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Observation of B0
s → D̄0K0

S and Evidence for B0
s → D̄�0K0

S Decays

R. Aaij et al.*

(LHCb Collaboration)
(Received 9 March 2016; published 21 April 2016)

The first observation of the B0
s → D̄0K0

S decay mode and evidence for the B0
s → D̄�0K0

S decay mode are
reported. The data sample corresponds to an integrated luminosity of 3.0 fb−1 collected in pp collisions by
LHCb at center-of-mass energies of 7 and 8 TeV. The branching fractions are measured to be

BðB0
s → D̄0K̄0Þ ¼ ½4.3� 0.5ðstatÞ � 0.3ðsystÞ � 0.3ðfragÞ � 0.6ðnormÞ� × 10−4;

BðB0
s → D̄�0K̄0Þ ¼ ½2.8� 1.0ðstatÞ � 0.3ðsystÞ � 0.2ðfragÞ � 0.4ðnormÞ� × 10−4;

where the uncertainties are due to contributions coming from statistical precision, systematic effects, and
the precision of two external inputs, the ratio fs=fd and the branching fraction of B0 → D̄0K0

S, which is
used as a calibration channel.

DOI: 10.1103/PhysRevLett.116.161802

The study of CP violation is one of the most important
topics in flavor physics. In B0 decays, the phenomenon of
CP violation has been extensively studied at BABAR, Belle,
and LHCb, which confirmed many predictions of the
standard model (SM) [1–4]. Nowadays, the focus is on
the search for beyond the standard model (BSM) effects by
improving the statistical precision of the CP violation
parameters and looking for deviations from the SM
predictions.
In the SM, violation of CP symmetry in B decays is

commonly parametrized by three phase angles (α, β, γ)
derived from the Cabibbo-Kobayashi-Maskawa matrix,
which describes the charged-current interactions among
quarks [5]. Since the angles sum up to 180°, any deviation
found in measurements of the phases would be a sign of
BSM physics affecting at least one of the results. Currently
the angle γ is only known with an uncertainty of about 10°
[6]; experimental efforts are required to improve its
precision and thus the sensitivity to BSM effects.
Another sensitive observable is the B0

s mixing phase, ϕs,
which in the SM is predicted with good precision to be
close to zero [7]. Any significant deviation here would also
reveal physics BSM [8,9]. The current uncertainty is
Oð0.1Þ rad [6].
In this Letter, two decay modes that can improve the

knowledge of γ and ϕs are studied. The B0 → D̄0K0
S decay

[10] offers a determination of the angle γ with small
theoretical uncertainties [11], while B0

s → D̄ð�Þ0K0
S, similar

to the B0
s → D̄ð�Þ0ϕ [12] mode, provides sensitivity to ϕs

with a theoretical accuracy of Oð0.01Þ rad [13].
While the decay B0 → D̄ð�Þ0K0

S has been seen at the B
factories [14], B0

s → D̄ð�Þ0K0
S decays have not previously

been observed. Theoretical predictions of their branching
fractions are of the order of 5 × 10−4 [15–17]. This Letter
reports the first observation of B0

s → D̄0K0
S and evidence

for B0
s → D̄�0K0

S decays, and it provides measurements
of branching fractions of these channels normalized to
B0 → D̄0K0

S decays.
The analysis is based on data collected in pp collisions

by the LHCb experiment at
ffiffiffi
s

p ¼ 7 and 8 TeV correspond-
ing to an integrated luminosity of 3.0 fb−1. The LHCb
detector [18,19] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed
for the study of particles containing b or c quarks. The
detector includes a high-precision tracking system consist-
ing of a silicon-strip vertex detector surrounding the pp
interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about
4 T m, and three stations of silicon-strip detectors and straw
drift tubes placed downstream of the magnet. The tracking
system provides a measurement of momentum, p, of
charged particles with a relative uncertainty that varies
from 0.5% at low momentum to 1.0% at 200 GeV=c. Two
ring-imaging Cherenkov (RICH) detectors are able to
discriminate between different species of charged hadrons.
The online event selection is performed by a trigger, which
consists of a hardware stage, based on information from the
calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction.
In the simulation, pp collisions are generated using

PYTHIA [20] with a specific LHCb configuration [21].
Decays of hadronic particles are described by EVTGEN
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[22], in which final-state radiation is generated using
PHOTOS [23]. The interaction of the generated particles
with the detector, and its response, are implemented using
the GEANT4 toolkit [24] as described in Ref. [25].
At the hardware trigger stage, events are required to have

a muon with high pT or a hadron, photon, or electron with
high transverse energy deposited in the calorimeters. The
software trigger requires a two-, three-, or four-track
secondary vertex with a significant displacement from
any reconstructed primary vertex (PV). At least one of
these tracks must have pT > 1.7 GeV=c and be incon-
sistent with originating from a PV. A multivariate algorithm
[26] is used to identify secondary vertices consistent with
the decay of a b hadron.
Candidate K0

S → πþπ− decays are reconstructed in two
different categories, the first involving K0

S mesons that
decay early enough for the daughter pions to be recon-
structed in the vertex detector, referred to as long, and the
second containing K0

S’s that decay later, such that track
segments of the pions cannot be formed in the vertex
detector, referred to as downstream. The long category has
better mass, momentum, and vertex resolution than the
downstream category. Long (downstream) K0

S candidates
are required to have decay lengths larger than 12 (9) times
the decay length uncertainty. The invariant mass of the
candidate is required to be within 30 MeV=c2 of the known
K0

S mass [27].
The D̄0 → Kþπ− candidates are formed from combina-

tions of kaon and pion candidate tracks identified by the
RICH detectors. The pion (kaon) must have p >
1ð5Þ GeV=c and pT > 100ð500Þ MeV=c, and it must be
inconsistent with originating from a PV. The invariant mass
of the candidate is required to be within 50 MeV=c2 of the
known D̄0 mass [27].
The B (B0 or B0

s) candidate is formed by combining D̄0

and K0
S candidates and requiring an invariant mass in the

range 4500–7000 MeV=c2, a decay time greater than
0.2 ps, and a momentum vector pointing back to the
associated PV. To improve the mass resolution of the B
candidates, a kinematic fit is performed constraining the
masses of the D̄0 and K0

S candidates to the known
values [27].
The purity of the B candidate sample is then increased by

means of a multivariate classifier [28,29] that separates the
signal from the combinatorial background. Separate algo-
rithms are trained for candidates with long and downstream
K0

S candidates. The discriminating variables used in the
classifier are the χ2 of the kinematic fit, geometric variables
related to the finite lifetime of the B, D̄0, and K0

S, the decay
time, and the pT and p of the K0

S candidate. The
multivariate classifier is trained and tested using signal
candidates from simulations and background candidates
from data in the upper sideband of the B mass spectrum,
corresponding to mðD̄0K0

SÞ > 5500 MeV=c2, where no
backgrounds are expected from B decays in which a

photon or a π meson is not reconstructed. The selection
is optimized to minimize the statistical uncertainty on
the ratio of B0

s over B0 signal event yields. The signal
efficiency and background rejection factors are 76% and
98%, respectively. B candidates in the mass range
5000–5900 MeV=c2 are retained. Multiple candidates
occur in 0.2% (0.4%) of long (downstream) K0

S events,
in which case one candidate, chosen at random, is kept.
The B0

s and B0 signal yields in the selected sample are
obtained from an unbinned extended maximum likelihood
fit simultaneously performed on the long and downstream
K0

S samples. The observables used in the fit are mK0
S
, the

mass of the K0
S → πþπ− candidates, mD̄0 , the mass of the

D̄0 → Kþπ− candidates, and mB, the mass of the B meson
candidates. The probability density function (PDF) con-
tains four terms,

PðmD̄0 ; mK0
S
; mBÞ ¼

X4

i¼1

NiF iðmD̄0 ; mK0
S
; mBÞ

¼
X4

i¼1

NiPiðmBÞSiðmD̄0 ; mK0
S
Þ; ð1Þ

where Ni represents the respective yield, Pi parametrizes
the mass distribution of the B meson candidates and Si is
the joint PDF of the candidates for its decay products. The
term F 1 describes correctly reconstructed D̄0 and K0

S
candidates, F 2 a correctly reconstructed D̄0 meson in
association with two random pions, F 3 a correctly recon-
structed K0

S meson in association with a random kaon and
pion, and F 4 random combinations of the four final-state
particles. Johnson SU distributions [30], characterized by
asymmetric tails to account for radiative losses and vertex
reconstruction uncertainties, are used to parametrize the D̄0

and K0
S signals in S1;2;3, and exponential functions describe

the backgrounds in S2;3;4.
The B mass in candidates with correctly reconstructed

D̄0 and K0
S mesons (P1) is described by three categories of

shapes: the B0
ðsÞ → D̄0K0

S signal, peaking structures at
lower mass from other B decays, and the combinatorial
background. Signal shapes for the B0 and B0

s candidates
decaying to D̄0K0

S are described by means of Johnson SU
distributions with shape parameters determined from fits to
the simulated signal samples, corrected for differences
between the simulation and the data. The peaking structures
at lower mass correspond to decays of B0 and B0

s mesons
that include D̄0 and K0

S mesons in the final state where a
photon or a π meson is not reconstructed, such as B0

ðsÞ →
D̄�0ðD̄0π0ÞK0

S, B
0
ðsÞ→D̄�0ðD̄0γÞK0

S, B
þ → D̄0K�þðK0

Sπ
þÞ,

and B0
ðsÞ → D̄0K�0ðK0

Sπ
0Þ. These shapes are described with

kernel estimated PDFs [31] obtained from simulation.
The same exponential function is used for the combi-

natorial background description of the B mass distribution
in P1;2;3;4. Possible contaminations from B0

ðsÞ → D̄0πþπ−

and B0
ðsÞ → D̄�0πþπ− in P2, and B0

ðsÞ → K0
SK

þπ− and
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B0
ðsÞ → K�0ðK0

Sπ
0ÞKþπ− in P3 are accounted for using the

function that describes the B0
ðsÞ candidates in P1.

The PDFs F i are distinct for the long and downstream
samples but share certain parameters, including those of the
D̄0 signal distribution and the yield fractions of the non-
combinatorial components of the B mass spectrum.
Gaussian constraints are applied to the branching fraction
ratios BðB0

s→D̄0K�0Þ=½BðB0→D̄0K�0ÞþBðB0
s→D̄0K�0Þ�

and B(B0
ðsÞ → D̄�0ðD̄0π0ÞK0)=½B(B0

ðsÞ → D̄�0ðD̄0γÞK0)þ
B(B0

ðsÞ → D̄�0ðD̄0π0ÞK0)�. These constraints improve the

stability of the fit and are determined frommeasurements of
branching fractions reported in Ref. [27], corrected by the
efficiencies of the relevant B0

ðsÞ decays as determined from

simulated samples.
Projections of the fit results on the data sample are shown

in Fig. 1. The numbers of signal candidates determined

from the fit are NðB0 → D̄0K0
SÞ ¼ 219� 21, NðB0

s →
D̄0K0

SÞ ¼ 471� 26 and NðB0
s → D̄�0K0

SÞ ¼ 258� 83,
where the uncertainties are purely statistical.
The branching fractions, B, of the B0

s → D̄ð�Þ0K̄0 decays
are calculated from the ratio of branching fractions between
B0
s and B0,

BðB0
s → D̄ð�Þ0K̄0Þ ¼ Rð�Þ × Bsum; ð2Þ

where Bsum ¼ BðB0 → D̄0K0Þ þ BðB̄0 → D̄0K̄0Þ since the
analysis does not distinguish between K0 and K̄0. The
quantity

Rð�Þ ¼ fd
fs

NðB0
s → D̄ð�Þ0K0

SÞ
NðB0 → D̄0K0

SÞ þ NðB̄0 → D̄0K0
SÞ
ϵB0

ϵB0
s

ð3Þ

is the product of the production ratio of B0 over B0
s decays

in LHCb (fd=fs), the ratio of reconstructed B0
s and B0
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FIG. 1. The projection of the fit results (solid line) on the data sample (points) is shown for the D̄0 candidate (a),(d), the K0
S candidate

(b),(e), and B candidate (c),(f) mass spectra. The long K0
S sample is shown in (a)–(c), and the downstream sample in (d)–(f). The

dashed line in the D̄0 andK0
S candidate mass plots represents events corresponding to background categories S2;3;4 in the fit and includes

peaks due to, for example, real D̄0 mesons paired with two random pions. The double-peak behavior of the B0
ðsÞ → D̄�0ðD̄0π0ÞK0

S shape

is due to the missing momentum of the π0 and the helicity amplitude of the D̄�0 → D̄0π0 decay.
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signal candidates, and the ratio of efficiencies of B0 to B0
s

candidates decaying to D̄ð�Þ0K0
S in the LHCb detector

(ϵB0=ϵB0
s
). The value of fs=fd ¼ 0.259� 0.015 is provided

by previous LHCb measurements [32,33]. The ratios of
efficiencies ϵB0→D̄0K0

S
=ϵB0

s→D̄0K0
S
¼ 0.997� 0.024 and

ϵB0→D̄0K0
S
=ϵB0

s→D̄�0K0
S
¼ 1.181� 0.029 are obtained from

simulated samples. The ratio of B0
s and B0 signal candidates

is a free parameter in the fit and is measured to be NðB0
s →

D̄0K0
SÞ=½NðB0 → D̄0K0

SÞþNðB̄0 → D̄0K0
SÞ� ¼ 2.15� 0.23.

Similarly, the ratio NðB0
s → D̄�0K0

SÞ=½NðB0 → D̄0K0
SÞ þ

NðB̄0 → D̄0K0
SÞ� ¼ 1.17� 0.44 is measured.

Various sources of systematic uncertainty have been con-
sidered. These are summarized in Table I and discussed
below.
The uncertainty associated with the fit model is assessed

by the use of other functions for the PDFs Pi and Si. For
the mass distribution of the signal events, four alternative
models are used. Each pseudoexperiment generated in this
way is then fitted with the baseline model, and the differ-
ence of the signal yields ratio with respect to the generated
value is considered. The mean of the distribution that shows
the largest deviation from zero is taken as the systematic
uncertainty, corresponding to 5.4% (11.9%) for B0

s →
D̄0K0

S (B0
s → D̄�0K0

S).
The ratio of efficiencies of the B0 and B0

s decays is
determined from simulation and is limited by the finite size
of the sample. The statistical uncertainties on the efficiency
ratios and the statistical uncertainties of the external inputs,
fs=fd and the branching fraction Bsum, are propagated to
the systematic uncertainty of this measurement.
To test the stability of the result with respect to the off-

line selection, the measurement is repeated at different

selection cuts on the multivariate classifier. The deviations
from the nominal result are consistent with statistical
fluctuations and no systematic uncertainty is assigned.
Possible bias due to the random removal of multiple
candidates is tested by removing or keeping all of them,
and no significant effect is observed.
Further cross-checks on the stability of the result are

made by measuring the branching fractions independently
for the long and downstream K0

S samples, for the two
different polarities of the LHCb magnet and for different
running conditions. No significant effect is observed.
Only the fit model is considered when determining the

systematic uncertainty on the number of signal candidates.
The statistical uncertainty on the efficiencies and on fs=fd
are also included in the sum in quadrature to give the
systematic uncertainty on the ratio of branching fractions
Rð�Þ. Finally, the uncertainty on Bsum is also included
for the measurement of the branching fraction
BðB0

s → D̄ð�Þ0K̄0Þ.
Signal yields of

NðB0 → D̄0K0
SÞ ¼ 219� 21ðstatÞ � 11ðsystÞ;

NðB0
s → D̄0K0

SÞ ¼ 471� 26ðstatÞ � 25ðsystÞ;
NðB0

s → D̄�0K0
SÞ ¼ 258� 83ðstatÞ � 30ðsystÞ

are found. Those results correspond to the first observation
of the B0

s → D̄0K0
S decay with a significance of 13.1

standard deviations and evidence for B0
s → D̄�0K0

S with a
significance of 4.4 standard deviations, where the signifi-
cances are calculated using Wilks’s theorem [34].
The ratios of the branching fractions are

R ¼ 8.3� 0.9ðstatÞ � 0.5ðsystÞ � 0.5ðfragÞ;
R� ¼ 5.4� 2.0ðstatÞ � 0.7ðsystÞ � 0.3ðfragÞ:

Here, the correlation coefficient between the two statistical
uncertainties is 68% and that between the two systematic
uncertainties is 49%. Using the branching fraction Bsum ¼
ð5.2� 0.7Þ × 10−5 [27], the values of the branching frac-
tions are

BðB0
s → D̄0K̄0Þ ¼ ½4.3� 0.5ðstatÞ � 0.3ðsystÞ � 0.3ðfragÞ � 0.6ðnormÞ� × 10−4;

BðB0
s → D̄�0K̄0Þ ¼ ½2.8� 1.0ðstatÞ � 0.3ðsystÞ � 0.2ðfragÞ � 0.4ðnormÞ� × 10−4;

where the last uncertainty is due to the uncertainty on Bsum.
These results are consistent with theoretical predictions
from Refs. [15–17], when corrections for the difference in
width between the B0

s mass eigenstates [35] are taken into
account.
This Letter reports the first observation of B0

s → D̄0K0
S

and first evidence of B0
s → D̄�0K0

S. Since the theoretical

predictions for these modes have a small uncertainty, future
studies with increased statistics and additional D̄0 decay
modes will give significant improvements in the determi-
nation of ϕs and γ.
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Source B0
s → D̄0K0

S B0
s → D̄�0K0

S

Fit model 5.4% 11.9%
ϵB0=ϵB0

s
2.4% 2.5%

fs=fd 5.8%
Bsum 13.5%
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