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Abstract

Dyslexia is one of the most common learning disabilities, yet its brain basis and core causes are 

not yet fully understood. Neuroimaging methods, including structural and functional magnetic 

resonance imaging, diffusion tensor imaging, and electrophysiology, have significantly 

contributed to knowledge about the neurobiology of dyslexia. Recent studies have discovered 

brain differences prior to formal instruction that likely encourage or discourage learning to read 

effectively, distinguished between brain differences that likely reflect the etiology of dyslexia 

versus brain differences that are the consequences of variation in reading experience, and 

identified distinct neural networks associated with specific psychological factors that are 

associated with dyslexia.

1. Introduction

Developmental dyslexia, an unexplained difficulty in word reading accuracy and/or fluency, 

affects 5–12% of children [1,2]. Dyslexia is associated with many undesirable outcomes, 

including reduced educational attainment and academic self-esteem [3]. Furthermore, 

children with dyslexia tend to read far less outside of school than their peers [4], resulting in 

a widening gap in reading skills. Over the past 15 years, neuroimaging has made visible and 

quantifiable the brain differences that are associated with dyslexia; here, we review progress 

in the past few years in understanding the biological basis of dyslexia at a neural systems 

level.

Reading is a complex and slowly learned skill requiring the integration of multiple visual, 

linguistic, cognitive, and attentional processes. Neuroimaging methods including functional 

magnetic resonance imaging (fMRI), electroencephalography (EEG, and event-related 

potentials or ERPs), and magnetoencephalography (MEG), have revealed the brain regions 

most consistently involved in single word reading. In typically reading adults, these regions 

are lateralized to the language-dominant left hemisphere, and include inferior frontal, 
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superior and middle temporal, and temporo-parietal regions [5]. In addition, experienced 

readers recruit an area of the left fusiform gyrus, termed the visual word form area (VWFA), 

which becomes preferentially engaged for orthographic (print) processing with reading 

experience [6–8]. This reading network (Figure 1) develops over years as children gain both 

specific reading skills and other abilities relevant to reading (e.g., 9). White-matter pathways 

that connect the components of the reading network can be quantified in size and strength by 

diffusion tensor imaging (DTI). Major tracts involved in reading include the left arcuate/

superior longitudinal fasciculus, which connects frontal and temporal language regions, the 

inferior longitudinal fasciculus, which connects occipital and temporal lobes, and the corona 

radiata, which connects cortex to subcortical structures [10].

2. Psychological Bases of Dyslexia

Because reading involves multiple linguistic, visual, and attentional processes, it is likely 

that variable patterns of weakness may contribute to reading difficulty across children. 

Although it is unlikely that there is a single causal mechanism of dyslexia, some frequent 

likely causes have been identified (Table 1). The best understood cause for dyslexia is a 

weakness in phonological awareness (PA) for spoken (auditory) language that predicts and 

accompanies dyslexia [11]. Whereas learning a spoken language happens almost 

effortlessly, learning to read requires explicit knowledge and practice. Children must first 

become aware of the phonological structure of words, so that they can map those units of 

sound onto their corresponding printed letters.

A second psychological weakness associated with dyslexia relates to rapid automatized 

naming or RAN (Table 1). Slowness in naming may reflect difficulty in the integration of 

cognitive and linguistic processes involved in fluent reading [12]. Often, children who are 

especially poor readers have weaknesses in both PA and RAN [13], but some children 

exhibit only one of these weaknesses.

A third category of potential causal explanations for dyslexia relates to basic perceptual 

processes that may underlie the more proximal PA or RAN weaknesses, such as temporal 

sampling or processing [14–16], visual-spatial attention [17], or perceptual learning deficits 

[18]. These explanations are more mechanistic, but perhaps because they are more distal 

from reading per se, they are also more debated.

3. Functional and Structural Brain Differences in Dyslexia

Meta-analyses of primary research findings have identified broad patterns of functional and 

structural differences between typical and dyslexic readers. The most common functional 

brain differences, in children and adults, are reduced activations (hypoactivations) in left 

temporal, parietal, and fusiform (VWFA) regions [19–22]. In most cases, these 

hypoactivations arise from comparisons between two tasks or conditions, and thus reflect a 

lack of differential sensitivity to reading demands rather than a broader dysfunction of those 

brain regions. Increased activations in dyslexia are sometimes, but not consistently, 

observed in left inferior frontal and right-hemisphere regions. Variability across these 

findings may reflect differences in reading tasks, ages of participants, diversity among 

dyslexic groups, and other factors. Additionally, structural gray matter differences in 
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dyslexia tend to co-localize with regions that show functional differences [23], but are also 

observed in the cerebellum, particularly in lobule VI [24, 25]. DTI studies often find reduced 

organization or volume in the left superior longitudinal fasciculus, including the arcuate 

fasciculus, and corona radiata fibers [26].

Because most neuroimaging studies of dyslexia have been conducted with children or adults 

who have had years of reading difficulty, it has been impossible to determine whether the 

brain differences are associated with the underlying neurobiological etiology of dyslexia, or 

are instead the consequence of years of altered and often vastly reduced reading experience 

(including compensatory alterations in reading networks). One approach to dissociating the 

cause and consequence of dyslexia in the brain has been to compare dyslexic children not 

only to age-matched typically reading children, but also to “ability-matched” children who 

are years younger than the dyslexic children but read at the same level. Ability-matched 

children are conceptualized as having approximately the same amount of reading experience 

as older dyslexic children. In one such study, dyslexic children exhibited reduced left 

parietal and occipito-temporal activations relative to both age- and ability-matched children, 

suggesting that these hypoactivations were related to the cause of dyslexia (in contrast, left 

prefrontal activations tracked ability level) [27].

A similar design challenged another idea about dyslexia, the magnocellular hypothesis of 

dyslexia. Previously, postmortem evidence from individuals with dyslexia revealed smaller 

magnocellular neurons in the lateral geniculate body [28], part of the visual pathway that is 

associated with motion perception. Accordingly, reduced activation for moving gratings in 

area MT, the cortical region most associated with motion perception, was found in adults 

with dyslexia [29]. When, however, children with dyslexia were examined, their MT 

activations were equivalent to ability-matched younger children, suggesting that the MT 

hypoactivation in dyslexia reflected reading experience [30]. This conclusion was further 

supported by evidence that remediation of the reading difficulty also enhanced MT 

activations in children with dyslexia [30]. These findings suggest that reduced MT activation 

for visual motion in dyslexia is a consequence, not a cause, of dyslexia. Similarly, many 

structural brain differences in dyslexia among age-matched groups were eliminated when a 

group with dyslexia was compared to ability-matched children [31].

Another strategy for identifying brain differences that underlie dyslexia has been the study 

of pre-reading children, typically in kindergarten, for whom brain differences cannot be the 

consequence of altered reading experience. Although pre-reading children cannot have a 

formal diagnosis of dyslexia, children can be identified as at-risk for dyslexia because of 

either a family history of dyslexia, which increases their risk of dyslexia by four times or 

more [32], or low performance on tests of pre-reading skills that tend to predict future 

reading difficulty (e.g., PA or RAN). Often, these children are followed longitudinally to 

determine which at-risk children actually progress to dyslexia.

Several neuroimaging studies have found brain differences preceding formal reading 

instruction in pre-reading children that resemble those observed in older children and adults. 

ERP studies of the mismatch negativity (MMN), an automatic response to an oddball 

auditory stimulus that is reduced in adults with dyslexia, have observed differences between 
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infants with versus without a family history of dyslexia [33], and infants who do or do not 

develop dyslexia [34, 35]. Thus, the MMN may be a promising early endophenotype of 

dyslexia [36].

In MRI, pre-reading kindergartners with familial risk for dyslexia exhibited reduced bilateral 

occipitotemporal and left temporo-parietal activations for PA [37] and also bilaterally 

reduced grey matter volumes in similar posterior cortical regions [38]. Decreased grey-

matter volumes in prefrontal and parieto-temporal regions were also found in 5- and 6-year-

olds with maternal histories of reading difficulty [39]. In a heterogeneous sample of 

kindergartners, pre-reading children exhibited a positive correlation between measures of 

PA and both the size and microstructural white-matter organization of the left arcuate 

fasciculus [40]. Although it is not yet known which of these children will develop dyslexia, 

these studies support the idea that the most commonly observed functional and structural 

brain differences characterizing dyslexia are present before significant reading experience 

and therefore are more likely causes rather than consequences of dyslexia.

5. Advances in Understanding the Brain Basis of Aspects of Dyslexia

Brain Basis of Phonological Awareness (PA) Deficits

Impaired PA in dyslexia could reflect either a deficit in representing phonetic sounds and/or 

a deficit in access to and manipulation of those sounds (e.g., for mapping phonemes to 

print). Previously, a review of behavioral studies of dyslexia concluded that phonetic 

representations are intact, but access to those representations may be impaired [41]. 

Recently, a neuroimaging study with adults found that phonetic representations, as measured 

by multivoxel pattern analysis of activations in bilateral auditory cortices, were intact in 

dyslexia, but that functional and structural (DTI) connectivity between auditory cortices and 

left inferior frontal gyrus was reduced [42]. These findings favor the interpretation of 

dyslexia as being characterized by weakness in access to otherwise intact phonetic 

representations. Consistent with this conclusion is the finding that children with dyslexia 

exhibited reduced prefrontal activation when engaging in an auditory PA task, but no 

difference in temporal-lobe activation, as compared with both age- and ability-matched 

children [43].

Brain Basis of Rapid Automatized Naming (RAN) Deficits

RAN has been partially dissociated from PA as a skill essential for learning to read [12, 13], 

but now there is evidence for a neurobiological distinction between the two skills. A large 

structural MRI study of typical adult readers of Chinese found that phonological decoding 

ability was related to gray matter volume in left perisylvian cortex, whereas naming speed 

was related to volume in a more distributed network across all four lobes [44]. Further, 

functional activation to a PA task differed among groups of children with PA and RAN 

deficits, as predicted by the double deficit hypothesis. Activation in left inferior parietal 

lobule showed a gradient associated with PA ability, whereas activation in right cerebellar 

lobule VI showed a gradient with RAN ability [45].

Norton et al. Page 4

Curr Opin Neurobiol. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Brain Basis of Reading Fluency Deficits

For older children with dyslexia who must read longer texts, slow reading is a major 

problem. Both the psychological and brain bases of reduced fluency for connected text, such 

as sentences and paragraphs, have been poorly understood relative to the many studies 

focusing on single-word reading. Two studies, however, examined reading fluency directly 

in dyslexia during fMRI by presenting sentences word-by-word at varying rates and testing 

comprehension, but the two studies reported disparate results [46, 47]. Both studies reported 

that more rapid reading resulted in greater activation of left fusiform cortex in the VWFA 

region. One study reported that children with dyslexia exhibited reduced activation related to 

fluency exclusively in left fusiform gyrus despite no significant differences in 

comprehension accuracy [46]. The other study reported that adults with dyslexia exhibited 

disproportionately worse comprehension accuracy and lesser activation in left prefrontal and 

superior temporal regions as a function of reading speed, but found no group difference in 

the VWFA region [47]. Although the populations and outcomes of the two studies differed, 

they have initiated the analysis of the brain basis of impaired reading fluency in dyslexia.

Brain Basis of Basic Perceptual Processes

Neuroimaging findings have reported neural correlates of atypical basic perceptual 

processes in dyslexia. Successful parsing of the speech signal depends on the ability of left 

auditory cortex to selectively amplify phonemic information in the 30 Hz (low gamma) 

range [48]. MEG revealed reduced entrainment, or synchronization of neural firing, to the 

30 Hz frequency range in dyslexia, as well as reduced left-hemisphere specialization for 

such oscillations [49, 50]. These differences may impede the efficient transfer of acoustic 

information into more abstract phonemic representations. Individuals with dyslexia also 

exhibited reduced neural entrainment in response to linguistic stimuli [51, 52], differences in 

EEG signals that reflect integration of auditory and visual stimuli [53], and greater 

variability of auditory brainstem responses to speech sounds [54].

An advantage of understanding dyslexia in terms of basic perceptual processes is that the 

neural mechanisms of those processes can be studied in animals. Animal research has linked 

dyslexia-associated genes such as KIAA0319 with atypical neural migration [55] and 

impaired speech sound discrimination [55, 56], suggesting that the mechanism by which 

cortical abnormalities result in behavioral deficits is through the disruption of synchronous 

firing in response to oral language [57]. In humans, variation in KIAA0319 and two other 

dyslexia susceptibility genes has been associated with variation in left-hemisphere white 

matter and reading skill [58]. Such research may integrate findings from the genetic, 

cellular, cognitive, and behavioral levels in understanding the core deficits in dyslexia.

6. Conclusion

Progress in understanding the cognitive neuroscience of dyslexia may be approaching 

translation from basic research to intervention for children who will struggle to read. 

Remediation is known to be most effective in beginning readers, so early and accurate 

identification may promote effective intervention for children before they experience 

prolonged reading failure. Neuroimaging has identified biomarkers that enhance or 
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outperform current behavioral measures in predicting long-term reading outcomes [59–63]. 

With further progress in understanding specific components of dyslexia (e.g., PA, RAN, 

fluency) it may also become possible to develop personalized interventions that target the 

specific patterns of weaknesses that undermine learning to read in individual children.
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Highlights

• Neuroimaging is identifying brain differences related to causes of dyslexia.

• Brain bases of specific aspects of dyslexia have been better identified.

• Genetics may bridge study of neural mechanisms to dyslexia in humans.
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Figure 1. 
Schematic of the aspects of the reading brain in the left hemisphere. The inferior frontal 

gyrus (yellow) and the inferior parietal area (blue) are connected by the arcuate fasciculus 

(green). The fusiform gyrus, which includes the visual word form area, is in red. These 

regions are the most commonly found to be atypical in function or structure in dyslexia.
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Table 1

Key Constructs in Reading and Potential Deficits in Dyslexia

Construct Definition Example Tasks Example Standardized Assessment

Phonological Awareness (PA) Knowledge of, and 
ability to manipulate, the 
sound structure of words

- Say game without the /g/
- What word do these sounds 
make? /s/ - /i/ - /t/
- Name a word that rhymes 
with star

- Comprehensive Test of Phonological 
Processing (CTOPP-2) [64]
- Phonological Awareness Test (PAT-2) [65]

Rapid Automatized Naming 
(RAN)

Speed with which a 
series of familiar stimuli 
can be named aloud, 
reflecting efficient 
visual-verbal 
connections

Name, as quickly as possible, 
a 10×5 array of 5 randomly 
repeated objects, colors, 
letters, or numbers

- Rapid Automatized Naming–Rapid 
Alternating Stimulus Tests (RAN-RAS) [66]

Reading Fluency Ability to read single 
words and connected 
text with sufficient 
accuracy and speed so as 
to support efficient 
comprehension

- Read aloud a list of common 
words or pseudowords as 
quickly and accurately as 
possible
- Read aloud, quickly and 
accurately, paragraphs of 
increasing complexity

- Test of Word Reading Efficiency 
(TOWRE-2) [67]
- Gray Oral Reading Test (GORT-5) [68]
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