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Abstract 

Architecture frameworks are tools for managing system complexity by structuring data in a 

common language and format.  By characterizing the form, function, and rules governing 

systems, architecture frameworks serve as a communication tool to stakeholder communities 

with different views of the system and facilitate comparative evaluation across architectures.  

The goal of this research is to explore the applicability of architecture frameworks to the study of 

emergent properties of satellites.  The U.S. Department of Defense Architecture Framework was 

selected to achieve this goal given its orientation towards technical systems in contrast to the 

majority of architecture frameworks focused on business enterprises.  Although developed by 

military planners in the 1990’s to support the acquisition of interoperable information systems, 

the Department of Defense Architecture Framework can be used to connect operational concepts 

and capabilities to the technical architecture of any system.  While the views of the Department 

of Defense Architecture Framework are well-defined, little guidance is provided on how the 

views are to be constructed.  Vitech Corporation’s software program CORE,
®
 a systems 

engineering modeling tool with the ability rapidly to produce architecture views from a common 

data repository, was employed to complete Department of Defense Architecture Frameworks for 

the Hubble Space Telescope.   

Upon characterizing Hubble within this common structure, the value of the Department of 

Defense Architecture Framework for conducting dynamic quantitative analyses of system 

architectures was explored.  A methodology is proposed and tested for evaluating human and 

robotic architectures for on-orbit servicing—the extension of the useful life of spacecraft through 

refueling, upgrading, repair, relocation, et al.  In particular, a multi-year servicing campaign is 

modeled for Hubble including behavioral threads that characterize the Orbiting Observatory, 

servicing architecture, and science customers.  Preliminary results indicate that, when coupled 
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with an executable model, the Department of Defense Architecture Framework can be utilized 

for dynamic quantitative evaluation of space system architectures.  The paper concludes with 

lessons learned from using the Department of Defense Architecture Framework and proposes 

improvements for the application of its static views to model-based systems engineering. 

Introduction 

The goal of this research is to explore the applicability of architecture frameworks to the 

study of emergent properties of satellites.  In the first section, architecture frameworks are 

introduced and illustrated.  Upon selecting the U.S. Department of Defense Architecture 

Framework (DoDAF) for describing space systems, the paper identifies desirable attributes of 

architecture framework development tools and surveys industry-leading software applications.  

A systems engineering modeling language called CORE is then applied to the construction of a 

high-level DoDAF representation of the Hubble Space Telescope.  Next, the value of the DoDAF 

and CORE software for conducting serviceability assessments is explored through the 

development of a discrete event simulation of Hubble servicing missions.  Lessons learned from 

the Hubble DoDAF and executable model are offered for improving the DoDAF as are 

prescriptive considerations for users and developers of architecture frameworks.  

Overview of Architecture Frameworks 

Architecture frameworks are tools for managing complexity by establishing standards for the 

description of architectures.  These standards define the system to be characterized as well as 

how the system is to be constructed and operated.  Architecture frameworks serve as a 

communication tool by presenting a common set of information with multiple views (Figure 1).  

Each view reflects the perspective of a unique stakeholder (e.g., customer, designer, user).  Maier 

and Rechtin (2002) identify five goals of architecture frameworks: (1) institutionalize best 

practices for architectural description, (2) ensure system sponsors receive information in the 

format they desire, (3) facilitate comparative evaluation of architectures, (4) improve the 

productivity of development teams, and (5) improve interoperability of information systems by 

Figure 1. Architecture Framework “Unwrapped” (U.K. Ministry of Defence 2005) 
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requiring that critical interfaces are described.  The third goal (i.e., comparative evaluation of 

architectures) motivates the application of architecture frameworks to this research. 

Several architecture frameworks have been developed for enterprises, systems, and software 

since the late 1980’s.  This section provides a brief overview of three enterprise architectures 

critical in the evolution of these tools: the Zachman Framework, The Open Group Architecture 

Framework (TOGAF), and Federal Enterprise Architecture Framework (FEAF).  Two 

architecture frameworks for communicating system design concepts—the DoDAF and U.K. 

Ministry of Defence Architecture Framework (MoDAF)—are then evaluated for application to 

space systems.  Major architecture frameworks excluded in this overview include the Computer 

Integrated Manufacturing Open Systems Architecture (CIMOSA), Integrated Architecture 

Framework (IAF), Architectural Descriptions of Software Intensive Systems (IEEE 1471), and 

International Standards Organization Reference Model for Open Distributed Processing (ISO 

RM-ODP).  A detailed analysis of architecture frameworks is outside the scope of this paper and 

has been conducted elsewhere (Tang et al. 2004).   

The Zachman Framework was released in 1987 by IBM to provide a blueprint for an 

organization’s information infrastructure.  Embraced by the architecture community, the 

Zachman Framework has been incorporated into the four other architecture frameworks 

discussed in this section.  The framework consists of populating a 6x6 matrix—establishing 

relationships of six elements of information systems (i.e. data, function, network, people, time, 

motivation) across six perspectives (i.e., planner, owner, designer, builder, subcontractor, and 

working system).  Unlike the TOGAF, FEAF, DoDAF, and MoDAF, design tradeoffs are not 

captured (Tang et al. 2004).  Since the Zachman Framework was not developed by a professional 

organization, no explicit compliance rules have been published.  No architectural development 

process is documented in publications and most prescriptive guidance is only offered through 

consulting services by the Zachman Institute (Schekkerman 2004). 

The Open Group Architecture Framework is a freely-available industry standard for 

designing, evaluating, and building enterprise architectures.  Although it does include 

documentation on architecture framework development and views for design rationale, TOGAF 

is principally a tool for business organization. 

The Federal Enterprise Architecture Framework was first published in 1999 and 

represents the realization of the 1996 Clinger-Cohen Act, which requires federal agencies to 

develop, maintain, and facilitate integrated systems architectures.  The FEAF structure borrows 

heavily from Zachman (Couretas 2003) and is optimized for enterprise engineering and program 

and capital management. 

In contrast to enterprise architectures which connect organizational goals to business 

activities, system architectures relate operational concepts and capabilities to technical 

architectures.  The Department of Defense Architecture Framework Version 1.0, released in 

2003, defines a common approach for describing and comparing DoD architectures.  The 

DoDAF evolved from the 1996 Command, Control, Communications, Computers, Intelligence, 

Surveillance, and Reconnaissance (C4ISR) Architecture Framework which was developed 

following lessons learned from the Persian Gulf War of 1991.  A host of integration problems 

occurred during Desert Shield and Desert Storm as C4ISR systems were deployed for the first 

time in support of tactical operations for a large-scale conflict.  Older platforms were used for 

missions for which they were not designed (e.g., Defense Support Program satellites for Scud 

detection), new technologies were applied piecemeal, and interoperability problems hindered full 

exploitation of information technology (Spires 2001).  Some of these integration problems were 
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solved during the six month build-up to war (e.g., early warning satellites were used successfully 

for detection of tactical ballistic missiles) while others were not (e.g., paper copies of air tasking 

orders had to be flown from the command center in Riyadh to the decks of aircraft carriers) 

(Zinn 2004).  

In developing the C4ISR/DoD Architecture Framework to aid interoperability and system-of-

systems integration, the Department of Defense selected three views (composed of multiple work 

products) to characterize major systems: Operational, Systems, and Technical.  To first order, the 

Operational View may be thought of as a functional decomposition of the system, specifying 

mission-critical activities and information exchanges.  The Systems View constitutes the form 

decomposition of the system, tracing the needs identified in the Operational View to resources 

and capabilities of the technical architecture.  Taken together, the Systems View and the 

Operational View fully describe the system and how it will operate.  Since the two views are 

built simultaneously, the system architect allocates operational tasks to particular system 

components, whether physical or organizational.  Conversely, knowledge of the system behavior 

can inform operational design.  Finally, the Technical View captures standards and conventions 

for the architecture, prescribing the minimal set of rules governing the arrangement, interaction, 

and interdependence of system components (DoDAF Working Group 2003).   

Although developed for acquisition supervisors concerned with interoperability, the DoDAF 

in practice is primarily used to produce architecture descriptions during the early-stages of 

system development (Maier et al. 2004).  Maier further argues that the DoDAF is not necessarily 

well-suited for this application.  Another criticism of DoDAF is that it does not provide 

analytical techniques or mechanisms for synthesizing the architecture information into “cogent, 

compelling conclusions” (French 2005).  No formal DoDAF development process is prescribed.  

A variety of tools, discussed in the following section, have been developed to aid in the 

construction of DoDAF work products. 

The UK Ministry of Defence Architecture Framework, released in 2005, is an extension 

of the DoDAF with identical Operational, Systems, and Technical views to facilitate information 

exchange for interoperability analyses across US-UK systems.  The MoDAF formalizes two 

perspectives not explicitly addressed in the DoDAF by adding two views: Strategic and 

Acquisitions.  Both are aimed at improving portfolio management across MoD programs.  The 

Strategic Viewpoint translates MoD policies into appropriate measures of effectiveness that can 

be used for capability audit and gap/overlap analysis.  The Acquisitions Viewpoint incorporates 

programmatic details such as dependencies across development efforts (Ministry of Defence 

2005).  Through these new views, the MoDAF intends to capture the perspectives of all MoD 

system stakeholders throughout the acquisitions process.  This is consistent with the principles of 

enterprise architecture but at odds with the primarily technical approach prescribed in the 

DoDAF (Barrett 2004). 

For the application of comparative evaluation of architectures (i.e., serviceability assessments 

of space systems), the DoDAF and MoDAF offer similar qualities.  Both are oriented towards 

technical architecture with Operational and Systems views to enable structured analyses of 

satellite functions, physical attributes, and servicing activities.  However, the DoDAF was 

selected for this research due to a variety factors exogenous to the frameworks themselves: 

industry experience with DoD architecture frameworks over the last decade, availability of 

literature and research on the DoDAF, and the existence of several tools supporting the DoDAF 

development process. 
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Tools Available for Constructing Architecture Frameworks 

While the views of the DoDAF are well-defined, little documentation is provided on how the 

views are to be constructed.  This lack of documentation, coupled with a focus on final view 

outputs in early user training, led to a work product-centric approach to DoDAF development.  

As a result, many early DoDAF work products were pictures (many done in PowerPoint) that 

were neither internally consistent nor complete in capturing relevant data.  In order to analyze the 

behavior of a system, it is essential to capture dependencies and parallelisms among activities, 

processes, and supporting technologies.  However, these abilities are lacking in standard office 

automation programs that are often used to develop DoD architecture frameworks (Troche et al. 

2004).  To fix this problem, DoD has made a significant push towards data-centric architecture 

development with the implementation of the DoD Architecture Repository System (DARS) for 

certified formal methods and modeling languages.   

Ideally, a common process for constructing DoDAF views is followed to maintain 

consistency and enable comparisons across architectures.  Several companies offer enterprise 

Table 1: Tools Supporting DoDAF Development (as of February 2006) 

Product Company Key Features 

Core 

Workstation 

Vitech Corporation • Modeling language with modifiable database schema 

• Executable behavior models with discrete event simulator 

• Automatically export DoDAF views from central data repository 

DoDAFLive! Wizdom Systems • Niche DoDAF project management tool 

• Provides online data repository for all information and models 

EA 

WebModeler 

Agilense • Central repository of data accessed via standard web browser 

• Supports Zachman, TOGAF, FEAF, and DoDAF development 

Elements 

Repository 

Enterprise Elements • Web-based data management tool 

• Integrates DoDAF views from multiple modeling tools 

Metis 

Desktop 

Troux Technologies 

(acquired from 

Computas) 

• "Living Timeline" support for system evolution  

• Operational capabilities as objects 

• Architecture reuse via broad support for DoD reference models 

netViz 

Enterprise 

netViz • Generic enterprise architecture tool with relationship modeling 

• Documents all 27 DoDAF work products 

ProVision 

Modeling 

Suite 

Proforma 

Corporation 

• Only DARS-certified tool (July 2005) 

• Web-based repository for enterprise and system architectures 

• Discrete event simulator coupled with Monte Carlo analysis 

Rhapsody I-Logix • UML/SysML modeling and simulation tool 

• Includes “DoDAF pack” for outputting DoDAF views 

System 

Architect 

Telelogic  

(acquired from 

Popkin Software) 

• First tool to offer a DoDAF extension (industry leader) 

• Integrated with Telelogic DOORS for requirements traceability 

• Supports Zachman, TOGAF, and DoDAF development 

TAU Telelogic • UML/SysML modeling and simulation tool 

• Includes “Enterprise Architect for DoDAF” extension 

• Integrated with Telelogic DOORS for requirements traceability 
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architecture tools with templates to construct DoDAF work products.  In general, each tool offers 

relatively complete DoDAF support with certain tools offering unique capabilities (Table 1). 

One of the shortcomings of architecture frameworks is that they rely on static pictures, 

diagrams, and textual descriptions—not necessarily adequate for conveying the logical, 

behavioral, and performance properties of the architecture (Levis and Wagenhals 2000).  To 

capture the dynamic properties of a system, an executable model is necessary to carry out 

simulations (Wagenhals et al. 2000).  Therefore, it is important to select a DoDAF development 

tool that can input the information contained in the static views to an executable model.   

In selecting a tool for constructing architecture frameworks for space systems, five criteria 

were deemed essential: (1) a hierarchical structure to enable high-level representations, (2) 

support for exporting operational and systems views, (3) modeling and simulation capabilities 

for dynamic performance analyses, (4) a learning curve consistent with an eight-month research 

project, and (5) affordability.  Vitech Corporation’s CORE
®

 Workstation meets these criteria and 

was used for this research.   

CORE is a systems engineering tool that couples requirements management with functional 

analysis and simulation.  The tool accomplishes this by representing these domains with a 

common modeling language.  Leveraging a central system design repository for rapid population 

of DoDAF views, CORE traces originating requirements to functions in the behavior domain.  

Behaviors are represented with Enhanced Functional Flow Block Diagrams (EFFBD) and then 

allocated to physical components in the architecture domain.  One of the most interesting 

elements of CORE is a discrete event simulator that allows an EFFBD to be executed.  Ascent 

Logic Corporation’s RDD-100 tool offered a similar suite of capabilities but has been 

discontinued. 

Sample DoDAF: Hubble Space Telescope 

Given the large quantity of open-source data available (National Research Council 2005, 

Nelson et al. 2002) and its status as the only uninhabited space platform that is currently 

serviced, Hubble was a natural choice for exploring the value of the DoDAF and CORE.  In 

scoping the problem, 

populating all 27 DoDAF 

work products in full detail 

was found to be unnecessary 

and unrealistic.  Completion 

of a DoDAF for a small 

uninhabited air vehicle with 

only 150 components took 

two person-years (Cooper 

and Ewoldt 2005)—Hubble 

has 400,000 parts.  

Therefore, each DoDAF 

work product was studied 

and seven were found to be 

applicable to the problem of 

conducting serviceability 

assessments: (1) Overview 

and Summary Information, Figure 2. High-Level Operational Concept Graphic (OV-1) 
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Figure 3. Operational Node Connectivity (OV-2) 

(2) High-Level Operational Concept 

Graphic, (3) Operational Node 

Connectivity Description, (4) 

Operational Activity Model, (5) 

Systems Interface Description, (6) 

Systems Evolution Description, and (7) 

Systems Technology Forecast.  In 

constructing high-level views, a data-

centric build sequence was followed 

whereby several DoDAF relationship 

and attribute classes for subsequent 

work products were automatically 

generated from core entities constructed 

in earlier work products. 

Overview and Summary 

Information (AV-1) provides an 

executive-level summary of Hubble 

including scope, assumptions, constraints, and limitations of the architecture description.  High-

level features of the Orbiting Observatory are described (e.g., 2.4 

meter primary mirror, 11,110 kilogram weight).   

 High Level Operational Concept Graphic (OV-1) depicts 

Hubble’s interaction with its environment as well as with 

external systems (Figure 2).  For the purposes of this research, 

OV-1 was deemed useful for rapidly communicating the 

missions of various space systems and their operational 

context—both of which might elicit constraints on servicing 

operations (e.g., imaging payload sensitivity to thruster plume 

impingement). 

Operational Node Connectivity Description (OV-2) tracks 

the need to exchange information across nodes.  This includes 

internal operational nodes as well as external nodes.  OV-2 does 

not depict the connectivity between nodes.  For example, Figure 

3 shows that the Orbiting Observatory depends on the Space 

Telescope Operations Control Center (STOCC) for command 

and control, which in turn needs to downlink data to STOCC.  

The Tracking Data Relay Satellite System (TDRSS)—the 

communications pipeline between these two operational nodes—

is not depicted.  Understanding communication needlines for 

satellites is necessary for eliciting constraints on servicing 

operations (e.g., aversion of fixed satellite service providers to 

transponder downtime). 

Operational Activity Model (OV-5) describes the 

operations that are normally conducted in the course of achieving 

a mission.  It specifies activities and inputs and outputs between 

activities.  OV-5 delineates lines of responsibility when coupled 

with OV-2 and is a necessary foundation for depicting activity 

 

Figure 4. Operational 

Activity Model (OV-5) 
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sequencing and timing.  Figure 4 is a high-level EFFBD representation of OV-5 for a typical 

Hubble science mission.  Similar diagrams were constructed for other Hubble activities including 

monitoring spacecraft health, attitude determination and control, and Space Shuttle servicing 

operations.  In the next section, two Hubble servicing methods are simulated using an executable 

EEFBD—enabling comparison of two architectures in the behavioral domain. 

Systems Interface 

Description (SV-1) identifies 

the systems nodes that support 

operational nodes.  Detailed 

SV-1 work products may be 

used for specifying 

requirements and for 

interoperability assessments.  

For the Hubble architecture, 

SV-1 was used to show the 

physical decomposition of 42 

components, including the 

TDRSS communications 

pipeline excluded in OV-2.  Five levels are present in the constructed hierarchy.  Figure 5 

displays a sample of this decomposition—level IV-V components of the Telescope Instrument 

Assembly. 

Systems Evolution Description (SV-8) captures how the system, or the architecture in 

which the system is embedded, will evolve over time.  Applied to Hubble, SV-8 is used to record 

completed and planned maintenance and upgrades of the Orbiting Observatory during Space 

Shuttle servicing missions.  Since its launch in 1990, Hubble has been serviced four times, 

enabling NASA to equip Hubble with state-of-the-art science instruments every few years and 

replace limited-life components. 

Systems Technology Forecast (SV-9) provides a summary of expected improvements in 

technology that affect the capabilities of the architecture or its systems.  For Hubble, SV-9 

principally involves a survey of emerging instruments.  If there is a fifth servicing mission, the 

Wide Field Camera 3 and Cosmic Origins Spectrograph will be installed to allow Hubble to 

continue its high level of scientific return (National Research Council 2005). 

Hubble Servicing Simulation 

Upon developing static DoDAF work products, the value of architecture frameworks for 

conducting serviceability assessments was explored through the development of an executable 

model that captures the dynamic properties of Hubble at a level of detail consistent with 

conceptual design.  In particular, the performance of two servicing architectures was compared 

using the discrete event simulator packaged with CORE.  Figure 6 is a top-level view of the 

multi-layered behavioral model developed of Hubble performance in the context of a multi-year 

servicing campaign.  The behavioral model is depicted as an EFFBD and shows the interactions 

of three key actors in the simulation: the Orbiting Observatory, servicing architecture, and 

science customers.  System behaviors are represented using sequential, parallel, repetitive, and 

decision logic.  Five parallel threads are modeled: (1) Hubble Component Failure and 

Degradation, (2) Hubble Health, (3) Hubble Imaging, (4) Shuttle/Robotic Servicing, (5) Science 

Dissemination. 

 

Figure 5. Systems Interface (SV-1) of Instrument Assembly 
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Hubble Component Failure and Degradation Thread models the wear-out of various 

critical Hubble components (i.e., batteries, avionics, gyroscopes, reactions wheels, and fine-

guidance sensors).  Hubble has a battery capacity of 540 ampere-hours (Ah) with energy storage 

requirements of 160 Ah to support science operations and 40 Ah to maintain thermal stability of 

the optical assembly.  Gradual loss of charge capacity may be projected and is modeled 
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Figure 6. Integrated Hubble Servicing Model 
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Figure 7. Assumed Reliability of Critical Subsystems over Time (no servicing) 

Table 2: Key Assumptions in Servicing Simulation 

Component Wear-Out    Servicing Missions     
          

Probabilistic Failures Monthly Rate  Probabilistic Failures Space Shuttle Robotic Vehicle 

gyroscopes 0.036  launch and rendezvous 0.02 0.10 

reaction wheels 0.022  dock (catastrophic) 0.01 0.05 

fine-guidance sensors 0.025  dock (non-catastrophic) 0.01 0.05 

avionics system 0.006  access 0.05 0.15 

     service 0.02 0.10 

Deterministic Degradation Monthly Rate       

solar panels 0  mission frequency 36 months 36 months 

battery capacity 5 Ah  services avionics? yes yes 

 
deterministically at 5 Ah each month.  The state of the avionics system is modeled as a binary 

whereby it is either functioning or broken.  If broken, no science operations are conducted and 

Hubble waits for the next successful servicing mission to restore the avionics system.   

Gyroscopes, reaction wheels, and fine-guidance sensors failure is both probabilistic and 

deterministic.  For simplicity, these three components are assumed to fail probabilistically (Table 

2) with half-lives mapped to most-likely failure projections (NRC 2005).  Three gyroscopes are 

required to sense drift rates during normal pointing and slewing operations.  At launch and 

following successful servicing operations, six healthy gyroscopes are on the telescope—offering 

“three for six” redundancy.  Fine-guidance sensors, used for precision pointing of the 

observatory, are modeled similarly and have “two for three” redundancy.  Reaction wheels 
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provide three-axis control of the telescope and incorporate “three for four” redundancy. 

Hubble Health Thread monitors the overall state of Hubble.  Three states are possible: fully 

functional for conducting science operations, survival mode during which no science is 

conducted, and dead.  To be fully functional, Hubble must possess a working avionics system 

and at least 160 Ah of battery capacity, three healthy gyroscopes, two healthy fine-guidance 

sensors, and three healthy reaction wheels.  Figure 7 plots the probability of each of these 

conditions being met (in isolation) as a function of time (if no servicing missions were carried 

out).  Once one of these conditions is not met (e.g., four of the six gyroscopes fail), Hubble 

enters into a survival mode, pausing science operations until the next successful servicing or the 

occurrence of a catastrophic failure.  Catastrophic failures may be caused by docking collisions 

during attempted servicing operations or degradation of battery capacity below 40 Ah (minimum 

energy required to prevent irreversible structural deformation of the optical assembly). 

Hubble Imaging Thread tracks science operations (Figure 4).  The imaging thread is 

triggered by the sequence of images sent by a fully functioning Hubble.  Science operations are 

conducted in one-month increments.  In the simulation, Hubble’s target science goal is 120 

months of successful imaging operations.  In its first ten years of operation, the actual Hubble 

system took approximately 350,000 exposures of 14,000 astronomical targets (Nelson et. al. 

2002).   

Shuttle/Robotic Servicing Thread tracks the implementation of the servicing architecture.  

Two servicing threads were created—one representative of the Space Shuttle and the other of a 

robotic servicing vehicle.  Four servicing activities are included in each model: (1) Launch and 

Rendezvous, (2) Dock, (3) Access, and (4) Service.  Launch is defined as the movement of a 

servicing vehicle from a starting position (i.e., launch pad) to a position where relative 

navigation is possible with laser ranging, radar, and cameras (< 500 meters).  Rendezvous 

positions the servicing vehicle for docking (< 3 meters).  Docking is defined as the mating of the 

servicing vehicle to Hubble.  In the case of a robotic servicing vehicle, autonomous execution is 

required for proximity operations because of a two-second communications delay in routing 

signals through TDRSS (National Research Council 2005).  Access constitutes all activities 

required to deploy the stowed tools, upgrades, and replacement parts of the servicing vehicle to 

the Hubble components which require servicing.  Finally, Service entails operation of the 

servicing vehicle to improve Hubble and return it to full operation.  All four servicing activities 

must be completed for servicing to be successful.  Differences between Space Shuttle and robotic 

vehicle servicing activity success probabilities are outlined in Table 2.  If servicing is successful, 

all subsystems are replenished to beginning-of-life levels, restoring Hubble to a “like new” 

condition. 

Science Dissemination Thread tracks the transfer of images to the Space Telescope Science 

Institute (STScI) and terminates the simulation upon STScI receipt of 120 months of science 

data.  The simulation terminates earlier if a catastrophic failure occurs. 

Upon developing the multi-layered Integrated Servicing Model, the dynamic performance 

and functional behavior of Hubble was analyzed using CORE’s discrete event simulator.  The 

simulator outputs a timeline of functional activation, execution, and duration.  Wait states, 

resource inventory history, and queuing triggers (items waiting to be processed by functions) are 

all depicted.  Colored duration bars are used to represent different types of events.  Grey 

specifies the amount of resources available, teal indicates the execution of a function, yellow 

indicates that a function is enabled but waiting for a trigger, and magenta indicates that a 

function is enabled but waiting for resources.   
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Figure 8 shows a sample run of the Integrated Hubble Servicing Model for a Space Shuttle 

servicing campaign.  Rows depict resource levels and function states with a horizontal axis of 

time (measured in months).  It can be observed that in the 20
th

 month the reaction wheel resource 

had fallen from four to two (below the required level of three).  This resource change initiated a 

state change in Hubble from fully functional to survival mode, pausing science operations until 

successful Shuttle servicing during the 37
th

 month.  The “ImageMonths” resource continued to 

count down successfully from 120 until the 85
th

 month when the fine-guidance sensor resource 

fell to one (below the required level of two), followed by a failure of the avionics system a 

month later.  Science operations were put on hold again until the third servicing mission 

succeeded in replenishing all of the resources.  In total, five servicing missions were attempted, 

and all were successful.  Once 120 months worth of science had been collected and 

disseminated, the simulation terminated during Hubble’s 17
th

 year of operation. 

 

  

Figure 9 shows a sample run of the Integrated Hubble Servicing Model with a robotic 

servicing vehicle.  In this particular run, an initial two years of science operations were followed 

by nearly four years of survival mode due two events: an early failure of the avionics system and 

a failure of the Access servicing activity during the first attempted servicing mission.  The 

second attempted servicing mission was successful in restoring, among other things, energy 

 

Figure 8. Hubble Servicing Simulation – Space Shuttle 

Months 
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storage capacity before battery degradation caused a catastrophic loss.
1
  Of the five robotic 

servicing missions that were attempted, three were successful.  The simulation terminated during 

the 16
th

 year after 120 months of science data had been returned. 

 
One metric for comparing the relative performance of the two servicing architectures is 

availability, the percentage of time in the simulation that Hubble was able to perform its science 

mission.  (If a catastrophic failure occurs during the first 120 months of operation, 120 months is 

used in the denominator of the availability calculation.)  Given that each run of the discrete event 

simulator produces a unique outcome, a Monte Carlo analysis was performed to calculate 

availability across multiple Space Shuttle and robotic vehicle servicing campaigns.  Table 3 

shows the results of this preliminary analysis.  The higher probability of success assumed for 

Shuttle in all four servicing activities is evident with the 17% average availability advantage. 

Although these preliminary results imply the superiority of a Shuttle servicing architecture, it 

is important to keep in mind the impact of assumptions, the simplicity of the model, and the 

limitations of the availability metric.  Aggregating the assumed probabilities of servicing success 

across the four servicing activities, the Space Shuttle only fails one out of ten missions while the 

robotic vehicle fails nearly four out of ten missions.  These assumptions were not subjected to 

                                                 
1
 With servicing scheduled once every three years, Hubble will not survive if there are two consecutive servicing 

failures.  After six year without servicing, the battery capacity will have degraded below the necessary level to 

maintain the optical assembly. 

 

Figure 9. Hubble Servicing Simulation – Robotic Vehicle 

Months 
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sensitivity analysis and also may need to be modified as teleoperated and autonomously 

controlled vehicle technology improves.  Regarding simplicity of the model, the executable 

portion only describes the functional aspects of Hubble’s operation and servicing as the physical 

architecture of Hubble does not inform the success or failure of servicing.  With another layer of 

detail, the linkages in CORE between the physical architecture and functional behavior domains 

can be leveraged to model the impact of physical design choices on serviceability.  The model 

also does not allow on-demand servicing to supplement the shortcomings of the scheduled 

servicing campaign (e.g., four-year pause in science operations observed in Figure 9).  Most 

importantly, the availability metric captures only one of many attributes of a servicing 

architecture.  The added utility of instrument upgrades, servicing cost trades, and the risk to 

astronaut life all need to be incorporated into the value proposition. 

Throughout the process of constructing the static work products and building an executable 

model, the DoDAF allowed the authors quickly to understand the structure and operation of the 

larger Hubble system (i.e., Orbiting Observatory, Space Telescope Operations Control Center, 

and Space Telescope Science Institute).  On its own, the model of Hubble does not provide 

insights into whether Hubble is more or less physically amenable to servicing than other space 

systems.  However, other space systems can rapidly be incorporated into the same overall 

servicing architecture to allow for comparison.  Once these models for candidate target satellites 

are in place, judgments will become possible about the relative amenability of spacecraft to on-

orbit servicing. 

Conclusion 

Architecture frameworks bring structure to describing complex systems.  The DoDAF views 

alone are insufficient for characterizing the dynamic behavior inherent in a satellite servicing 

architecture.  However, when such views are constructed using a system engineering modeling 

tool such as CORE, both the DoDAF work products and an executable behavior model are 

created simultaneously.  The executable model can then be used for quantitative evaluation of 

the dynamic system behavior. 

  Over the course of this research, lessons emerged regarding the DoDAF and its 

development process.  Emphasis is placed on final architecture products rather than process.  

Work products are frequently too complex to present to senior leadership without modification.  

Most fundamentally, weaknesses in the DoDAF have been identified as it undergoes transition 

from a static, descriptive tool to a tool that attempts to characterize dynamic system properties.   

Little guidance is provided on how to translate requirements into the design of the work 

products.  As promulgated, the DoDAF does not have a companion architecture development 

process to take advantage of its interconnected views.  As a result, many developers of DoDAF 

have treated it as a contract deliverable as opposed to a central communications tool in the design 

process.  While it is not the business of DoD to stipulate how contractors conduct system design, 

Table 3: Monte Carlo Comparison of Two Servicing Architectures 

 
Number of 
Simulations 

Average # of Successful 
Servicing Missions 

Average 
Availability 

Space Shuttle 25 4.12 72.8% 

Robotic Vehicle 25 2.24 56.0% 
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it is in the interest of DoD to require architectures that are internally consistent and support 

dynamic performance analysis.  Architecture development software with DoDAF extensions and 

integrated modeling and simulation capabilities is available to fill this void.  In practice, 

however, 70% of DoDAF developers are not building executable architectures (Office of the 

Assistant Secretary of Defense for Networks and Information Integration 2005). 

Finally, the existence of a clear purpose for building the high-level Hubble architecture 

framework (i.e., serviceability assessment) was a critical element in the construction of views 

that were both compliant with the static DoDAF taxonomy and useful for understanding dynamic 

system properties.  For the value of the DoDAF to be fully realized, its construction must be 

mission-driven, focused on providing information that supports decision-making processes. 
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