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Abstract— Traditional approaches to solving the train 
timetabling problem – the optimal allocation of when each train 
arrives and departs each station – have relied on Mixed-Integer 
Programming (MIP) approaches. We propose an alternative 
formulation for this problem based on the modeling and 
algorithmic framework of approximate dynamic programming. 
We present a Q-learning algorithm in order to tractably solve the 
high-dimensional problem. We compare the performance of 
several variants of this approach, including discretizing the state 
and the action spaces, and continuous function approximation 
with global basis functions. We demonstrate the algorithms on 
two railway system cases, one minimizing energy consumption 
subject to punctuality constraints, and one maximizing capacity 
subject to safety constraints. We demonstrate that the ADP 
algorithm converges rapidly to an optimal solution, and that the 
number of iterations required increases linearly in the size of the 
rail system, in contrast with MIP approaches whose computation 
time grows exponentially. We also show that an additional 
benefit to the ADP approach is the intuition gained from 
visualizing the Q-factor functions, which graphically capture the 
intuitive tradeoffs between efficiency and constraints in both 
examples. 
 

Index Terms— Approximate dynamic programming, train 
timetabling problem, robust scheduling, strategies for train 
timetable design 

I. INTRODUCTION 
AILWAY transportation has become a rapid, clean and 
efficient way to transport passengers and freight within a 
modern economy. Consequently, planning the capacity to 

be able to satisfy the expected demand represents a central 
problem in railway management. Moreover, railway 
transportation demand is increasing rapidly. An increase of 
25% in its activity is expected in Europe by 2030 (Capros et 
al. 2007) and capacity will need to be expanded to meet this 
demand. However, because the rail sector is intensive in 
capital, careful capacity analysis should be performed before 
investing in a given project. 

Several distinct problems arise when the infrastructure and 
the services are planned to satisfy the demand and when the 
operation is adjusted on-line to follow the operational plan. In 
his annotated bibliography, (Assad, 1981) collected and 
classified several studies in the literature using network and 
timetabling models. Since then, rail transportation problems 
have been classified into three levels according to the planning 
time horizons: strategic planning, tactical planning, and 
 
 

 

operational or regulation level (Cordeau et al. 1998; Crainic 
2003; Ghoseiri et al. 2004). 

At the strategic level, demand is projected and the line is 
planned in order to provide a given capacity when the 
infrastructure is being designed, or to increase the capacity 
when part of the infrastructure is being overhauled. The set of 
operational policies is also designed at this level. At the 
tactical level, timetables are formulated. These timetables 
result in schedules for the services. After that, trains and crew 
are assigned to lines (rolling-stock and crew scheduling and 
rostering). The main difference between tactical and strategic 
planning is that the investments in the rail network and in the 
trains are chosen at the strategic level while the tactical level 
decides how the available infrastructure and rolling-stock 
should be used. The level of detail with which the movements 
of the trains are considered in tactical models is considerably 
higher than that in strategic models. Finally, at the operational 
level, real-time data is used to decide how to modify the 
operation to maintain service quality.  

The train timetabling problem appears at all three functional 
levels: as a tool to calculate the capacity at the strategic level 
(Abril et al., 2008; Lai & Barkan, 2009; Landex, 2009), as the 
central problem at the tactical level (Caprara et al., 2002; 
Crainic, 2003; Castillo et al., 2009) and as a response to 
important incidences on the line at the operational level 
(Kraay & Harker, 1995; Fernández et al., 2006); with different 
characteristics, uses and requirements. 

Here, we focus on the tactical level version of the 
timetabling problem, because it is the critical set of 
operational decisions in railway systems with complex 
topologies, such as commuter lines in large metropolitan 
areas. However, because it is crucial also for decisions at 
strategic or operational levels, the development of appropriate 
mathematical formulations and efficient solution algorithms 
for the train timetabling problem will have a broad impact on 
planning.  

The train timetabling problem consists of choosing a 
complete timetable (passing, arrival and departure times of 
each train at every point of the line) for a given mix of trains 
running under certain operational policies along a given 
infrastructure. As a tactical problem, the objective is to 
determine medium term decisions to maximize the 
performance of the operations once the long-term decisions 
and operational policies have been adopted.  

In the literature, three different optimization approaches 
have been applied to the timetabling problem:  
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• In the first approach, the arrival and departure times of 
every train at every station are the decision or control 
variables. The constraints are specifically written in terms 
of the arrival and departure time of the trains, and the 
problem is formulated as a Mixed-Integer Programming 
(MIP) problem. See (Castillo et al., 2009; Ghoseiri et al., 
2004; Liebchen et al., 2004; Zhou & Zhong, 2005) for 
different formulations with different objective functions 
and different traffic constraints. Traditionally, these 
models have been called multi-mode resource 
constrained project scheduling models.  

• The second approach models the timetabling problem 
as a multi-commodity flow problem (Caimi et al., 2009; 
Caimi et al., 2010 (in press); Caprara et al., 2002; 
Caprara et al., 2007; Cordeau et al., 1998). These models 
use nodes to represent arrival or departures of trains to 
stations and arcs to represent whether that arrival or 
departure occurs at particular time. Consequently, the 
decision variable is a vector of binary controls indicating 
which arcs have been selected. The constraints indicate 
which combinations of arcs are infeasible. The models 
are written as MIP problems. To prevent an explosion of 
the size of the model, initial timetables are usually 
required in practice. Furthermore, time discretization, 
consideration of a limited number of travel times or 
departure times, is also required to keep the solution 
computationally tractable. 

• The third approach uses dynamic programming (DP) 
(Lee & Pinedo, 2002) for solving timetabling problems 
instead of the traditional branch and bound based 
techniques for solving MIP problems. In practice, the 
solution of the classical DP formulation becomes 
intractable when the size of the problem grows too large. 
However, an alternative class of solution algorithms 
using approximate techniques (Bertsekas & Tsitsiklis, 
1996; Powell, 2007) enables the consideration of a DP 
approach. To the best of our knowledge, very little work 
has been done to apply DP techniques to the general train 
timetabling problems, although they have been applied to 
related problems such as locomotives assignment 
(Bouzaiene-Ayari & Powell, 2010).  

In this paper we propose to model the train timetabling 
problem using an approximate dynamic programming (ADP) 
paradigm, see (Bertsekas & Tsitsiklis, 1996; Bertsekas, 2005a; 
Bertsekas, 2005b; Powell, 2007). There are two main reasons 
for choosing an ADP formulation over a MIP formulation. 
First, the solutions obtained with an ADP formulation 
provides additional information about the timetables and 
allows the user to identify qualitative strategies for designing 
timetables, making it easier to understand the impact of 
changes on the timetable. Furthermore, the train timetabling 
problem is known to be NP-hard (Zhou & Zhong, 2007) and 
very difficult to solve when the size of the problem increases. 
While the solution time of a mathematical programming 
approach grows exponentially with the size of the problem; 
the solution time of an ADP formulation increases only as a 
polynomial function (in our case, quadratic) of the size of the 
problem.  

This paper is structured as follows: two different train 
timetable problems are presented and formulated in section II. 
Two different algorithms used to determine the timetables are 
presented in section III. Finally, the main results are discussed 
in section IV and the conclusions are presented in section V.  

II. TRAIN TIMETABLING PROBLEM 
In this section, we present two example timetable problems. 

We first describe the main elements of each problem. Then, 
both problems are formulated as DP problems, and we 
motivate the use of ADP algorithms to solve it.  

A.  Problem description 
As described above, the train timetabling problem consists 

of choosing the arrival, departure, and passing times of every 
train at every point of the infrastructure under a given 
operational policy.  

The first example is a single high-speed rail line, for which 
the objective is to determine the timetable for the intermediate 
stations that minimizes energy consumption, subject to total 
travel time and punctuality requirements. The second example 
is a metro or commuter line, for which the timetable is chosen 
to maximize the used capacity subject to safety constraints.  

In the first case, the trains are driven manually, so the travel 
time between different stations is continuous. In the second 
case, it is assumed that the trains are automatically driven, and 
therefore the set of possible travel times is constrained. 
Moreover, while there are no constraints coupling the trains in 
the first design, several safety constraints should be considered 
in the second design to avoid train conflicts.  

1)  Minimizing energy consumption with punctuality 
constraints 

Figure 1 shows the energy consumption of a train (manually 
driven) for different travel times. Different driving strategies 
may result in different levels of energy consumption for the 
same total travel time, although we assume for this paper that 
the drivers drive in the most efficient way once the travel time 
has been determined. The energy consumption of the points 
located along the Pareto frontier decreases monotonically as 
the travel time increases. Thus, traveling at maximum speed 
(flat-out) has associated the minimum travel time (around 
2180 s in this case) and the maximum energy consumption 
(around 2940 kWh). According to figure 1, it is possible to 
decrease energy consumption dramatically using a few 
minutes for eco-driving at each inter-station.  
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Figure 1 Energy consumption versus travel time for different driving 

profiles at a given inter-station 

The total travel time between the first and the last station is 
generally greater than the sum of the minimum travel times at 
each inter-station. The timetable design consists of allocating 
the remaining time (called total slack) along the different 
inter-stations. The slack assigned to any inter-station must be 
greater than a given minimum slack to ensure punctuality 
using this deterministic criterion. This minimum slack 
depends on the delays that usually appear on the line. Once 
punctuality constraints are met, the remaining slack can be 
allocated to those inter-stations where the potential of energy 
saving is greater. In many lines, approximately 85% of the 
trains arrive with no delay (Renfe, 2010), meaning that slack 
is usually available to reduce energy consumption.  

2) Maximize used capacity subject to safety constraints 

Another central issue in designing the timetable for a 
railway system is the allocation of the capacity. The railway 
manager might be interested in improving the use of the 
infrastructure to better serve the demand. This example 
simulates the timetable design for a railway system consisting 
of an underground double-track circular line. All the trains 
circulate along the line, stopping at every station. Trains are 
not allowed to overtake another. The characteristics of each 
train determine the travel and stopping times at the stations, 
which varies across different trains.  

Since the line is a double-track line, in nominal working 
conditions, each track is used by the trains travelling in one 
direction, so the design of the timetable for each direction can 
be set independently. Figure 2 represents one possible 
situation of the trains travelling along the line at one instant in 
time.  

 

Figure 2 Circular underground line 

The goal is to design a feasible timetable that maximizes the 
capacity of the line by increasing the frequency of trains 
(reducing the time between consecutive arrivals of trains to the 
same station). In this context, feasible means that operating 
constraints (stopping times must be bounded, so do travel 
times, etc.) and safety constraints (ensure that the distance 
between consecutive trains does not compromise the safety of 
the line) are all met. 

B.  DP formulation 
As discussed above, the design of timetables becomes 

extremely difficult as the size of the problem increases. 
Consequently, a consistent mathematical formulation is 
required to automatically design the timetables. In this 
subsection we present a DP formulation of both problems. The 
index  is used for the stations and the index  is used for the 
trains.  and  represent, respectively, the total number of 
stations and the total number of trains scheduled.  

1)  Minimizing energy consumption with punctuality 
constraints 

This problem is framed as a discrete time, finite horizon, 
stochastic DP problem with continuous state and control 
spaces, see (Bertsekas, 2005a; Powell, 2007).  

In our framework, each decision stage represents a station.  

All the information required at each stage is captured by the 
state variable, the departure time of the train at the station: 

  (1) 

The state variable is Markovian; i.e., knowing the state 
variable at one station (stage) is sufficient to compute the 
timetable for all the following stations, and the states at 
previous stations provide no additional information.  

The control variable is the total travel time from the current 
station to the next station: 

 (2) 

where ,  represent, respectively, the minimum and 
maximum possible travel time from one station to the next. 
These values are continuous given that the high-speed trains 
are manually driven.  

In this problem, the stochastic disturbance (or exogenous 
variable) is represented by the total delay that occurs during 
the travel to the next station: 

 (3) 

Once the state variable, the control and the disturbance are 
known for a given stage (station), the state at the next station 
can be determined. The state transition function gives the 
departure time of the train at the next station. This departure 
time is equal to the designed travel time (departure time plus 
nominal travel time) when it is possible to recover from the 
delay: 
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 (4) 

The cost associated with a given timetable can be calculated 
using a cost function which represents the energy consumption 
at each stage (station). This consumption can be calculated 
from the travel time (see figure 1): 

 (5) 

For this problem, there is no constraint coupling different 
trains.  

The objective of the design is to minimize the cost function 
(energy consumption) over all the stations: 

 (6) 

where  is the set of feasible travel times given the 
departure time and  is the discount factor between decision 
stages, although in this paper we fix  to be equal to one1. 

To ensure that the slack is primarily used to meet the 
required level of punctuality  (fraction of times that the 

train arrives on-time), the minimum possible travel time  is 
computed as the minimum travel time (corresponding to flat-
out) plus a minimum slack. Consequently, when no delay 
occurs, the driver uses all the time for eco-driving and hence 
saves some energy during the trip. In the event that a delay 
occurs, the driver drives faster and is able to recover any delay 
smaller than the slack allocated. Therefore, the minimum slack 
should be greater than the delay associated to the  
percentile of the accumulated probability at the station.  

Furthermore, to ensure that total travel time is smaller than 
the maximum total travel time given, the maximum possible 

travel time from each station  should be equal to the 
minimum of the slowest possible driving strategy allowed and 
the remaining slack to be allocated after ensuring punctuality 
in the remaining stations. 

The optimal cost-to-go function, which indicates the 
additional minimum cost from a given station and departure 
time up to arrival at the last station, is: 

  (7) 

Though this non-linear, recursive equation may seem easy 
to solve backwards at first glance, it suffer from three curses 

 
1 This formulation is formally known as a “total cost problem” as opposed 

to a “total discounted cost problem”. Total cost problems can have theoretical 
convergence issues, especially for classic solution techniques. We 
demonstrate consistent convergence below for the ADP algorithms used. 

of dimensionality (Powell, 2007): the dimension of the state 
space for each stage  determines the number of 
equations, the dimension of the control space for each stage 

 determines the size of the space over which the 
minimization is carried out and the dimension of the 
disturbance space for each stage  determines the size of the 
space over which the expected value is computed. 

Since these three variables are continuous in reality, 
computing the exact cost-to-go function is extremely difficult. 
Instead, we approximate the cost-to-go function using ADP 
algorithms. 

2) Maximize used capacity subject to safety constraints 

This problem is also framed as a discrete-time, finite 
horizon, deterministic DP problem with continuous state and 
control spaces (Bertsekas, 2005a). 

As above, the decision stages correspond to the individual 
stations, and the state variable is a vector representing the 
travel time of all trains at a given station: 

   (8) 

where the initial condition of the line, , is assumed to be 
fixed. In this problem, several safety constraints are imposed, 
which require some minimal distance between trains along the 
line in order to avoid conflicts. This is the reason for including 
the subscript  in the previous equation.  

The control variable is the total travel time of each train to 
the next station: 

   (9) 

These trains are automatically driven and therefore the set 
of possible controls is constrained. Additional constraints are 
imposed on the set of possible controls 

 as follows: 

First, the control must be bounded: 

  (10a) 

 are, respectively, the (minimum and maximum) 

stopping and travel times of train  at/from station .  

Furthermore, the control  must be chosen so that the 
headway between the departure of a train from the next station 
and the following arrival is greater than the minimum safety 
headway : 

  (10b) 

Finally, to ensure that the control  results in a feasible 

timetable, additional constraints are needed: 
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  (10c) 

The idea of these constraints is that once the controls  for 

all previous stations , we can determine both the 
minimum period (time required to loop over all stations and 
return to the initial station) and the maximum period-to-go. 
We wish to ensure that the minimum period is less than or 

equal to the maximum period, . In the first constraint, 

the largest possible period is 

. In the second 

constraint, the smallest possible period is the maximum of 

 and . 

The third equation ensures that the period is the same for all 
trains, so all trains will loop over all stations in the same 
amount of time.  

Notice that in order to compute the set of possible controls 

, we need to know the state as well as 

. Consequently it is required to augment the state 

adding the information , in order to preserve the 

Markov property.  
The set of constraints required in a MIP model is 

represented simply by the range of feasible controls, , 

for a given stage and state,  in a 

DP framework. Note, however, that the computation of the 

actual  is not trivial and causes the state 
augmentation as we mention above.  

The state transition function in this case is: 

  (11) 

The cost function is: 

  (12) 

Finally, the Bellman equation or cost-to-go function for this 
problem is: 

  (13) 

where  is the optimal cost-to-go (additional time 
required to schedule the trains) if the departure of the trains at 

station  occurs at time .  

In practice, it is very difficult to solve for 
. Even knowing that 

 and discretizing the possible values 
that both the departure time (state) and the total travel time 
(control) could take, the size of the problem grows 
exponentially (  being the number of values of 
departure times and total travel times considered after the 
discretization):  

• State size (initially):   

• State size (augmented):  

• Control size:  

• Time horizon:  

For a large system (trains + stations) a classic DP algorithm 
is impracticable to solve this problem. Alternative 
approximation methods are needed to be able to obtain the 
solution.  

III. ADP ALGORITHMS 
Because of the computational demands of a classical DP 

approach, we apply ADP algorithms which sample across 
states, controls, and disturbances. However, convergence 
issues can arise when sampling. Specifically, when  is a 
random variable, a sampling strategy will introduce a bias into 
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the computation of . Bias can be eliminated 

when  can be computed as  by sampling 

the random variable . In this latter case, the estimation error 
of  will decrease with the number of samples.  

To address this concern, we use a Q-factor formulation 
(Bertsekas & Tsitsiklis, 1996). This approach computes the 
so-called Q-factors value instead of computing the cost-to-go 
function value presented in equation (7): 

 (14) 

The dimensionality of the Q-factor formulation is larger, 
because we need to keep track of the value of the control to 
avoid introducing a bias. Depending on the structure of the 
cost function, an alternative is to use a version of the cost-to-
go function formulated with post-decision variables (Powell, 
2007) instead of Q-factors, but this is not always possible.  

In the next subsections, we present two alternative 
algorithms for computing the Q-factors. 

A. Look-up table algorithm 
The first concern with equation (14) is that the state, the 

control and the disturbance presented are continuous variables. 
Consequently, the first approximation consists of discretizing 
these variables to be able to iteratively compute the value of 
the Q-factors. In particular, the Gauss-Seidel Q-learning 
algorithm for finite horizon problems is presented (Bertsekas, 
2005b).  

The algorithm proposed is an approximate version of value 
iteration, in which the expected value in the previous 
expression is approximated by sampling and simulation. In 
particular, an infinitely long succession of possible departure 
times (state) and total travel time (control) for every station 
(stage) ,  is generated according to the 

probabilities of the problem. Given a pair , a 

disturbance  is sampled according to the probability 

. Then, the Q-factors are updated using a 

stochastic gradient approximation (Robbins & Monro, 1951): 

 (15) 

where , and  is the number of times that the 

station state-control pair , has been visited up 

until iteration . The Q-factor values of other pairs that have 
not been visited in iteration  remain unchanged.  

Step 0. Initialize: Set  

Step 1. Set . Then for all station  to , 

generate  with , 

 and compute: 

 

For  compute: 

 

For  any other , if  

compute  

Note that the Q-factor  is not defined when 

. 

Step 2. If  compute the convergence error: 
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Step 3. If , where  is a given tolerance, stop. 
Otherwise go to Step 1.  

Algorithm 1 Look-up table algorithm 

Initially, the size of the problem increases on the order 
, where  is the number of stations 

(stages), and  are the number of discrete departure 
times and travel times considered in the discretization. Note 
that the departure time and travel time is in general a vector of 
the departure and travel times of all trains at a given station, so 
the number of points considered increases as a power of  
(number of trains).  

B. Continuous approximation using basis functions algorithm 
The main disadvantage of the discretization strategy is that 

the size of the problem explodes when the number of trains or 
stations increases. Furthermore, since every point visited adds 
only local information about the Q-factor function, an 
increasingly large number of iterations is required to converge 
to the solution within a given error bound.  

The idea of this algorithm is to approximate the Q-factor 
function using predefined basis functions: 

 (16) 

Usually, polynomial basis functions are used. Nonetheless, the 
algorithm works for any other choice of the basis functions. 

After that, an infinitely long succession of possible 
departure times and total travel times for every station , 

 is generated using a pure exploration 
strategy; i.e., sampled from the probability distribution of the 

problem. Given the pair , a disturbance  is 

sampled according to the probability . Every 

sample contributes information about the global shape of the 
function. The coefficients, , of the basis functions are 
iteratively updated using a stochastic gradient method; 

: 

(17) 

where  (step size), and  is the number of 

iterations. 

Step 0. Initialize: Set  

Step 1. Set . Then for all station , 

generate possible , ,  with , 

 and compute: 

 

Step 2. If  compute the convergence error: 

 

Step 3. If , where  is a given tolerance, stop. 
Otherwise go to Step 1.  

Algorithm 2 Basis function algorithm 

Using this algorithm, the size of the problem increases on 
the order , where  is the number of basis 

functions considered. In general, the number of basis functions 
increases linearly with the number of trains. Because every 
sample adds global information about the Q-factor value, 
convergence is expected in fewer iterations than the look-up 
table approach (we use the data to update the coefficient of the 
basis functions in the whole feasible region, whereas we 
update only determined look-up table entries with a look-up 
table algorithm). 

IV. RESULTS 
In this section we present the main results obtained by 

applying the preceding algorithms to solve both example 
problems. The first subsection presents the solution for the 
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timetable design minimizing energy consumption with 
punctuality constraints. The second subsection presents the 
solution for the problem of maximizing capacity subject to 
safety constraints.  For both examples, we compare the results 
and the speed of convergence using the three algorithms 
described above. We also use both examples to demonstrate 
the intuition that can be obtained by visualizing the Q-factor 
function surface. Finally, we explore the behavior of the 
algorithms as the size of the problem increases. For that 
purpose, we have scaled up to a larger problem size based on 
the second example. 

A.  Minimizing energy consumption with punctuality 
constraints  

Although we have insisted on the importance of time slack 
to ensure good operational punctuality levels, determining an 
efficient allocation of the time slack is a difficult task. 
Typically, time slack is allocated homogeneously along the 
line. However, the solutions obtained using our approach have 
several advantages compared to the traditional, homogeneous 
slack distribution solution.  

It is important to determine the minimum slack required to 
ensure the desired punctuality level. It is possible that the 
homogeneous slack distribution solution does not meet the 
punctuality constraints at all stations. Once the minimum slack 
has been determined, our solution allocates the remaining 
slack time at those inter-stations with higher energy saving 
potential. If no delay appears, these time slacks are used for 
eco-driving purposes. The results obtained for this example 
with four stations and 10% slack show that a reduction of 
energy consumption of 1.7% for each train could be obtained 
in comparison with a homogeneous slack distribution. We can 
achieve higher reductions in energy consumption designing 
timetable for trips with more intermediate stops. This energy 
consumption reduction also increases for larger time slacks.  

Table 1 shows the minimum and maximum travel times 
along the inter-stations for a realistic example of a high speed 
railway line with four stations: 

 

Table 1 Problem parameters, minimum and maximum travel time 

A total slack of 15%, equivalent to 34 time units is 
considered. We require 90% punctuality level, that is, 90% of 
the trains have to arrive with no delay, i.e., must be able to 
recover any unexpected delay that appears along the line.  

Table 2 shows the timetables obtained using a look-up 
factor algorithm with different number of iterations and a MIP 
model solved using CPLEX: 

 

Table 2 Comparison of the timetables designed for different number of 
iterations of a look-up table algorithm with the optimal timetable 

Furthermore, other output of the ADP algorithms proposed 
in this paper is the Q-factor function, which provides insight 
into the problem. Figure 3 presents the second inter-station Q-
factor function. It is possible to use that function to visualize 
the constraints of the problem. In this figure, zero travel time 
means that the train is travelling from station 2 to station 3 at 
the maximum possible speed (minimum travel time). So, in 
particular, the minimum travel time to ensure punctuality can 
be determined using these algorithms; 8 time units in this case. 
Furthermore, the Q-factor function provides information about 
the maximum possible travel time for the inter-station; 16 time 
units. Notice that it is not possible to travel always at the 
minimum speed. When the departure time is later (because the 
train has already spent some time at previous inter-stations), 
the travel time must be bounded to ensure that the trains arrive 
within the maximum slack (34 time units in this case), after 
ensuring punctuality in the next stations (where they need at 
least 4 time units). The minimum departure time (9 time units) 
indicates the slack required to ensure punctuality in previous 
stations. The energy consumption has been modeled as a 
piecewise linear time-consumption Pareto curve. The Q-factor 
function presents the lowest possible energy consumption for 
the train from station 2 to station 4, if it departures at a given 
instant from station 2 and arrives to station 3 after some given 
travel time. It can be seen that it is better to travel as slow as 
possible in this station (in this example, it is the station with 
higher energy saving potential). The value of the Q-factor 
function for different departure times (lower values for earlier 
departure times) indicates that it is better to use the remaining 
slack at the third inter-station. The points with zero Q-factor 
value are infeasible. 

 
Figure 3 Q-factor function obtained with look-up table and basis functions 

Figures 4 to 6 show the impact of changing the total time 
slack in the Q-factor function for Station 2, and hence in the 
solution obtained. For instance, the value of the minimum Q-
factor decreases for greater slacks, since the possibility for 
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doing eco-driving increases.  
  

  
Figure 4 Q-factor function for a total slack of 12% of minimum travel 

time 

 
Figure 5 Q-factor function for a total slack of 15% of minimum travel 

time 

 
Figure 6 Q-factor function for slacks amounting to 18% of minimum 

travel time 

In general, the effect of allocating time slacks at different 
inter-stations is not the same. For small total slack, the best 
strategy is to locate as much slack as possible where the 
potential of energy savings is greater. As the available slack 

increases, the strategy should order the energy savings impact 
of each incremental time slack allocation, and it is usually 
most efficient to allocate time slack across different inter-
stations.  

The effect of increasing the total time slack can also be seen 
in the size of the feasible region. In figures 4 and 5, possible 
travel and departure time are determined by the maximum 
slack. In figure 6, maximum departure time is sometimes 
determined by the maximum possible travel time at inter-
station 1 and the maximum travel time may be attained too. In 
figure 7, there is no effect in terms of feasible region of the 
total time slack constraint.  

 

 

Figure 7 Convergence of look-up table and first order basis functions 
algorithm for 15% total slack (20 repetitions) 

The convergence results for the algorithms are shown in 
figures 7 and 8. Figure 7 shows the mean solutions obtained 
for different number of iterations. Each experiment has been 
repeated 20 times to determine a 90% confidence interval for 
the solutions obtained. Note that both algorithms are 
converging to the optimal solution. We are using a logarithmic 
scale in the x axis. Figure 8 presents the difference between 
consecutive Q-factor matrices for the look-up table algorithm 
or coefficient vectors for the basis function algorithm. This 
measure is used as the convergence criterion.  

 
Figure 8 Convergence of look-up table and first order basis functions 

algorithms for 15% total slack  

Figure 8 illustrates that the error when using basis functions 
falls more rapidly than the error obtained using a look-up table 
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algorithm. Moreover, the computational cost of each iteration 
is smaller for basis function algorithms. For this application, 
the basis function approach has clear advantages, since the 
algorithms take advantage of the information obtained at each 
iteration. Note that we use a y-axis logarithmic scale.  

B.  Maximize used capacity subject to safety constraints 
In this example, the objective is to maximize the use of the 

capacity of the line, which is equivalent to minimizing the 
period (time required) to schedule a given number of trains at 
the line. In particular, we consider three trains running in the 
same direction along a three stations line (we consider a four 
station which represents the second time that the trains arrive 
to the initial station). The trains need 145 time units to 
complete the loop (period). In table 3 we present the optimal 
timetable obtained using a linear basis function  algorithm:  

 

Table 3 Optimal timetable maximizing used capacity with safety constraints 

Note that the departure timed from station 4 are equivalent 
(adding the period for train 1) to those of station 1, which 
makes it possible to repeat the timetable after one period.  

The Q-factor functions for one of the trains at each station 
obtained using a look-up table algorithm, and two global basis 
function (linear and quadratic) algorithms are presented in 
figures 9 to 12. Notice that the departure time is fixed at the 
first station (time 0), but there are several possible departure 
times at the second station (depending on the travel time 
chosen at the previous station), and more possible departure 
times at the following stations (depending on the combination 
of travel times and departure times at previous stations). 
Furthermore, the magnitude of the Q-factor function decreases 
from one station to the next, because it is a measure of the 
cost-to-go; i.e., the remaining period to arrive to the last 
station given the current situation (state) and the next decision 
(control). The values of the minimum and maximum possible 
travel times aggregate the impact of the constraints, such as 
the interference with other trains. 

 
Figure 9 Q-factor function for train 1 at station 1 after 104 iterations 

 

Figure 10 Q-factor function for train 1 at station 2 after 104 iterations 

 

Figure 11 Q-factor function for train 1 at station 3 after 104 iterations 
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Figure 12 Q-factor function for train 1 at station 4 after 104 iterations 

In this example, the optimal strategy is to make the trains 
travel as fast as possible along the stations. In general, the 
determination of this maximum speed is non-obvious, but can 
be easily determined from the Q-factor functions.  

 

 
Figure 13 Convergence of look-up table and first and second order basis 

functions algorithms 

Figure 13 shows the convergence of three alternative 
algorithms for this example. Although the shape of the Q-
factor function does not seem to be linear, the linear basis 
function algorithms results in smaller errors than those 
obtained with the quadratic basis function algorithm. The 
look-up table algorithm is also converging well, but the error 
of a solution obtained with a given number of iterations is 
usually bigger than the error of the solutions obtained within 
the same number of iterations using the other methods.  

C. Size of the model 
One of the main advantages of using ADP algorithms to 

solve these problems is that the computational effort required 
to solve large problems is a polynomial function of the size of 
the problem. For instance, the computational effort required to 
design timetables maximizing the capacity subject to safety 
constraints, using a linear basis function approach, for 
different numbers of stations and trains, will increase at 

. In this case,  is the number of stations (stages) 

and , the number of coefficients, is equal to  (a 
constant coefficient, the coefficient of the departure time, and 
the coefficient of the travel time for each train):  

 (22) 

Figure 14 show the iterations required to design timetables 
maximizing the capacity subject to safety constraints for 
different number of stations and trains. For this experiment we 
consider that the problem has converged when the 
convergence error (gap) is smaller than 5%.  

 

Figure 14 Number of iterations to convergence to the solution within a 
5% gap for different problem sizes using a linear basis function algorithm 

The number of iterations required increases linearly (the 
Pearson coefficient is 97.33%) with the product of the number 
of trains and stations as expected. This is a key result of this 
paper. Figure 15 compares the number of iterations required to 
solve the problem within a 5% gap using the ADP linear basis 
function algorithm proposed in this paper and a MIP model, 
solving an implementation of a multi-mode resource 
constrained project scheduling model (Castillo et al., 2009), 
using CPLEX. As discussed in the introduction, the number of 
iterations required using MIP models increases as an 
exponential function of the size of the problem. This result, 
along with other advantages already discussed, shows the 
convenience of using of ADP algorithms for solving train 
timetabling problems.  
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Figure 15 Comparison of the number of iterations required to 
convergence (within 5% gap) for an ADP linear basis function algorithm and 

a MIP model 

V. CONCLUSIONS 
In this paper, a DP formulation of the train timetabling 

problem has been presented. The resulting model is, in 
general, highly multidimensional, but can be solved tractably 
using several ADP techniques, even when the size of the 
model increases.  

In particular, we have demonstrated two Q-learning 
algorithms using different function approximation techniques: 
a look-up table algorithm, which is converging very well, 
though the size of the look-up table grows exponentially with 
the size of the problem; and a basis function algorithm, which 
presents very good and fast convergence to the optimal 
solution of the problem. The results show that for large 
problem sizes, the ADP basis function algorithm, is specially 
promising compared to other MIP models proposed in the 
literature.  

An additional benefit to this approach is that the Q-factor 
function determined using these algorithms provides the user 
with complete information about the problem. The value of 
the Q-factor function is not only that we can design the 
optimal timetable for a specific problem; but moreover, we 
can identify the binding constraints and good strategies to 
design train timetables. Sensitivity analyses should be carried 
out to obtain the same information using other optimization 
approaches to design the timetables.  

In summary, we argue that the DP approach, and in 
particular, the ADP algorithms proposed in this paper, should 
be considered as a promising approach for solving train 
timetabling problems, especially for large rail systems or for 
those problems where the railroad company is more interested 
in what-if answers than in a specific rigid optimal timetable.  

Further lines of research will analyze whether we can 
improve the convergence of the algorithms proposed using 
intelligent sampling techniques. We will also study the 
application of the algorithms developed in this paper for 
solving other railway applications. 
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