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Abstract 
The North Atlantic Tracks represent one of the highest density international traffic 

regions in the world. Due to the lack of high-resolution radar coverage over this region, 

the tracks are subject to more restrictive operational constraints than flights over the 

continental U.S. Recent initiatives to increase surveillance over the North Atlantic has 

motivated studies on the total benefit potential for increased surveillance over the tracks. 

One of the benefits of increased surveillance is increased accessibility of optimal altitude 

and speed operations over the track system. For a sample of 4033 flights over 12 days 

from 2014-2015, a fuel burn analysis was performed that calculates the fuel burn from 

optimal altitude, optimal speed and optimal track trajectories over the North Atlantic 

Tracks. These results were compared with calculated as-flown fuel burn in order to 

determine the benefit potential from optimal trajectories. Operation at optimal altitude 

and speed increased this benefit to 2.83% reduction potential in average fuel burn. 

Operation at optimal altitude alone, however, reduces the benefit potential to 1.24% 

reduction in average fuel burn. Optimal track assignment allows for a 3.20% reduction in 

average fuel burn. For the sample data, 45.1% of flights were unable to access their 

optimal altitude and speed due to separation requirements. Reduced separation up to 5 

nautical miles can decrease the number of conflicts to 14.0%. Reducing the separation 

requirements both longitudinally and laterally can allow for increased accessibility of 

optimal altitudes, speeds and track configurations. Pilot decision support tools that 

increase awareness of aircraft fuel performance by integrating optimal altitude and speed 

configurations can also reduce aircraft fuel burn. The utility of such a tool is evaluated 

through a survey on pilot-decision making. 
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Chapter 1 

Motivation 
The North Atlantic Tracks (NATs) represent one of the highest density oceanic 

traffic regions in the world. These tracks facilitate flights traveling between North 

America and Europe. These flights across the North Atlantic typically span greater 

distances than flights over the continental US, and thus require more fuel in order to 

travel from the origin to the destination. This airspace has special operational restrictions 

imposed on it due to the lack of RADAR surveillance over the region. These special 

operational restrictions cause aircraft operating within this region to operate at higher 

aircraft-to-aircraft separation distances. 

For any individual flight, there is a combination of altitude, speed and routing that 

results in a minimum fuel burn. Operational constraints across the NATs, however, can 

result in flights operating at suboptimal altitudes, speeds and lateral routes. Uncertainty in 

aircraft position results in greater separation requirements for aircraft entering the North 

Atlantic Track system inhibiting the ability for any individual aircraft to access these 

more optimal trajectories, for doing so would cause a violation in the separation minima. 

Currently, there are initiatives to change these operational constraints in order to allow 

for increased flexibility in aircraft routing, altitude and speed trajectories. The first step in 

this process is to increase the level of surveillance available over the North Atlantic. 

Current systems, such as the Automatic Dependent Surveillance Contract (ADS-C) 

provide for low-resolution surveillance and data link between the aircraft and air traffic 

controller, although there are current initiatives to increase the reporting rate in order to 

increase surveillance resolution. With improved surveillance capability over the North 

Atlantic, flights will be able to access more efficient altitudes, speeds and lateral routes. 

The objective of this study is to quantify the benefits of optimal speed, altitude and 

routing assignments for flights across the NATs.  
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Chapter 2 

Background 
2.1 Aircraft Fuel Efficiency 

Aircraft fuel efficiency is a function of many parameters. The weight of the 

aircraft, the winds encountered along the flight path, cruise speed, cruise altitude and 

aircraft all play a role in how much fuel is used during flight, along with other 

environmental and aircraft characteristics. A common metric used to define aircraft fuel 

efficiency is the specific-air-range (SAR). The SAR is a measure of the distance the 

aircraft flies per unit of fuel without any corrections for weather. This SAR is analogous 

to the miles-per-gallon metric that is commonly used to determine an automobile’s fuel 

efficiency. For an aircraft, however, a correction must be made to account for wind and 

temperatures encountered along the flight. After the correction, the adjusted SAR is 

defined as the specific-ground-range (SGR), which is a metric used throughout this 

analysis as the aircraft fuel efficiency metric and corresponds to the distance over the 

ground traveled per unit of fuel. A common method of maximizing SGR (an in turn, 

maximizing fuel efficiency) is to fly at optimal altitudes and speeds. Figure 1 is a contour 

plot illustrating the instantaneous fuel efficiency of a typical narrow-body aircraft as a 

function of the cruise speed (in Mach) and altitude as a percentage of the maximum SGR 

achievable at the current aircraft configuration. 
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Figure 1: Fuel Efficiency (SGR) For a Typical Narrow Body Aircraft [1] 

2.2 Current Altitude and Speed Optimization Methods 

The typical operating regime for a flight is often above the optimal speed and off 

the optimal altitude, as shown by the region highlighted in the red in Figure 1. Although 

aircraft typically operate off fuel optimal speed, the optimization of a flight’s altitude and 

speed is a multiobjective optimization process. When scheduling a flight and developing 

a flight plan, airlines will operate their aircraft at a speed that takes into consideration the 

costs of fuel and time related cost, such as hourly wages. As a result, the operating speed 

may be off the fuel optimal speed for that configuration due to these timing constraints. 

Consider the cost function for a flight considering fuel related cost and time related cost 

shown in Eq 1 

𝑇𝑂𝐶 = (𝑢!) ∗ (𝐹!)+ 𝑢! ∗ (𝑇!) Eq 1 

Where TOC is the total operating cost, 𝑢! is the unit cost of fuel, 𝐹! is the total fuel used, 

𝑢! is unit cost of time and 𝑇! is the total time. In short, Eq 1 simply takes the sum of the 

total fuel cost and the sum of the total time cost and the result is the total cost of a single 

flight. This also shows that simple minimization of fuel cost is not the only consideration 

when optimizing a flights altitude and speed. In order to minimize total fuel cost, a 
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calculus approach is conducted by taking the derivative of Eq 1 with respect to distance 

and setting the result equal to zero. This derivation is shown as Eq 2. 

0 =
𝑑𝐹!
𝑑𝑥 +

𝑢!
𝑢!
∗
𝑑𝑇!
𝑑𝑥 =

𝑑𝐹!
𝑑𝑥 + 𝐶𝐼 ∗

𝑑𝑇!
𝑑𝑥  Eq 2 

The unit cost of time and fuel are not functions of distance, and thus are treated as 

constants and combined into a single constant CI. This constant is called the cost index 

and is an important metric that airlines use to balance the time related cost to the fuel 

related cost. It can be seen that the derivative of total fuel with respect to distance is the 

inverse of SGR, the metric defined earlier and the derivative of time with respect to 

distance is inverse of the current ground speed. This means that at any moment during an 

aircraft’s flight, the SGR and cost index can be used to constrain the current aircraft 

ground speed. 

When airlines plan their flights, they often define a cost index to operate at. Using 

a more complicated version Eq 2 that takes into account other cost sources, onboard 

flight computers can actually select a corresponding Mach that is computed using the cost 

index input. Figure 2 is an excerpt from a Boeing article describing the effects of cost 

index on cruise Mach selection. It can be seen that higher cost index settings correspond 

to higher cruise Mach. For Boeing aircraft, the cost index can range from 0-9999 with 0 

corresponding to no time cost consideration and 9999 corresponding to maximum time 

cost consideration. This range of cost indices is unique to each airline and aircraft 

combination due to different units used and aircraft performance. 
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Figure 2: The Effects of Cost Index on Cruise Mach [1] 

The cost index is capable of optimizing an aircraft’s speed with considerations on 

fuel and time related cost, however, it does not optimize the aircraft’s altitude profile. As 

mentioned before, aircraft fuel efficiency is also a function of altitude.  

The fuel efficiency dependency on altitude is due to the fact that at different 

altitudes, the ambient air may change in temperature and density as well as the forecast 

winds. Since the aircraft fuel efficiency is a function of all these variables, specific 

combinations yield more efficient altitude and speeds than others. Current flight 

management systems (FMS) integrate forecasted atmospheric conditions and aircraft data 

in order to make a recommendation on a more efficient altitude. An example of this 

display is shown in Figure 3.  
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Figure 3: FMS Altitude Recommendation Display 

As displayed above in Figure 3, the FMS computes the current optimal altitude as 

36,400 feet (Flight Level 364 or FL364). In a real operational environment, however, this 

flight level is inaccessible due to the discrete available altitudes every 1000 feet and thus 

the recommended altitude is FL360. 

In addition to speed and altitude, aircraft fuel efficiency is also dependent on the 

route that is chosen for a flight. The route that an aircraft flies determines what types of 

wind conditions are encountered as well as the total distance traveled. For this reason, 

routes are typically selected that simultaneously encounter desirable wind conditions as 

well as minimizing the distance required to the destination. 

2.3 North Atlantic Tracks 

The North Atlantic Tracks (NATs) are a system of flight routes across the 

northern Atlantic Ocean that facilitates traffic between Europe and North America. The 

tracks are spaced 1 degree apart laterally and stretch across the Northern portion of the 

Atlantic Ocean. The tracks are divided into two directions of flow, eastbound traffic and 

westbound traffic. The different directions of traffic are active at different periods of the 

day, with the eastbound tracks active at night during peak eastbound traffic hours and 

westbound tracks during the day so there is limited crossing flow. These tracks are 

designed such that the eastbound tracks are along the most favorable wind conditions 
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available for the day. When the Jetstream is present along these eastbound tracks, the 

flights experience a strong tailwind, which is beneficial for fuel efficiency by reducing 

overall flight time. On westbound flights, the tracks are designed to avoid the strong 

headwinds thus reducing the time penalty of flying directly into the wind. The tracks are 

redesigned each day to capture these favorable wind conditions. 

The entire track region is divided into 4 surveillance regions, the Gander Oceanic 

Airspace, Shanwick Oceanic Airspace, Reykjavik Oceanic Airspace and Santa Maria 

Ocean Airspace, however the NATs are typically within the Gander and Shanwick 

Airspaces exclusively. The Gander Oceanic Airspace covers the western half of the North 

Atlantic and the Shanwick Oceanic Airspace covers the eastern half of the North Atlantic. 

Aircraft that start from one side of the Atlantic to the other transition from one region to 

the other, and thus requires a handoff between control areas mid ocean. The separation of 

the oceanic region is shown in Figure 4 with the Gander and Shanwick regions 

highlighted. 

 
Figure 4: Gander and Shanwick Oceanic Airspaces [2] 

Figure 5 shows what the Eastbound North Atlantic tracks look like on a particular 

day. The locations of the eastbound tracks are such that they are centered along the region 

of highest tailwinds, thus minimizing total flight time. Each of these tracks is typically 
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offset laterally from one another by a minimum of 1-degree latitude, however on days 

with abnormal wind conditions these separations may be increased.  

 

 
Figure 5: Eastbound North Atlantic Tracks Designed for 07/10/2013 [3] 

The NATs, although represent a highly dense region of traffic, also has little to no 

RADAR surveillance. Due to this lack of surveillance, the position of any individual 

flight along the track has a greater uncertainty than for flights in regions of higher 

surveillance such as over U.S. domestic airspace. This uncertainty in position creates an 

operational constraint on how much traffic can be admitted into the tracks and which 

track they are assigned through increased separation requirements. The typical separation 

between aircraft in the track system is 10 minutes of entrail separation, which can result 

in distances as great as 100 nautical miles, 1-degree lateral separation, and 1000 feet 

separation in altitude. Compared to the separation standards in domestic US airspace (5-

10 nautical miles entrail and laterally, 2000 feet separation in altitude for same direction 

flights), NATs separation is far greater due to the uncertainty in aircraft position. There 

are current initiatives to reduce the separation minima in the NATs to 23 nautical miles 
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laterally and 5 minutes longitudinally however these reductions in separation currently 

cannot be implemented due to the lack of surveillance.  

For flights entering the NATs, the traffic controller that is responsible for that 

region makes a track assignment for that flight. For any particular track, there are discrete 

and strict flight levels and Machs that can be assigned which must be maintained for the 

duration of the track. This is done through a grid-like representation as shown in Figure 

6. 

 

 
Figure 6: Bilateral Operations Resolution Grid (BORG) tool used for NAT assignment 

The assignment grid highlights assignments that have no conflict (NOC), a conflict 

(CON) and a warning (WRN). Flight level and Mach assignments are labeled as 

conflicted if there is another aircraft in the airspace that may violate a safe separation 

with an aircraft at the selected assignment. As shown in Figure 6, this assignment grid is 

only applicable for the track labeled “X”, with each track having a unique assignment 

grid based on the level of traffic assigned to that track. Flights that are assigned a flight 

level and Mach are expected to maintain that clearance for the duration of the flight that 

is within the NATs.  

2.4 North Atlantic Track Selection 

Although each flight is assigned a specific track, each flight has a track that is fuel 

optimal in terms of minimum distance and most favorable wind conditions. Northern 

routes are shorter in absolute distance, but also require additional distance to reach the 

entry point. For eastbound flights, tracks in the center of the system may have the most 
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desirable wind conditions in terms of strongest tailwinds, but may not necessarily be the 

shortest distance. The track that is requested by a flight is usually selected based on 

which track offers a minimum fuel burn and thus takes into account favorable wind 

conditions and total distance simultaneously. The issue, however, is that the NATs may 

be designed such that only one or two of the tracks offer a highly favorable route in terms 

of weather conditions and distance traveled, thus prompting many flights to request the 

desirable tracks. This causes a capacity issue, as there is a limit to how many aircraft may 

operate simultaneously on one track while still maintaining a safe separation. As a result, 

North Atlantic tracks are typically designed such that no single track offers a significant 

fuel burn improvement over the next most fuel-efficient track. This can be thought of as 

“splitting” the most optimal routing into two adjacent tracks that still have lower fuel 

burn capability than other tracks, however, neither one is significantly “better” than the 

other. This is further explained in the results section.  
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Chapter 3 

Approach 
In order to quantify the benefits from altitude, speed and track optimization over 

the NATs, a framework that estimates cruise fuel burn was developed. The framework, as 

shown below Figure	7 requires a sample of flights across the North Atlantic. The sample 

data is then processed to generate high-resolution track trajectories. The high-resolution 

trajectories are then subject to a weight estimation model which is required to accurately 

estimate fuel burn. The high-resolution trajectory is then used to compute the weather 

conditions along the route using historical weather forecasts. The high-resolution 

trajectory, weight estimate and weather conditions are then all ingested in an aircraft 

performance model to incrementally compute the fuel burn along the entire track. The 

trajectory is also subject to a speed, altitude and track optimizer and the fuel among all 

the trajectories are compared in the results. Each element of Figure	 7 is explained in 

more detail in the following sections. 

 
Figure 7: Methodology Diagram 

3.1 North Atlantic Sample 
In order to quantify the benefits from altitude, speed and track optimization over 

the NATs, a framework that estimates cruise fuel burn was used on a sample of data for 

4033 flights taken over 12 days between 2014 and 2015 that represent all seasons of the 

year. The sample days are listed in Table 1.  
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Table 1: Sample Days 

03/03/2014  06/09/2014 06/16/2014 09/08/2014 09/15/2014 12/08/2014 

12/15/2014 03/25/2015 04/05/2015 04/26/2015 05/14/2015 05/25/2015 

 

The data includes aircraft altitude, speed, lateral route and time. This data is provided for 

the Gander Oceanic Airspace and the Shanwick Oceanic Airspace, which is shown in 

Figure 4. The two sets of data are then stitched together to form a full lateral route over 

the North Atlantic tracks with corresponding altitude, speed and time.  

3.2 Trajectory Generation 

The provided data includes flight data for 12 sample days between 2014 and 

2015. The data, however, is separated into two subsets. Since the NATs expand across 

two oceanic control areas, sets of data from both the Gander and Shanwick regions are 

required in order to fully define the NATs route, altitude and speed. The data set from the 

Gander Oceanic airspace consist of the flight’s entire lateral route, aircraft type, origin, 

destination, direction, track assigned, Mach through the track, and altitude and crossing 

times for the 50W, 40W and 30W longitudinal crossings. The tracks, however, typically 

extend beyond the 30W crossing longitude, which is where the data from the Shanwick 

Oceanic airspace sample is used to fill in the gaps in the data. Excerpts from each set of 

data are shown below in Figure 8 and Figure 9. 

 
Figure 8: Gander Ocean Control Area Data 
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Figure 9: Shanwick Ocean Control Area Data 

Figure 10 shows the routes for the 4033 flights over the North Atlantic. The route data 

does not include domestic airspace data, and so the altitude and speed analysis only 

focuses on the section of a flight within the North Atlantic airspace.  

 
Figure 10: 12 Day Sample of 4033 Flights Over the NATs 

After stitching together the two data sets, a set of five dimensional waypoints is 

generated for each flight using the available data at each recorded data point. Each 

waypoint represents a fix along the NATs and has a unique latitude, longitude, altitude, 

Mach and crossing time associated with it. This initial set of waypoints, however, are 

typically spaced 5-10 degrees apart longitudinally so the track data is not high enough in 
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resolution in order to capture local wind effects and changes in instantaneous fuel 

efficiency, which is required in order to compute an accurate fuel burn estimate. 

Additional waypoints, therefore, are then generated by linearly interpolating between 

adjacent data waypoints in five dimensions. Each additional waypoint is generated such 

that the entire flight trajectory is segmented into a series of five dimensional waypoints 

that account for approximately one minute of flight time. After generating the higher 

resolution as-flown trajectory, additional alternate trajectories are generated using 

alternate track fixes provided by the publically available track definitions for the day in 

order to study the effects on improved track selection on fuel efficiency. The steps in the 

trajectory generation process are shown in Figure 11. 

 

 
Figure 11: Trajectory Generation 

3.2.1 Extended Trajectory Generation for Track Optimization Analysis 

The available route data only exists for the flights trajectory within the North 

Atlantic Tracks, as shown in Figure 10. As a result, the analysis on optimal altitude and 

speed is only done for this region which isolates performance along the North Atlantic 
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Tracks from performance outside the track system. When looking at track optimization, 

however, analyzing only the North Atlantic region creates a unique problem that does not 

present itself with only optimizing altitude and speed. Since each track extends across the 

ocean and are bounded by the same longitudes, typically from 30W longitude to 50W 

longitude, the northernmost tracks are actually shorter in ground distance than the 

southern tracks due to the curvature of the Earth. As a result, fuel burn on a northern 

track is typically lower than that of a southern track primarily due to shorter distances 

traveled, even with weather conditions considered. This would imply that northern tracks 

are the most efficient in terms of track fuel burn, however, these northern tracks may also 

require greater travel distances by a flight from the origin airport to the entry point of the 

track system, as they are situated further north. If we performed an analysis on track fuel 

burn using only the available track data, the result would indicate that every flight was 

not assigned an optimal track, since the most optimal track is always the shortest one. In 

order to analyze the current efficiency of the track assignments, this ground distance 

effect must be considered and accounted for. To account for this, an extended trajectory 

is generated that includes great circle routes to and from the track from their origin and 

destination airports, thus penalizing the shorter, northern tracks by accounting for the 

additional distance required to reach these tracks. An example of this extended trajectory 

is shown below in Figure 12. 
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Figure 12: Alternate Track Concept Sample 

For this particular flight from JFK to MXP, there are 7 tracks available for the day 

(Tracks W, X, T, S, V, Z, U). The northernmost track, track “W”, is the shortest track in 

ground distance, but also requires the most travel time from origin to track entry due to 

its northern entry point position. The Gander and Shanwick surveillance data provide the 

track portion of the flight, whereas the region extending to the origin and destination is 

generated using great circle trajectories to and from the edges of the tracks. The altitude 

and speed on these extended portions of the flight are determined by the bounds of the 

track portion of the flight. This means that the altitude and speed at the edge of the track 

system is extended to the origin and destination airports for each flight. These extended 

trajectories are then subject to the same cruise fuel estimation framework, however, these 

trajectories are not optimized in altitude and speed in order to determine the effects on 

alternate track assignments on cruise fuel burn. 

3.3 Weight Estimation 

Aircraft fuel efficiency is sensitive to initial weight. Flights that are heavily 

loaded with fuel have much higher fuel benefit potential, as the relationship between fuel 

loaded and fuel consumed increases non-linearly. In order to estimate the initial weight, a 

weight regression model is generated based on historic data from three airlines and then 
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correlated with the flight stage length using a best fit polynomial for each aircraft type.  

Figure 13 shows an example of the data available for the regression for a specific aircraft. 

 
Figure 13: Weight Regression for B763 based on Stage Length 

The data in Figure 13, however, only correlates the takeoff weight with the stage length. 

Since part of this analysis only focuses on fuel burn efficiency over the North Atlantic, 

additional steps are required to estimate the initial weight of an aircraft entering the track 

system. In all cases, there is a significant amount of fuel consumed in order to fly from 

the initial takeoff location to the entry point of the track system, which can be seen in 

Figure 14 as the great circle trajectories from the boundary of the track system to the 

origin and destination airports.  
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Figure 14: Distance from the Origin and Destination to the North Atlantic Tracks 

To appropriately account for fuel burn from origin to track entry, the initial 

takeoff weight is scaled using an additional set of data on consumed fuel weight. Using 

the same aircraft weight data, this additional regression can be constructed that correlates 

the amount of fuel that is loaded with the stage length. Both the takeoff weight and fuel 

loading regressions are shown below in Figure 15. 

 
Figure 15: Takeoff and Fuel Weight Regressions with Total Stage Length 
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An approximate stage length for each sample flight can be calculated by 

computing the great circle distance from the origin to the track entry, the distance along 

the track, and then the track exit to the destination. Using the approximate stage length, 

an estimate for takeoff weight and fuel weight can be determined for each aircraft type 

using regressions shown above. The initial weight estimate for the track entry is then 

computed by scaling the fuel weight estimate and combining both estimates. The process 

is summarized below in Eq 3 where TOW is the takeoff weight estimate, FW is the fuel 

weight estimate, and the ranges correspond to the estimated remaining range in flight at 

the track entry and the estimated total stage length. 

𝑇𝑟𝑎𝑐𝑘 𝐸𝑛𝑡𝑟𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑇𝑂𝑊!"# − 𝐹𝑊!"# + 𝐹𝑊!"# ∗
𝑅𝑎𝑛𝑔𝑒!"#$%&%&'
𝑅𝑎𝑛𝑔𝑒!"!#$

 Eq 3 

The scaling of takeoff to track entry weight assumes that the aircraft has a constant fuel 

burn per unit distance, which is not true when considering changing wind fields. 

However, a weight sensitivity analysis shown in the results section will show that small 

variations from the estimated entry weight have only a minor effect on the possible fuel 

savings. Larger variations, however, have a significantly higher impact on possible fuel 

savings and will be discussed in later sections.  

3.4 Weather Correction 

Aircraft performance is also dependent on the encountered winds (The correction 

of SAR to SGR). Since lift is generated by the air flowing over the aircrafts wing, when a 

strong headwind is encountered, the actual ground speed of the aircraft is greatly reduced 

since the aircraft is flying “into the wind” but the wing experiences a much higher wind 

speed than that of the ground speed with a reverse process occurring when a tailwind is 

encountered. An example of a headwind configuration is shown below in Figure 16. 
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Figure 16: Aircraft Experiencing a headwind [4] 

The distinction between a headwind and a tailwind is critically important to 

determining the performance of an aircraft because at different wind conditions, an 

aircraft can be operated at different speeds in order to compensate for these conditions. 

For example, when an aircraft experiences a strong tailwind, the aircraft can essentially 

ride the “current” and reduce its Mach, which may reduce fuel consumption while still 

maintaining on-time performance. The reverse case is also true for a strong headwind. 

When a strong headwind is encountered, the aircraft must operate at a higher Mach in 

order to maintain on-time performance or attempt to avoid these weather conditions. 

Winds experienced in the atmosphere determine whether or not the aircraft experiences a 

tailwind or a headwind and must be corrected in order to determine the actual ground 

speed.  

The weather correction step takes the Global Forecast System gridded weather 

model and determines the winds that were encountered during the flight and matches 

them to the points along the flight in the high resolution trajectory generated in the 

previous step. The Global Forecast System spans the entire Earth and has a spatial 

resolution of 1-degree latitude, 1-degree longitude and has 26 available pressure altitudes 

with 100 millibar resolution. The temporal resolution of the model is 6 hours between 

update cycles. Shown in Figure 17 is a plot of the wind speed from the gridded weather 

model superimposed on a map of the North Atlantic region. There is a unique model for 

each day, time and altitude for the forecast winds.  
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Figure 17: Global Forecast System Wind Speed at 38,000 feet on 12/15/2014 04:00:00 UTC 

For this particular altitude and time, there is a very clear Jetstream across the north 

Atlantic from the North American side to the European side. This illustrates why the 

design of the North Atlantic Tracks is dependent on the weather conditions for the day as 

mentioned in the previous sections. 

Using a five dimensional linear interpolation in space, time and speed, the 

weather conditions along the flights trajectory at each waypoint can be determined. The 

wind at each point is then used to correct the airspeed to the ground speed, which is then 

used to compute the aircraft SGR. 

3.5 Aircraft Performance Model 

Once the initial trajectory is fully defined, the weather conditions computed and 

the weight is estimated, an aircraft performance model is used to compute the SGR at 

each incremental waypoint along the trajectory. For this analysis, the Lissys Piano-X 

aircraft performance model was used. This model includes performance models for over 

5000 commercial aircraft and can compute SGR for the aircraft along the trajectory given 

the altitude, speed, weight and weather conditions. The computed SGR is then assumed 

constant over the minute-long interval and is used to compute the fuel burn for the flight 

at that incremental segment. The weight estimation of the aircraft is then updated to 

account for the fuel that was consumed and the process is repeated for each minute-long 

segment in the flight’s trajectory. When the fuel burn has been computed for each 
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segment along the trajectory, the total fuel burn is calculated by taking the sum of the all 

the segment fuel burns. The steps in this process are shown below in Figure 18. 

 

 
Figure 18: Computing Estimated Track Fuel Burn 

3.6 Track Optimizer 
In the trajectory generation step, alternate trajectories were generated for each 

flight using all the available tracks for the day. Figure 12 shows an example of the 

alternate tracks that were generated for a specific flight. Using the aircraft performance 

model and the wind forecasts, the fuel burn for each alternate trajectory was computed 

using the as-flown altitude and speed. The fuel burn for each is then compared with the 

as-flown fuel burn to determine the amount of fuel benefit possible from more efficient 

track assignments. 
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Figure 19: Track Optimization Concept 

3.7 Speed/Altitude Optimizer 
 Once the aircraft as-flown fuel burn has been computed, the trajectory is 

then subject to an optimization process that can optimize either speed or altitude. The 

optimization is done by maximizing the SGR, the metric used to evaluate fuel efficiency, 

at each minute-long segment in the as-flown trajectory. Using the aircraft performance 

model used to compute as-flown fuel burn and the atmospheric conditions, a table of 

segment SGR values for multiple combinations of altitude and Mach can be generated, 

resulting in a set of values that can be visualized as a three dimensional surface shown in 

Figure 20. 
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Figure 20: Instantaneous fuel efficiency surface (SGR) as a function of altitude and speed, accounting 

for weather [5] 

The maximum SGR for the surface corresponds to the most optimal altitude and 

Mach that was available for that minute interval. For each minute long interval in the 

flight, a surface like that in Figure 20 can be generated for all possible configurations of 

Mach and altitude. By strictly maximizing the SGR at each minute long segment, the 

aircraft’s truly fuel optimal Mach and altitude can be determined. This optimization, 

however, results in trajectories that require changes in Mach and altitude at each minute-

long segment, as each surface is unique for each segment due to continuously changing 

aircraft weight and atmospheric conditions. These “true” optimal trajectories may result 

in altitude changes of 100 feet and continuous accelerations and decelerations in speed 

every minute along the flight. In a real air traffic environment, however, the trajectory of 

an aircraft is not assigned continuously along the flight every minute and the resolution of 

available clearances is not as high as this analysis assumes. In practice, altitudes are 

assigned in 1000-foot increments and are maintained for a period of time that represents a 

level segment in flight. For this reason, there are constraints placed on the optimization 

method in order to accurately represent the level of benefit in a real traffic environment. 

These constraints restrict changes in trajectory to 10 minute level segments, meaning 

changes in trajectory must maintain the current altitude and speed for at least 10 minutes 
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before performing another change. The altitude is also restricted to 1000-foot step climb 

increments, which is what is available to aircraft in a real traffic environment.  

The optimization first considers a scenario when the flight is given the flexibility 

to operate at their as-flown Mach, preserving the desired relationship between cost of 

time and cost of fuel, but a vertical trajectory with the flexibility to perform 1000-foot 

step climbs. The 1000-foot step climbs allow the aircraft to achieve more optimal 

altitudes as the flight goes on, which has a negligible impact on total flight time. 

Optimizing the altitude and constraining the Mach to the as-flown Mach allows for the 

reduction of the SGR surface into an SGR curve, shown below in Figure 21. The 

maximum of this curve results in the constrained optimal altitude at that minute interval 

of the flight. Repeating this process along each interval of the flight yields the 

constrained optimal altitude SGR along the flights entire trajectory. This process is then 

repeated with a fixed altitude in order to determine the constrained optimal Mach SGR. 

 

 
Figure 21: Reduction of SGR Surface to Fixed Mach SGR Curve 

By taking the curve from Figure 21 for each minute-long segment of flight, a 

visualization was constructed that illustrated the en-route fuel performance over the entire 

track segment for an example flight shown below in Figure 22. 
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Figure 22: En-route Fuel Efficiency [5] 

Figure 22 shades the regions by level of efficiency in terms of percentage of maximum 

possible SGR.  The region that is shaded blue represents the most efficient vertical 

trajectory that could have performed by this specific flight along its cruise trajectory. This 

region, further referred to as the “high-efficiency tunnel”, continuously changes along the 

cruise phase of flight. Although this high-efficiency tunnel represents the maximum 

benefit possible, it is operationally infeasible to perform this type of vertical trajectory 

since in a real air traffic scenario, altitudes are assigned in 1000-foot increments.  Shown 

overlaid on the high-efficiency tunnel is an example of a vertical trajectory that is 

constrained to discrete 1000-foot increments. This feasible trajectory was generated using 

Dijkstra’s shortest path algorithm that constrains available altitudes to levels that would 

be accessible in a real traffic environment with the option to perform various step climb 

and descent methods [6]. As shown by Figure 22, constraining the optimal vertical 

trajectory to 1000-foot step climbs improves fuel performance by 0.44%. Additionally, 

there is also the “flexible VNAV” option for trajectories shown above that also allow for 

simultaneous climbs and descents, however this type of trajectory typically only offers 

small improvements from a simple 1000-foot step climb with only a small increase in 

fuel benefit to 0.52%. For the remainder of this analysis, the results from optimal altitude 
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trajectories are presented for the 1000-foot step climb cases. In later sections, this 

visualization is discussed for its possible operational application to tactical decision 

making.  

Optimization of the speed is done after altitude optimization by allowing for a 

cost index input, resulting in a trajectory that is more fuel efficient in terms Mach. For a 

truly fuel optimal speed, the cost index is set to zero, which maximizes the SGR at each 

minute interval. This process is then repeated multiple times for alternate cost indices to 

analyze the result of increasing focus on time related costs. When combined with the 

altitude optimization done in the previous steps, the resulting trajectory is more efficient 

in terms of Mach and altitude. 
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Chapter 4 

Results 
4.1 Fuel Benefit Pool From Optimal Altitude and Speed 

For each flight, the fuel benefit is presented in percentage of possible track fuel 

that could have been saved through optimal altitude and optimal speeds. The maximum 

possible fuel benefit for any flight is a scenario where the vertical trajectory is optimized 

for feasible step climbs operating at the fuel optimal Mach. For the sample of data, this 

refers to a trajectory that allows for 1000-foot step climbs while also operating at 

minimum cost index of zero. This results in a trajectory that is simultaneously more 

efficient in terms of altitude and speed. For each individual flight, there is a percentage of 

track fuel that can be reduced through this more efficient trajectory. The distribution of 

this possible fuel benefit is shown in Figure 23. 

 
Figure 23: Fuel Benefit for Optimal 1000-Foot Step Climb Altitude and Optimal Speed 

For the sample of 4033 flights, the average reduction in track fuel possible is 

2.83% (1116 lbs). The total sum of all the fuel benefit possible in terms of absolute 

magnitude is 4,502,000 pounds of fuel. This reduction in fuel possible, however, is only 

for the portion of the flight that is within the North Atlantic tracks and does not include 

possible fuel benefits from optimal altitude and speeds for the regions that extend outside 
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the North Atlantic region. For the worst performing quarter of flights (the flights that 

have the most benefit available), the fuel benefit possible exceeds 3.96% (1422 lbs).  

4.2 High Fuel Benefit Cases 

As mentioned in the previous section, 25% of the analyzed flights have fuel 

reduction potential that exceeds 3.96%. These flights are defined as inefficient flights, 

and the cause for their inefficiency may be due to operating far off optimal altitude or 

speed. Comparing the difference between entry altitude and entry Mach with optimal 

altitude and optimal Mach shows that the worst performing quartile of flights typically 

operates farther off their optimal trajectory than that of the entire set. This distribution is 

shown in Figure 24, with negative values indicating that the as-flown trajectory was 

either higher or faster than the optimal. Each plot is a histogram that shows the difference 

between the as-flown clearance and the optimal clearance. 

 
Figure 24: Difference in Mach and Altitude at entry for Inefficient Flights and Total Flights 
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As shown in Figure 24, the inefficient flights, on average, operate 0.008 Mach faster than 

the total distribution of flights and also operate 465 feet higher than the total distribution 

of flights. The cause of the discrepancy in the top is further investigated below by 

investigating the worst performing flights (the flights with the most benefit available).  

Table 2 is a table of the 10 worst performing flights. 
Table 2: 10 Worst Performing Flights 

Aircraft 
Type 

Origin Destination Est. Stage 
Length 
(NM) 

Fuel 
Benefit 
(%) 

Entry 
Mach 
Difference 

Entry 
Altitude 
Difference 

B773 CYYZ EDDM 3664 11.54 -0.035 -4000 
B77L LSGG CYUL 3219 11.76 -0.008 -5000 
B77L CYYZ EGLL 3181 12.69 -0.028 -5000 
B77L CYUL LSGG 3206 12.74 -0.033 -5000 
B77L EGLL KDTW 3293 13.11 -0.021 -5000 
B773 KJFK LFPG 3193 13.31 -0.025 -5000 
B764 LIRF KEWR 3868 13.81 -0.059 -6000 
B773 CYYZ EGLL 3117 14.17 -0.021 -5000 
B773 EGLL CYUL 2877 15.14 -0.034 -7000 
B77L CYYZ EGLL 3118 16.01 -0.040 -6000 
  

Shown in Table 2, the flights with the most benefit available are typically 

operated by Boeing 777 model aircraft. This aircraft is the second heaviest aircraft in 

production by Boeing, only smaller than the Boeing 747 model of aircraft. Surprisingly, 

flights operating the 747 model aircraft do not show up within the worst performing 

flights, indicating that the level of benefit available for these worst performing flights is 

more than just aircraft size dependent. This may be caused by increased emphasis on fuel 

efficiency for heavy aircraft, as the impact on inefficient altitude and speed for larger 

aircraft is much larger than for smaller aircraft. For these high benefit cases, the aircraft 

are operating very far off optimal altitude and operating at speeds much faster than their 

optimal Mach, in some cases 7000 feet above optimal altitude and 0.059 Mach faster than 

their optimal Mach at the entry point of the tracks. 

4.3 Cost Index Constraints 

Airlines typically do not operate at the minimum fuel burn speed. Entering the 

North Atlantic tracks, flights are assigned a Mach number that is typically not the fuel 

optimal speed, as shown by Figure 24 by the discrepancy in the average and distribution 
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of the optimal and assigned Mach clearances. This Mach is assigned with consideration 

of other traffic in the area and with what is requested in the aircraft’s flight plan. The 

Mach assigned, therefore, is selected with some consideration on timing constraints for 

each airline. In order to analyze the effects of alternate cost index settings and speeds on 

the available fuel benefit, an initial analysis was done to determine the possible fuel 

benefit for flights that operated at their as-flown Mach, but were allowed the flexibility to 

perform 1000-foot step climbs freely. The result of this analysis is shown below in Figure 

25. 

 
Figure 25: Fuel benefit from 1000-foot optimal step climb and as-flown Mach 

The maximum fuel benefit shown before indicates a 2.83% average fuel benefit 

possible, however, when the speed is fixed to the as-flown Mach, the average available 

fuel benefit drops to 1.24%, with the benefit originating from more optimal altitudes 

only. Although there is still opportunity to decrease fuel burn through more efficient 

altitudes, more than half of the fuel inefficiency is directly caused by operating far off the 

optimal speed due to time related costs.  

As a next step in the analysis, the optimization algorithm constrained each aircraft 

to operate at their as-flown altitude, but enforced a global cost index to determine the 
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effect on fuel efficiency. This causes the fuel benefit pool to decrease, but also decreases 

the amount of track flight time. The results from this analysis are shown in Table 3. 

 
Table 3: Effect of Cost Index on Fuel Benefit and flight time 

Cost Index Fuel Benefit Pool (%) Change in As-Flown Flight time (min) 
(>0 indicates decrease in time) 

CI=0     1.32    -5.09 
CI=25     1.20    -3.53 
CI=50     0.91    -2.30 
CI=75     0.54    -1.30 
CI=100     0.13    -0.50 
CI=150    -0.84     0.84 
CI=200    -1.69     1.67 
CI=300    -4.03     3.40 
 

When each aircraft operates at its fuel optimal Mach at their as-flown altitude, the 

available fuel benefit is 1.32%. One can also see that on average, flights across the North 

Atlantic are typically operating at a back-calculated cost index of approximately 100, 

since this cost index offers the smallest non-negative fuel benefit. When considering 

operating at a high cost index of 300, the average decreases in track flight time from a 

minimum cost index is 8.49 minutes with an average fuel penalty of 5.35%.  

4.4 Accessibility of Optimal Altitude and Speed 
The previous analysis indicates that there is a maximum average fuel benefit of 

2.83% for flights operating in the North Atlantic. This analysis, however, does not take 

into consideration if the optimal altitude and speed is available without separation 

conflicts. Since the NAT airspace lacks high resolution surveillance, separation standards 

are much greater than for domestic flights. This increased separation can result in 

scenarios where aircraft are forced to operate at sub optimal altitudes and speeds in order 

to comply with these separation standards. An example of how these minimum separation 

standards can affect an aircraft’s ability to operate at optimal altitude is shown in Figure 

26. 
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Figure 26: How separation standards can prevent operating at optimal altitude 

Currently, there is an initiative to increase surveillance on the NATs with the hope 

that there will be benefits toward increased flexibility and predictability over this region. 

With this increased surveillance, separation standards can be reduced from 10-minute 

separation to 25, 15, or even 5 nautical mile separation. In order to determine what the 

amount of accessible benefit there is, a simulation was conducted that allowed each 

aircraft to operate at their optimal altitude and Mach within the track system and the 

number of conflicts was determined. The criteria that determined whether a conflict arose 

is whether or not a user defined minimum separation was violated. For aircraft that were 

conflicted, the available benefit from optimal altitude and speed was ignored to simulate 

a scenario where traffic prevented that flight from accessing their more efficient 

trajectory. The result of this analysis is shown in Figure 27. 
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Figure 27: Effects of Separation Minima on Available Fuel Benefit 

With the current separation standards of 10 minutes, 45.1% of the sample was 

unable to operate at their optimal Mach and altitude due to a separation violation. Current 

initiatives, however, are proposing a reduction of the separation standard to 23 nautical 

miles, which will reduce the number of traffic conflicts from 45.1% to 31.9% and 

increasing the benefit pool from 2.51 million pounds of fuel to 3.17 million pounds of 

fuel. This reduction in the number of conflicts due to decreased separation minima, 

however, only applies to a longitudinal conflict. This means that for flights operating on 

the same track, a conflict is when an aircraft is violating the minimum separation from 

either in front of the aircraft or behind the aircraft. Since the North Atlantic tracks have 

multiple options for lateral route, there is also a degree in flexibility that allows for flights 

to achieve optimal altitude and speed but on a different track, which is explored in the 

next section.  
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4.5 Fuel Benefit Pool from Optimal Track Assignment 
The fuel benefit from optimal track assignment is presented as the percentage of 

total flight fuel that could have been saved from more efficient track assignment.  Unlike 

the results from optimal altitude and speed, the track fuel benefit from optimal track 

assignment cannot be isolated from the reduction in total flight fuel benefit due to the 

effects on varying track distances and location. The results from this analysis are shown 

below in Figure 28. 

 
Figure 28: Fuel benefit from Fuel Efficient Track Assignment 

Through more efficient selection of tracks, flights can find an average benefit of 

3.20% in total flight fuel, with the upper quartile of flights having benefits that exceed 

4.51%. Of the 4033 flights analyzed, however, 480 flights (12%) were already operating 

on their optimal track in terms of fuel burn. The remaining 3553 flights were assigned 

tracks that were not fuel optimal, which is a result of the capacity limitations on the track 

that were discussed previously. These capacity limitations severely limit a flights ability 

to not only capture optimal altitude and speed configurations, but also prevent them from 

accessing the benefits from optimal track assignments.   
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4.6 Reduced Lateral Separation on the North Atlantic Tracks 
The premise behind the analysis on optimal altitude and speed was that with 

improved surveillance, separation minima could be reduced, allowing for the opportunity 

for aircraft to access their optimal altitude and speed configurations. Under this premise, 

the next step in the analysis was to consider how reduced lateral separation could allow 

for increased accessibility in optimal trajectories.		

Shown above, there is a 3.20% fuel benefit in optimal track assignments. With the 

current system, however, desirable tracks may reach their maximum capacity and force 

other aircraft to fly on tracks that are less efficient. Even the longest of tracks at a fixed 

altitude and speed can only accommodate up to 10-20 flights at a time based on the 

necessary separation requirements. The analysis on optimal track assignment also shows 

that 88% of flights along the North Atlantic were assigned tracks that were not fuel 

optimal. Analyzing the results from the analysis on optimal altitude and speed shows that 

45.1% of the sample would have experienced separation conflicts if they were to operate 

at their optimal altitude and Mach using the current separation standard. 	

By switching to a reduced lateral separation track system, there would be more 

tracks available to distribute the system traffic load. A concept of how reduced lateral 

separation works is shown in Figure	29. Reduced Lateral Separation Standards (RLAT) 

would result in a reduced number of aircraft on any single track. Since the number of 

aircraft on any track would decrease, there would be a decreased chance of separation 

conflicts arising, allowing for more flights to operate at their optimal altitude and speed. 

The move to reduced lateral separation would also allow for increased accessibility of the 

3.20% fuel burn potential from optimal track assignment, as aircraft are now more likely 

to get assigned tracks with more favorable wind conditions simply due to the fact that 

there would be more tracks available and less traffic to generate separation conflicts on 

any single track. 
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Figure 29: Reduced Lateral Separation Concept [8] 

Reduced lateral separation has already been implemented in the North Atlantic 

tracks on a limited scale. For any day in which reduced lateral tracks are available, a pair 

of two non-reduced lateral tracks are converted into three reduced lateral tracks; each 

separated by half a degree latitude. Aircraft equipped with the technology required to 

operate on these reduced separated tracks have the ability to choose between three tracks 

with the benefit of operating in a lower traffic environment, thus allowing for operation at 

more efficient altitudes and speeds. 

  



	 44	

Chapter 5 

Decision Support Tools 
Computing the possible benefit from optimal vertical and lateral trajectories 

yielded a benefit pool of 2.83% possible reduction in fuel from fuel-efficient vertical 

trajectories and 3.20% from more fuel-efficient lateral routing through improved track 

selection. These benefits, however, are currently not accessible in the current North 

Atlantic Track structure and surveillance capabilities. Benefits from improved track 

assignment are currently inaccessible due to capacity constraints on the tracks. With 

improved surveillance, the capacity of a single track can be increased since aircraft the 

position of each aircraft would be known with greater certainty, reducing the size of the 

safe separation distances. This reduction in separation minima can allow for each flight to 

access more efficient vertical and lateral trajectories. With more altitudes and speeds 

available for assignment, the next step was to implement a method to take the cruise 

altitude and speed optimization algorithm and apply it to a real operational environment. 

These applications include implementing the altitude and speed optimization algorithms 

in a prototype electronic flight bag (EFB) application that can be used by pilots to get real 

time information on their current aircraft fuel and schedule performance. 

5.1 Pilot Decision Support Tools 

An analysis on optimal altitude and speed prompted the hypothesis that a possible 

cause for inefficient vertical trajectories may be caused by lack of performance 

information provided to the pilots. Figure 3 shows what is available to pilots in terms of 

altitude efficiency. This display is from the FMS and integrates the internal weather 

forecast and aircraft performance to recommend an optimal altitude for the current 

aircraft configuration. Combined with the cruise speed performance display shown in 

Figure 30, pilots are given some information of efficient altitude and speed trajectories. 

These displays, however, do not immediately associate fuel-efficient trajectories with the 

direct impact on fuel and also provide little information on the current and future airspace 

environment.  
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Figure 30: FMS Cruise Speed Performance Display [9] 

Figure 22 shown before is a visualization of fuel performance along the cruise 

phase of a single flight. This visualization, accompanied by the optimization algorithm 

outputs, allows for not only a direct comparison between as-flown estimated fuel burn 

and estimated fuel burn after optimal vertical trajectories, but also shows the future 

aircraft fuel efficiency environment as an “optimal altitude tunnel.” This analysis 

prompted the question of whether or not pilots could utilize the information in this 

visualization to make improved tactical decisions on fuel-efficient altitudes and speeds. 

This visualization could be implemented in an electronic flight bag (EFB) as a pilot 

decision support tool.  

In order to implement the visualization in Figure 22 in an electronic flight bag, a 

vertical situation display was conceptualized using research from previous studies. Vakil 

in 1996 proposed a design for an electronic vertical situation display, which is shown 

below in Figure 31 [10]. 
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Figure 31: Concept Electronic Vertical Situation Display [10] 

The concept electronic vertical situation display in Figure 31 along with current 

flight instrumentation available to pilots was used as a model to generate a prototype tool 

that implemented the cruise altitude and speed optimization framework. Key aspects of 

the display such as altitude clearances and color schemes were selected in order to main 

consistency with other flight instrumentation. Pilots familiar with current aircraft 

instrumentation were consulted in order to ensure that there was no inconsistency 

between the concept prototype tool and available flight instrumentation. The final 

concept of the prototype tool is shown below in Figure 32. 
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Figure 32: Visualization Implemented in Pilot Decision Support Tool Concept 

With the additional display, pilots would be more aware of the current fuel and 

schedule performance of the aircraft but also what the forecasted performance is in the 

form of an en-route fuel efficiency display. This tool would allow pilots to quickly 

evaluate the impact of alternate speeds and altitudes through a direct interaction with the 

touch-screen display, which can be used to select more efficient trajectories or evaluating 

the impact of deviations for traffic or turbulence. The “optimal altitude tunnel” allows the 

pilot to immediately assess the overall trend of fuel optimal altitude and allows for more 

negotiation with ATC in order to achieve more desirable trajectories. 
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Chapter 6 

Evaluation of Decision Support Tools 
Using the prototype tool proposed in the previous section, the next step was to 

evaluate how the addition of this tool would affect pilot decision making during flight. 

This evaluation was done as a web-based survey where pilots are presented with in-flight 

situations and were asked to make a decision with and without the prototype tool. The 

hypothesis behind this study is that with increased awareness of current aircraft 

performance, the pilot would feel more empowered to request changes in their trajectory 

that would benefit their aircraft fuel and schedule performance.  

6.1 Study Design Methodology 

The study is a scenario-based evaluation targeted toward airline pilots. Each 

scenario places the subject in a simulated flight deck environment mid-flight. The pilot is 

provided with conventional flight documentation and is prompted to make a decision on 

their altitude and speed. The scenarios themselves are designed such that they are able to 

allow for testable situational awareness. The premise behind testable situational 

awareness is that a subject, when fully aware of their surrounds, would always make the 

same “correct” decision [11]. In this evaluation, the “correct” decision is defined as the 

fuel minimizing decision that also avoids turbulence and maintains schedule 

performance. The hypothesis of this study, is that when aided by the prototype tool, the 

subjects will be more likely to be situationally aware and make the “correct” decision. 

For the evaluation, each pilot is presented with eight scenarios, each consisting of 

unique flight documentation that would be used to make tactical decisions on speed and 

altitude. For each pilot, the order and presence of the prototype tool is randomly 

generated, with the presence of the tool being the independent variable of the study. In 

order to account for the learning process, two populations are created; one where the first 

half of the scenarios are presented with the prototype tool and one where the first half of 

the scenarios are not presented with the tool. The remaining scenarios are then presented 

with or without the tool depending on whether or not the subject has seen it in the first 

half of the scenarios. In total, each pilot is shown 4 scenarios with the tool, and 4 
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scenarios without the tool. The order of each set of 4 is randomly generated, as well as 

the order of when the tool is shown (first 4 or second 4 scenarios).  

The scenarios created for the study represent real-world scenarios that could 

happen during any flight. Within each scenario is a unique event that prompts the subject 

to make a decision on their altitude or speed. A list of the scenarios is shown below in 

Table 4. 
Table 4: Scenario Descriptions 

# Description Situationally Aware Decision 
1 Weight Limited Climb Into Turbulence 

A climb is indicated in the flight plan, 
however, there is a report that there is 
moderate turbulence at that flight level as 
well as the current flight level. The aircraft is 
currently too heavy to climb over this flight 
level.  

Descend below the turbulence or slow to 
penetration speed 
In doing so, the aircraft takes a heavy fuel 
penalty, however the ride is smooth. Slowing 
ensures better penetration through turbulence 

2 Efficient Climb Due to Difference in 
Weight 
Aircraft loaded significantly less fuel on 
takeoff making the current flight plan 
obsolete. 

Perform a step climb 
Since the aircraft is lighter and there is no 
indication of turbulence, the pilot should 
pursue reduced fuel burn by performing a 
step climb.  

3 Weather Forecast Motivated Descent 
A weather forecast update has been issued. 
This weather forecast indicates more 
efficient tailwinds at lower flight levels. 

Perform step descent 
The flight plan suggest maintaining current 
altitude, however the new weather forecast 
makes the filed flight plan inaccurate 

4 Climb into Turbulence 
Climb into turbulence is in the flight plan. 
No turbulence at current altitude 

Maintain current altitude or slow to 
penetration speed 
In doing so, the aircraft takes a fuel penalty, 
however the ride is smooth. Slowing ensures 
better penetration through turbulence 

5 Early Arrival 
Flight departs the origin 20 minutes early and 
is still expected to arrive 20 minutes early 

Reduce Mach Number 
Since the flight is scheduled to arrive early, 
slowing down to meet the scheduled in time 
is the correct decision. Slowing down will 
also improve fuel burn 

6 ATC Cleared Slow Due to Traffic 
There is traffic ahead operating at a very 
slow Mach number. ATC sees a separation 
conflict occurring and so they clear the flight 
to a very slow Mach number as well 

Perform a Step Climb Immediately 
By performing a step climb immediately, the 
aircraft takes a minor fuel penalty, however 
the pilot can maintain schedule performance 
by avoiding the slow traffic ahead 

7 Small Savings Potential Due to Weight 
Difference 
Aircraft is loaded with slightly less fuel on 
takeoff. 

Maintain current altitude 
Although the prototype tool indicates a step 
climb as being more fuel efficient, the level 
of benefit is negligible  

8 Tool and Flight Plan Indicate Same 
Trajectory 
No deviation from flight plans 

No deviation from the flight plan The 
prototype tool and the flight plan will both 
read the same recommendations 
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Each scenario is accompanied by unique flight documentation, such as a flight 

plan, weather forecasts, fuel planning slips and aircraft performance guidelines. Within 

each scenario, the subject is placed at key moments in the flight where they are asked to 

make a decision on their altitude and speed through a textual description of the aircraft 

environment. An example of this scenario description is shown below in Figure 33. 

 
Figure 33: Scenario Page Format. Textual Description 

Each scenario is also accompanied by a unique aircraft type and route type based 

on real world flight routes. The route type is either a domestic flight or an international 

flight. Both types of flights were used as part of the study because flights operating 

domestically and internationally have unique operating environments and restrictions. For 

example, domestic flights are restricted to 2000-foot flight level increments whereas 

North Atlantic flights are free to operate at 1000-foot flight level increments. Since each 

of these types of routes are also operated by different types aircraft, performance 

guidelines are provided for aircraft representative of the traffic mix for those types of 

routes. The routes and aircraft types used in the study are shown below in Table 5. 
Table 5: Routes and Aircraft Types 

Origin-Destination Route Type Aircraft Type 

ATL-SEA Domestic Boeing 737-700 

JFK-LHR Oceanic, North Atlantic Boeing 757-800 

YYZ-FRA Oceanic, North Atlantic Boeing 757-800 

 

Additional demographic information is collected before presenting the scenarios. 

This demographic information includes the pilot’s aircraft certifications, hours of flight 

time as pilot in command, and the type of training they received. The subjects are also 
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introduced to the prototype tool in order to familiarize themselves with the functionality 

and usability of the tool. Once they understand the tool, they are presented with the 

scenarios described before. A storyboard representation of the entire evaluation is shown 

below in Figure 34. 

 

 
Figure 34: Pilot Decision Support Tool Evaluation Storyboard 

6.2 Feedback Structure 
For each scenario, there is a series of questions that are posed that are standard 

across each scenario. The set of standard questions are listed below in Table 6. The 

questions posed are presented next to the scenario itself to allow the subjects to review all 

the additional documentation before responding. An example excerpt of the format of a 

single scenario is shown in Figure 33 and Figure 35. 
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Table 6: Standard Questions 

Question Answer Selections 
Would you request a change in Speed/Mach? Request Increase in Speed 

Request Decrease in Speed 
Maintain Current Mach 

Would you request a change in altitude? Request Increase in Speed 
Request Decrease in Speed 
Maintain Current Mach 

If you are requesting changes in your altitude 
or speed, when would you request this change 
to be executed? 

Immediately 
Later 

Text Entry: When? 
Describe any additional actions that you would 
take. 

Free Response 

What motivated this decision? Explain your 
reasoning. 

Free Response 

Is there any additional information that would 
aid this decision? 

Free Response 

 

 
Figure 35: Scenario Page Format. Prototype Tool Display 

The objective questions regarding the changes in speed and altitude are used to gauge 

whether or not the pilot made the “correct” (situationally aware) decision. The free 

response questions help to determine the motivation behind the decision, and will be used 

to help design future studies involving the decision support tool. 
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Unseen in Figure 35 are the additional supporting documentation that is provided for 

each scenario. These documents include the flight plan for the scenario, fuel planning 

slip, weather forecast and aircraft performance guidelines. These documents can be found 

in the Appendix for convenience. 
At the end of the evaluation, there is also a place for general feedback on the tool 

display such as additional requested features or improved user interface. The set of 

feedback questions are shown below in Table 7. A sample of the end-survey feedback 

form is shown below in Figure 36. 
Table 7: Feedback Questions 

Question 
Would you use this app during a normal flight? Why/Why not? 
Overall, how easy is it to interpret the display? How can we improve this? 
What additional features would you like to see? 
Is there any other feedback that you would like to provide? 
 

 
Figure 36: End-survey Feedback Form 

6.3 Preliminary Results 

The survey has been released and preliminary results have been recorded. Five 

pilots represented the pool of preliminary responders that completed the survey. Two of 

these subjects only have seven of the eight scenario responses recorded, due to a 

technical malfunction with the web recording system. Table	 8 summarizes the 

qualifications of these five pilots. 
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Table 8: Response Demographics 

Normal Type of 

Operation 

Normal 

Role 

Flight 

Hours 

Types of Aircraft Certified On 

Both Domestic U.S. 

and International 

Captain 17000 Airbus A300/310, Airbus A320 family, Boeing 

757, Boeing 767, McDonnell Douglas MD-11, 

McDonnell Douglas MD-80/MD-90 

Domestic U.S. Captain 2500 Airbus A320 family 

Domestic U.S. First 

Officer 

3500 Airbus A320 family, McDonnell Douglas DC-10, 

McDonnell Douglas MD-80/MD-90 

Both Domestic U.S. 

and International 

First 

Officer 

3000 Airbus A320 family, Bombadier CRJ 

Both Domestic U.S. 

and International 

Captain 12000 Boeing 737, Boeing 757, Boeing 767, Boeing 777, 

McDonnell Douglas DC-9, McDonnell Douglas 

MD-80/MD-90 

 

From Table	8, it is clear that these responses include both Domestic US and International 

pilots with varying degrees of experience, who are type certified on a variety of aircraft. 

Due to the random assignment of the scenario order, the number of responses to 

each scenario with and without the app is not equal. The responses in each category are 

summarized in Table	 9. There were two responses that were not recorded due to a 

technical error with the web recording system, one each for scenarios 3 and 6. 
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Table 9: Breakdown of Responses 

 Altitude Responses  Speed Responses 
# Description Situationally 

Aware 
Without App 

Situationally 
Aware With 

App 

Situationally 
Aware 

Without App 

Situationally 
Aware With 

App 
1 Weight Limited Climb 

Into Turbulence 
3/3 1/2 3/3 1/2 

2 Efficient Climb Due to 
Difference in Weight 

0/1 2/4 1/1 4/4 

3 Weather Forecast 
Motivated Descent 

0/3 1/1 3/3 1/1 

4 Climb into Turbulence 1/2 2/3 2/2 2/3 
5 Early Arrival 4/4 1/1 1/4 1/1 
6 ATC Cleared Slow Due 

to Traffic 
0/1 3/3 0/1 3/3 

7 Small Savings Potential 
Due to Weight 
Difference 

1/1 4/4 1/1 4/4 

8 Tool and Flight Plan 
Recommend Same 
Trajectory 

4/4 1/1 4/4 1/1 

 Total 13/19 15/19 15/19 17/19 
 

Based on the limited sample, the app appears to have a minor effect on pilot 

decision-making. Situationally aware decisions regarding both speed and altitude were 

made more often when the tool was present than when it was not with 32 out of 38 

situationally aware responses with the app, compared to 28 out of 38 without the app. 

The responses vary by scenario. 

The free responses in Scenario 6, where the aircraft is cleared at a slow Mach 

number due to traffic, indicate an increase in situational awareness. In this scenario, pilots 

recognized that there is the option to perform a step climb earlier than in the flight plan in 

order to avoid taking a schedule penalty due to the speed restriction imposed by ATC. 

For each subject where the tool was present in scenario 6, the situationally aware decision 

on altitude and speed was made while the pilot without the tool made the decision to 

maintain the present altitude even under the speed restriction. Below are comments that 

indicate that the subjects were situationally aware.  

 

“Flt plan calls for 360 and .80M so you can climb and get above speed bump 

traffic and get normal speed.” 
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“Will changing altitude eliminate the traffic conflict? If so, climb and return to 

planned Mach” 

“Can a reroute or climb to 350 get me around traffic?” 

 

The Mach number and altitude decisions in Scenarios 2 and 3 are consistent with 

what would be expected; in Scenario 2, the aircraft weight is different from what is filed 

on the flight plan, while the weight is able to be updated in the app. Similarly, Scenario 3 

incorporated updated weather conditions in the app that only impact cruise altitude. Since 

the only way in which the tool differs from the flight plan is in altitude, the only 

difference in decision-making should be regarding the altitude decision. The responses 

indicate increased situational awareness in the altitude category, while all of the pilots 

followed the planned Mach number as expected. 

Scenario 5, with the aircraft earlier than scheduled, only incorporates a difference 

regarding Mach number. The optimal altitude profile is consistent between the flight plan 

and the EFB tool, so all pilots should correctly select their altitude trajectory. This is 

consistent with the results. The situational awareness is tested regarding Mach number; 

the situationally aware decision is to slow down and save fuel, which these preliminary 

results indicate is clearer when the app is present. In the free response section, the 

decision support tool was indicated as the reason for slowing down when it was present; 

when it was not, the pilot indicated that the decision to slow down was because “SEA is 

traditionally gate constrained” and a decrease in speed would allow the flight to arrive on 

schedule. 

Scenarios 1 and 4, both of which involve climbs into turbulence, indicate that the 

app has little or no impact on decisions regarding altitude or speed when turbulence is 

involved. In these scenarios, the situationally aware decision can take one of two forms: 

either the pilot makes an altitude adjustment to avoid all reported turbulence while 

maintaining their speed, or the pilot slows to turbulence penetration speed and may or 

may not make an altitude change in order to find a less turbulent flight level. Both are 

considered situationally aware because in both cases, the pilot has taken actions that 

indicate that they are conscious of the turbulence. For all the responses that make the 

situationally aware decision on altitude without the app in scenario 1, the pilots indicated 
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that the motivating factor in the decision was ride quality without any mention of fuel 

penalty. 

The last two scenarios closely matched the flight plan and the decision support 

tool to one another; Scenario 7 offered two situationally aware options: either climb and 

take a small fuel savings, or maintain the current altitude since the fuel savings are 

minimal. Only one of the responses with the tool took advantage of this fuel savings, 

while the others maintained the Mach and altitude for which they were cleared. In both 

scenarios, the flight plan provides a situationally aware decision; therefore the results 

show that even the pilots without the app were capable of determining the situationally 

aware response. 

In the event that maintaining altitude or speed is the correct decision, it is unclear 

why the pilots chose to do so. This could have been motivated by either the pilot’s 

awareness that the app or flight plan recommended them to maintain altitude, or the pilot 

is simply maintaining altitude due to the fact that nothing prompted them otherwise. 

As a whole, pilots were more likely to choose the best option regarding speed 

than regarding altitude (32 total situationally aware speed selections, compared to only 28 

situationally aware altitude selections). This is due in part to the design of the survey, as 

only two of the eight scenarios were clearly meant to elicit a change in speed. The tool 

also generally has some positive effect on pilot decision-making. All five pilots made 

more situationally aware decisions with the app than they made without it. This indicates 

that the decision support tool has some operational utility in this limited sample. 
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Chapter 7 

Conclusions 
The purpose of this study was to quantify the fuel benefit potential over the North 

Atlantic Tracks from optimal altitude, speed and track assignments. This analysis used a 

sample set of 4033 flights that operated within the North Atlantic Tracks over 12 days 

that span all seasons in a year. Combining the Global Forecast System weather model, the 

PianoX aircraft performance tools and airline weight data, an estimate of track fuel burn 

was determined. The trajectory for each of the 4033 flights was then optimized and the 

track fuel burn was estimated for these optimal trajectories and compared with the 

original trajectories. The result from this analysis indicates that there is a 2.83% track fuel 

saving potential from optimal altitude and speed and a 3.20% fuel saving potential from 

optimal track assignments.  

The fuel savings from optimal altitude and speed are currently inaccessible due to 

the minimum separation requirements over the NATs. Simulating an environment where 

all aircraft are allowed to operate at their optimal altitude and speed results in 54.9% of 

flights violating the current separation minima. There are current initiatives to reduce 

longitudinal separation from 10-minute separation to a fixed 23 nautical mile separation. 

With a 23 nautical mile fixed separation distance, only 31.9% of flights will be unable to 

achieve optimal altitude and speed. 

The tracks on the current system are separated by 1-degree latitude. This level of 

separation results in flights being unable to access optimal tracks due to the traffic 

constraints on the optimal track. Performing an analysis on optimal track assignment 

indicates that 88% of flights were assigned tracks that were sub-optimal. The analysis on 

optimal altitude and speed indicates that 45.1% of flights were unable to access optimal 

trajectories due to separation conflicts. With reduced lateral separation, aircraft will be 

more capable of accessing tracks closer to the optimal track. This reduction in lateral 

separation distributes the traffic entering the system among more tracks, and thus reduces 

traffic on any individual track. This apparent reduction in traffic will also allow for 

increased accessibility of the fuel burn reduction potential since there will be less aircraft 

on any individual track to generate separation conflicts.  
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Through the study on optimal altitude and speed, pilot decision support tools were 

hypothesized and created using visualizations from the analysis and previous research 

efforts. Consultation with airline pilots and research on current flight instrumentation was 

used to model the prototype tool. The prototype is evaluated for its impact on tactical 

pilot decision-making on altitude and speed. A web-based approach that placed subjects 

in flight deck environments is being conducted in order to study these effects. The study 

evaluates the pilot’s situational awareness with or without the presence of the prototype 

tool. Preliminary results indicate that the decision support tool has some operational 

utility.  
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Appendix 

 
Figure 37: Track Definition Format 
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Figure 38: Sample Flight Plan for Web-based Evaluation 
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Figure 39: Sample Aircraft Maximum Altitude Capability For Web-Based Evaluation 
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