in the genetic mouse models described
herein, there is a striking degree of overlap in the endogenous expression patterns
throughout the brain, and the regions of overlap are the same regions strongly implicated in
human OCD (Figure 1). Third, mounting functional evidence from these recently developed
genetic mouse models also demonstrates convergence on CSTC circuitry in OCD-like
behaviors, including evidence for cortico-striatal synaptic dysfunction and orbito-frontal
hyperactivity, which are highly consistent with earlier functional imaging data from human
OCD cases. Sustained intensified effort on this front will be necessary to fill in crucial gaps
in our understanding of the origins of common circuitry defects in OCD, such as elucidating
how glial and immune system dysfunction might perturb neuronal function in the CSTC
circuitry.

The core feature of compulsive-repetitive behavior is not unique to OCD. In fact, this
feature is central to an extensive group of broader neuropsychiatric disorders. Some such
disorders (TTM, Tourette syndrome, and compulsive skin picking) fall into the obsessive-
compulsive spectrum of disorders, while others (Autism, Asperger syndrome, Fragile X
syndrome, and Rett syndrome) fall into a category called autism-spectrum disorders (ASDs)
(Figure 2). Importantly, it is estimated that as many as 30–40% of autistic patients are also
diagnosed with OCD [42], and there are high rates of co-morbidity with OCD in other
ASDs. The recent development of novel genetic mouse models of autism and ASD-like
behaviors that specifically exhibit robust compulsive-repetitive behaviors [43,44] will no
doubt help researchers to search out common circuitry defects and improve our
understanding of these presently perplexing human conditions.

Conclusions and future perspectives
Searching out common circuitry defects in genetic animal models of OCD and various other
disorders with overlap in the domain of compulsive-repetitive behaviors represents one of
the most promising directions for future research in this field. In this respect it is important
to urge inclusive (yet with tempered skepticism) as opposed to dismissive views concerning
novel animal models. No animal model will adequately capture all aspects of a complex
human disorder, yet significant aspects of specific core features can reasonably be
investigated in a salient neurobiological context. Furthermore, genetic animal models
represent an exceptionally attractive platform for carrying out detailed investigations on the
functional impacts of novel candidate gene mutations identified from genetic studies of
human OCD. Given the polygenic and heterogeneous nature of OCD and related disorders,
we should welcome the availability of diverse genetic animal models and actively explore
interactions across multiple mutations that may converge on a common pathway of brain
function. This strategy should hasten progress in the search for genes that may be causal and
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genes that may confer susceptibility to the expression of compulsive-repetitive behaviors.
Elucidation of common circuitry mechanisms will greatly facilitate the development of more
effective treatments for these debilitating disorders.

Research Highlights

• OCD is a prevalent neuropsychiatric disorder

• Cortico-striatal-thalamo-cortical circuits are central to OCD core features

• Several recently described genetic mouse models exhibit OCD-like behaviors

• Genetic mouse models may help researchers identify common circuitry defects
in OCD

• Common circuitry defects may also help to explain key aspects of autism
spectrum disorders
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Figure 1. Central role of the CSTC circuitry in obsessive-compulsive disorder in humans and
compulsive-repetitive behaviors in mice
A. Diagram of a human brain section (coronal) illustrating a simplified CSTC loop. Right
panel, zoom view of the CSTC loop illustrating the intermingled but functionally distinct
“direct” and “indirect” projection pathways of the basal ganglia that are thought to exert
opposing control over selection of motor behaviors. B. Diagram of a mouse brain section
(sagittal) illustrating the equivalent CSTC loop in the corresponding rodent brain structures.
Abbreviations: CTX, cortex; STR, striatum; CAU, caudate; PUT, putamen; HIP,
hippocampus; THAL, thalamus; STN, sub-thalamic nucleus; SNr, substantia nigra pars
reticulata; GPe, globus pallidus externa; GPi, globus pallidus interna; SC, superior
colliculus; BS, brain stem; CB cerebellum. C. Highly simplified diagram of candidate OCD
gene expression patterns throughout the mouse brain demonstrating extensive overlap of
expression in brain regions composing the CSTC circuitry. NOTES: The Sapap3 expression
pattern is based on in situ data as reported in [17]. The Slitrk5 expression pattern is based on
LacZ activity as reported in [25]. The Hoxb8 expression pattern was inferred from [28], and
importantly this pattern is intended merely to reflect the regions of highest concentration of
Hoxb8-expressing microglia rather than all Hoxb8-expressing microglia in the brain. The
EAAC1 expression pattern is based on anti-EAAC1 antibody staining in brain slices as
reported in [35].
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Figure 2. Compulsive-repetitive behavior is a core feature that is shared between obsessive-
compulsive spectrum disorders and autism spectrum disorders
Specific features of obsessive-compulsive spectrum disorders include obsession and
excessive anxiety; whereas specific features of autism spectrum disorders include social
interaction defects and language deficits.
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