
MIT Open Access Articles

Intersection cuts for nonlinear integer programming:
convexification techniques for structured sets

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Modaresi, Sina, Mustafa R. Kılınç, and Juan Pablo Vielma. “Intersection Cuts for
Nonlinear Integer Programming: Convexification Techniques for Structured Sets.” Math.
Program. 155, no. 1–2 (February 17, 2015): 575–611.

As Published: http://dx.doi.org/10.1007/s10107-015-0866-5

Publisher: Springer Berlin Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/103100

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/103100
http://creativecommons.org/licenses/by-nc-sa/4.0/

Noname manuscript No.
(will be inserted by the editor)

Intersection cuts for nonlinear integer programming: convexification
techniques for structured sets

Sina Modaresi · Mustafa R. Kılınç · Juan Pablo Vielma

the date of receipt and acceptance should be inserted later

Abstract We study the generalization of split, k-branch split, and intersection cuts from Mixed Integer
Linear Programming to the realm of Mixed Integer Nonlinear Programming. Constructing such cuts requires
calculating the convex hull of the difference between a convex set and an open set with a simple geometric
structure. We introduce two techniques to give precise characterizations of such convex hulls and use them to
construct split, k-branch split, and intersection cuts for several classes of non-polyhedral sets. In particular,
we give simple formulas for split cuts for essentially all convex sets described by a single conic quadratic
inequality. We also give simple formulas for k-branch split cuts and some general intersection cuts for a
wide variety of convex quadratic sets.

1 Introduction

An important area of Mixed Integer Linear Programming (MILP) is the characterization of the convex hull
of specially structured non-convex polyhedral sets to develop strong valid inequalities or cutting planes
such as split and intersection cuts [24, 25, 27, 34]. This approach has led to highly effective branch-and-cut
algorithms [1, 17, 16, 48, 54], so there has recently been significant interest in extending the associated
theoretical and computational results to the realm of Mixed Integer Nonlinear Programming (MINLP)
[6, 7, 10, 12, 13, 19, 22, 28, 29, 30, 36, 50, 59, 72]. Unfortunately, this extension requires the study of the
convex hull of a non-convex and non-polyhedral set, which has proven to be significantly harder than the
polyhedral case. Most of the known results in this area are limited to very specific sets [47, 71, 73] or to
approximations of semi-algebraic sets through Semidefinite Programming (SDP) [38, 52, 62, 63, 64, 65, 66].
While some precise SDP representations of the convex hulls of semi-algebraic sets exist [43, 45, 46, 70],
these require the use of auxiliary variables. Such higher dimensional, extended, or lifted representations are
extremely powerful. However, there are theoretical and computational reasons to want representations in
the original space and/or in the same class as the original set (e.g. representations that do not jump from
quadratic basic semi-algebraic to SDP). We refer to characterizations that satisfy both these requirements

S. Modaresi
Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261
E-mail: sim23@pitt.edu

M. R. Kılınç
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
E-mail: mkilinc@andrew.cmu.edu

J. P. Vielma
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139
E-mail: jvielma@mit.edu

2 Modaresi et al.

as projected and class preserving. Projected and class preserving are in general incompatible (e.g. the
convex hull of the basic semi-algebraic set

{
x ∈ R2 : (x2

1 − x2)x1 ≥ 0, x2 ≥ 0
}

has no projected basic semi-
algebraic representation, but has a lifted basic semi-algebraic representation [18]). Furthermore, even giving
an algebraic characterization of the boundary of the convex hull of a variety [67, 68] or giving a projected
SDP representation of the convex hull of certain varieties and quadratic semi-algebraic sets [69, 76, 77]
requires very complex techniques from algebraic geometry. All such issues make extending MILP cutting
planes to the MINLP setting extremely challenging. To alleviate such challenges, we concentrate on the
extension of split cuts, k-branch split cuts, and other intersection cuts to the MINLP setting [8, 26, 31, 41,
42, 53].

Split, k-branch split, and intersection cuts for MILP can all be obtained by taking the convex hull of the
difference between a convex set and a set with a simple geometric structure. This characterization allows
for a straightforward extension of the cuts to the MINLP setting. However, this conceptual extension does
not provide a practical construction procedure for the cuts. For this reason, we follow the approach of the
simple, but extremely powerful Mixed Integer Rounding (MIR) cut [56, 60, 61, 75]. The MIR procedure
can be used to generate every split cut for a MILP and, together with the closely related Gomory Mixed
Integer (GMI) cut procedure [41, 42], yields the most effective cutting plane approach for general MILP
[17, 16]. In particular, one version of the MIR procedure shows that every split cut can be constructed
through a simple two step procedure. The first step is the construction of a canonical cut known as the
simple or basic MIR. This cut is obtained by taking the convex hull of the difference between two simple
convex sets in R2, both of which are described by two linear inequalities. The second step simply uses
linear transformations to obtain all split cuts from the basic MIR. In this paper we show that a similar
approach can be used to construct a wide range of intersection cuts. More specifically, we show how two very
simple techniques can be used to construct projected class preserving characterizations of the convex hull
of difference between certain canonical sets. The techniques we consider are only tailored to the geometric
structure of these canonical sets and do not require the sets to have any additional algebraic properties
(e.g. being quadratic, basic semi-algebraic, etc.). Thanks to this, the resulting characterizations are quite
general, but give simple closed form expressions. While the canonical sets are somewhat specific, we can
also use affine transformations to obtain more general cuts. In particular, these techniques can be used to
construct split cuts for essentially all convex sets described by a single conic quadratic inequality, and to
extend k-branch split and general intersection cuts to a wide variety of quadratic sets of interest to trust
region and lattice problems. In both cases, the only algebraic property of the quadratic sets needed for the
construction is the symmetry of the Euclidean norm. This suggests that the techniques could be useful to
construct cuts for additional classes of sets by only exploiting similar basic properties.

The rest of this paper is organized as follows. We begin with Section 2 where we introduce some
notation and review some known results. Section 3 then introduces an interpolation technique that can
be used to construct split and k-branch split cuts for many classes of sets. Then, in Section 4 we use
the interpolation technique to characterize intersection cuts for conic quadratic sets. Finally, Section 5
introduces an aggregation technique that can be used to construct a wide array of general intersection cuts.
In both Sections 3 and 5, we first present the basic principles behind the techniques in a simple, but abstract
setting, and then utilize them to construct more specific cuts to illustrate their power and limitations.

2 Notation, known results and other preliminaries

We use the following notation. Let ei ∈ Rn be the i-th unit vector, 0n ∈ Rn be the zero vector, and I ∈ Rn×n
be the identity matrix where n is an appropriate dimension that we omit if evident from the context. We also

let ‖x‖p :=
(∑n

i=1 |xi|
p)1/p denote the p-norm of a given vector x ∈ Rn and for a vector v ∈ Rn, we let the

projection onto its span be Pv := vvT

‖v‖22
and onto its orthogonal complement be P⊥v := I − vvT

‖v‖22
. We also let

{πi}ki=1 ⊆ Rn \ {0n} be an arbitrary set of vectors, and not necessarily a sequence of vectors. For a set S ⊆
Rn, we let int (S) be its interior, bd (S) be its boundary, conv (S) be its convex hull, conv (S) be the closure
of its convex hull, aff (S) be its affine hull, and lin (S) := {d ∈ Rn : x+ λd ∈ S for all x ∈ S and λ ∈ R}

Intersection Cuts for Nonlinear Integer Programming 3

be its lineality space. For a function G : Rn → R we let epi (G) :=
{

(x, t) ∈ Rn+1 : G(x) ≤ t
}

be its

epigraph, gr (G) :=
{

(x, t) ∈ Rn+1 : G(x) = t
}

be its graph, and hyp (G) :=
{

(x, t) ∈ Rn+1 : G(x) ≥ t
}

be its hypograph. In addition, we let the second-order cone (a.k.a. Lorentz cone) be the epigraph of the
Euclidean norm defined as

{
(x, t) ∈ Rn+1 : ‖x‖2 ≤ t

}
. Finally, we let [n] := {1, . . . , n}.

Definition 1 (Intersection, Split, k-branch Split, and t-inclusive Split Cuts) Let B ⊆ Rn be a
closed convex set that we refer to as the base set, F ⊆ Rn be a closed set that we refer to as the forbidden
set, and g : Rn → R be an arbitrary function. We say inequality g(x) ≤ 0 is an intersection cut for B and
F if conv (B \ int (F)) ⊆ {x ∈ Rn : g(x) ≤ 0} and g is convex.

We let a split be a set of the form
{
x ∈ Rn : πTx ∈ [π0, π1]

}
for some π ∈ Rn \ {0n} and π0, π1 ∈ R

such that π0 < π1. If F is a split, we say that the associated intersection cut is a split cut. Besides, if F is
a split with π = ei for some i ∈ [n], we refer to F as an elementary split and to the the associated split cut
as an elementary split cut.

We let a k-branch split be a set of the form
⋃k
i=1

{
x ∈ Rn : πi0 ≤ πTi x ≤ πi1

}
for some {πi}ki=1 ⊆

Rn \ {0n}, πi0, πi1 ∈ R such that πi0 < πi1 for all i ∈ [k]. If F is a k-branch split, we say that the associated
intersection cut is a k-branch split cut.

When considering epigraphical sets of the form B =
{

(x, t) ∈ Rn+1 : G (x) ≤ t
}

for some closed convex
function G (x), we often assume that F is a cylinder whose axis lies along t (i.e., F is of the form S × R
for some S ⊆ Rn). For instance, if F is a split, we have F =

{
(x, t) ∈ Rn+1 : πTx ∈ [π0, π1]

}
. However,

in some cases, we consider a split that includes t and we refer to such a split as a t-inclusive split. More
specifically, we let a t-inclusive split be a set of the form

{
(x, t) ∈ Rn+1 : πTx+ π̂t ∈ [π0, π1]

}
for some

(π, π̂) ∈ Rn+1 such that π̂ 6= 01, and π0, π1 ∈ R such that π0 < π1. If F is a t-inclusive split, we say that
the associated intersection cut is a t-inclusive split cut.

We mostly restrict to the cases in which conv (B \ int (F)) is closed, so for notational convenience, we
let B := conv (B \ int (F)) when F is evident from the context.

We note that the term intersection cut was introduced by Balas [8] for the case in which B is a translated
simplicial cone, F is the euclidean ball or a cylinder of a lower dimensional euclidean ball, and the unique
vertex of B is in int (F). In this setting, we have that conv (B \ int (F)) is closed and can be described
by adding a single linear inequality to B. Furthermore, this single linear inequality has a simple formula
dependent on the intersections of the extreme rays of B with F . While we do not always have such
intersection formulas for other classes of sets, we continue to use the term intersection cut in the more general
setting and avoid any additional qualifiers for simplicity. In particular, we do not use the term generalized
intersection cut as it has already been used for the case of polyhedral B and F and in conjunction with an
improved cut generation procedure for MILP [9]. The term split cut was introduced by Cook, Kannan and
Schrijver [26], and their original definition directly generalizes to non-polyhedral sets as in Definition 1.
The term k-branch split cut was introduced by Li and Richard [53]; 2-branch split cuts are also called cross
cuts in Dash, Dey and Günlük [31]. These definitions also directly generalize to non-polyhedral sets as in
Definition 1.

The interest of intersection cuts for MILP and MINLP arises from the fact that if int(F)∩(Zp × Rq) = ∅,
an intersection cut for B and F is valid for conv (B ∩ (Zp × Rq)). Hence, intersection cuts can be used to
strengthen the continuous relaxation of MILP and MINLP problems.

Intersection cuts are particularly attractive in the MILP setting, since they can be quite strong and can
easily be constructed. They were extensively studied when they were first proposed in the 1970s [8, 41, 42]
and have recently received renewed interest [25, 34]. Part of the relative simplicity and effectiveness of
intersection cuts for MILP stems from two basic facts. The first one is that in the MILP setting, B is a
polyhedron (i.e., the continuous relaxation of a MILP is an LP). The second one is the fact that every
convex set F such that int(F)∩Zn = ∅ (usually denoted a lattice free convex set) and that is maximal with
respect to inclusion for this property is also a polyhedron [55]. Restricting both B and F to be (convex)
polyhedra give intersection cuts for MILP several useful properties. For instance, if B and F are polyhedra,

1 We allow π = 0n to consider disjunctions that only affect t.

4 Modaresi et al.

then conv (B \ int (F)) is a polyhedron [34]. Hence, in the MILP setting, we can restrict our attention to
linear intersection cuts. In particular, if F is a split and B is a polyhedron, then all linear intersection
cuts for B and F can be constructed from simplicial relaxations of B and hence have simple formulas
[2, 32, 74]. As discussed in Section 1, GMI cuts [41, 42] and MIR cuts [56, 60, 61, 75] are two versions of
these formulas. For more information on the ongoing efforts to duplicate this effectiveness for other lattice
free polyhedra, we refer the reader to [25, 34]. In this context, we note that conv (B \ int (F)) can fail to
be closed even if B and F are polyhedra and F is not a split (e.g. consider B =

{
x ∈ R2 : x2 ≥ 0

}
and

F =
{
x ∈ R2 : x2 ≤ 1, x1 + x2 ≤ 1

}
). However, conv (B \ int (F)) is closed in the polyhedral case if F is

convex and full-dimensional and the recession cone of F is a linear subspace [4].

In the MINLP setting, there has been significant work on the computational use of linear split cuts
[19, 22, 72, 36, 50]. From the theoretical side, we know that if F is a split, then conv (B \ int (F)) is
closed even if B is not polyhedral [30]. With respect to formulas for intersection cuts, there has been some
progress in the description of split cuts for quadratic sets in [6, 7, 30, 10]. Dadush et al. [30] show that, if
B is an ellipsoid and F is a split, then conv (B \ int (F)) can be described by intersecting B with either a
linear half space, an affine transformation of the second-order cone, or an ellipsoidal cylinder. In addition,
they give simple closed form expressions for all these linear and nonlinear split cuts. Independently, [10]
studies split cuts for more general quadratic sets, but only for splits in which {x ∈ B : πTx = π0}
and {x ∈ B : πTx = π1} are bounded. They give a procedure to find the associated split cuts, but do
not give closed form expressions for them. Finally, [6, 7] give a simple formula for an elementary split
cut for the standard three dimensional second-order cone. While [10] develops a procedure to construct
split cuts through a detailed algebraic analysis of quadratic constraints developed in [11], [6, 7, 30] give
formulas for split cuts through simple geometric arguments. As we have recently shown at the MIP 2012
Workshop, these geometric techniques can be extended to additional quadratic and basic semi-algebraic
sets [49]. In this paper we show that the principles behind these geometric arguments can be abstracted
from the semi-algebraic setting to develop split and k-branch split cut formulas for a wider class of specially
structured convex sets. This abstraction greatly simplifies the proofs and can be used to construct split
cuts for essentially all convex sets described by a single conic quadratic inequality through simple linear
algebra arguments. In addition to studying split and k-branch split cuts, we show how a commonly used
aggregation technique can be used to develop formulas for general nonlinear intersection cuts for the case
in which B and F are both non-polyhedral, but share a common structure. While a non-polyhedral F is
not necessary in the MINLP settings (it still should be sufficient to consider maximal lattice free convex
sets, which are polyhedral), they could still provide an advantage and are important in other settings such
as trust region problems [12, 13, 65] and lattice problems [20, 21, 57]. We finally note that similar results
for the quadratic case have recently been independently developed in [3]. We discuss the relation between
the results in [3] and our work at the end of Section 4.2.

To describe our approach, we use the following additional definition.

Definition 2 Let B ⊆ Rn be a closed convex set, F ⊆ Rn be a closed set, and g : Rn → R be an arbitrary
function. We say inequality g(x) ≤ 0 is a:

– valid cut if B ⊆ {x ∈ Rn : g(x) ≤ 0},
– binding valid cut if it is valid and {x ∈ B \ int (F) : g(x) = 0} 6= ∅, and
– sufficient cut, if {x ∈ B : g(x) ≤ 0} ⊆ B.

Binding valid cuts correspond to valid cuts that cannot be improved by translations, and sufficient cuts
are those that are violated by any point of B outside B. We can show that a convex cut that is sufficient and
valid is enough to describe B together with the original constraints defining B. Our approach to generating
such cuts will be to construct cuts that are binding and valid by design, and that have simple structures
from which sufficiency can easily be proven.

Intersection Cuts for Nonlinear Integer Programming 5

3 Intersection cuts through interpolation

In this section we consider the case in which the base set is either the epigraph, lower level set, or a section
of the epigraph of a convex function and the forbidden set corresponds to a split, t-inclusive split, or a
k-branch split. Our cut construction approach is based on a simple interpolation technique that can be
more naturally explained for splits and epigraphs of specially structured functions. For this reason, we
begin with such a case and then consider special cases of non-epigraphical sets and discuss the limits of
the interpolation technique. While the structures for which the technique yields simple formulas are quite
specific, we can consider broader classes by considering affine transformations. In Section 4 we illustrate
the power of this approach by showing how the interpolation technique yields formulas for intersection cuts
for convex quadratic sets.

3.1 Split cuts for epigraphical sets

Let G : R→ R be a closed convex function and let F be an elementary split associated with π = e1. Then
epi(G) = epi(G) ∩ epi(J) for

J(z) =
G(π1)−G(π0)

π1 − π0
z +

π1G(π0)− π0G(π1)

π1 − π0
. (1)

This is illustrated in Figure 1, where the graph of G is given by the thick black curve and the graph of J
is depicted by the thin blue line. Indeed, since J is a linear function and hence epi(G) ∩ epi(J) convex, it

�
z, t
�

(a) Naive friends construction.

�
z, t
�

�
z1, t1

�

�
z0, t0

�

(b) Friends by following the slope.

Fig. 1 Interpolation technique for univariate functions.

is enough to show that J(z) ≤ t is a valid and sufficient cut.
We can check that J(z) ≤ t is a binding valid cut because J is the (affine) linear interpolation of G

through z = π0 and z = π1. Convexity of G then implies that this interpolation is below G for z /∈ (π0, π1).
To show that the cut is sufficient, we need to show that any point

(
z, t
)
∈ epi(G) that satisfies the cut is

in epi(G). To achieve this, we can find two points
(
z0, t0

)
and

(
z1, t1

)
in epi(G) such that z0 ≤ π0, z1 ≥ π1,

and
(
z, t
)
∈ conv

({(
z0, t0

)
,
(
z1, t1

)})
. Following [33], we will denote these points the friends of

(
z, t
)
. One

naive way to construct the friends is to wiggle
(
z, t
)

by decreasing and increasing z until it reaches π0 and
π1, respectively. However, as illustrated in Figure 1(a), this can result in one of the friends falling outside
epi(G). Fortunately, as illustrated in Figure 1(b), we can always wiggle by following the slope of the cut J

6 Modaresi et al.

to assure that the friends are in epi(J). Correctness (i.e., containment of the friends in epi(G)) then follows
by noting that J(z) = G(z) at z = π0 and z = π1, since J(z) ≤ t is a binding valid cut. This two-stage
procedure of binding validity through interpolation and sufficiency through friends can be formalized for
general closed convex sets as follows.

Proposition 1 Let B ⊆ Rn be a closed convex set and F ⊆ Rn be closed. If C ⊆ Rn is a closed convex set
such that

B ∩ bd (F) = C ∩ bd (F) (2a)

B \ int (F) ⊆ C \ int (F) , (2b)

and if

for all x ∈ C ∩ int (F) there exists a finite set Γ ⊆ C ∩ bd (F) such that x ∈ conv (Γ) , (3)

then
B = B ∩ C. (4)

Proof We have that
B \ int (F) ⊆ B ∩ C ⊆ B, (5)

where the first containment comes from (2b) and the last from (3) and (2a). The result follows by taking
convex hull in (5) and noting that B ∩ C is convex because both B and C are convex. ut

Note that if F is a split, we can always consider Γ containing exactly two points (e.g Figure 1 and
Propositions 2 and 4), while larger sets Γ might be necessary for other forbidden sets (e.g. Proposition 7).
Our general approach to use Proposition 1 is to construct a convex function that yields binding valid
cuts (i.e., satisfies (2)) and to use its specific geometric structure to construct friends for sufficiency. We
now consider two structures in which the appropriate interpolation can easily be constructed once we
identify the interpolation’s general form. The geometric structures of the resulting cuts yield two friends
construction techniques. The first technique generalizes the univariate argument in Figure 1(b) by noting
that following the slope of J is equivalent to moving in lin (epi(J)). The second technique constructs the
friends by moving in a ray contained in an appropriately constructed cone. These techniques are described
in detail in Sections 3.1.1 and 3.1.2 respectively.

3.1.1 Separable functions

Let G be a separable function of the form G(z, y) = f(z) + g(y) with f : R → R and g : Rp → R closed
convex functions, and let F be an elementary split associated with π = e1. Analogous to (1), we can simply
interpolate G parametrically on y to obtain

J(z, y) =
G(π1, y)−G(π0, y)

π1 − π0
z +

π1G(π0, y)− π0G(π1, y)

π1 − π0
. (6)

In this case, the interpolation simplifies to J(z, y) = f(π1)−f(π0)
π1−π0

z+ π1f(π0)−π0f(π1)
π1−π0

+ g(y), which is convex

on (z, y) and linear on z. Our original univariate argument follows through directly and we get epi (G) =
epi (G) ∩ epi (J). To illustrate this, consider G : R × R → R given by G(z, y) = z2 + y2 and let F be
the elementary split associated with π = e1, π0 = −10, and π1 = 1. Constructing a parametric linear
interpolation as in (6) yields

J(z, y) =
1− 100

11
z +

(
100 + y2

)
+ 10

(
1 + y2

)

11
= −9z + 10 + y2.

Function J is convex on (z, y), linear on z, and satisfies the conditions of Proposition 1. We can thus
conclude that it yields the associated split cut. In contrast, if we consider the non-elementary split π =

Intersection Cuts for Nonlinear Integer Programming 7

(1, 1)T with the previous choices of π0 and π1 on the same function G, we need to proceed with more care.
In particular, the parametric interpolation (6) cannot be directly applied since the disjunction affects both
z and y. However, we can construct the split cut by exploiting the fact that G can be represented as

G(z, y) =
(z + y)2

2
+

(z − y)2

2
=

(
πT (z, y)

)2

2
+

(
hT (z, y)

)2

2
, (7)

where h = (1,−1)T is orthogonal to π. If we let z̃ = πT (z, y), ỹ = hT (z, y), π̃ = (1, 0), π̃0 = −10, π̃1 = 1, and
G̃ (z̃, ỹ) = z̃2/2 + ỹ2/2, we revert to the elementary case where we can apply the parametric interpolation
(6) to obtain the split cut

J̃ (z̃, ỹ) =
G̃ (π̃1, ỹ)− G̃ (π̃0, ỹ)

π̃1 − π̃0
z̃ +

π̃1G̃ (π̃0, ỹ)− π̃0G̃ (π̃1, ỹ)

π̃1 − π̃0
=
−9z̃ + 10 + ỹ2

2
. (8)

We can then recover the split cut in the original (z, y) space by replacing the definitions of z̃ and ỹ.
The same procedure can be used for any separable function that is of, or can be converted to, the form
G(x) = f(πTx) + g(P⊥π x) where g : Rn → R and f : R → R are closed convex functions (P⊥π x plays the
same role as hT (z, y) in (7)). To formally prove this, we first show how the friends construction procedure
of Figure 1(b) can be extended to a general closed convex set C by considering properties of lin (C).

Proposition 2 Let F ⊆ Rn be a split and C ⊆ Rn be a closed convex set. If there exists u ∈ lin (C) such
that πTu 6= 0, then condition (3) in Proposition 1 is satisfied.

Proof Let x ∈ C such that πTx ∈ (π0, π1) and u ∈ lin (C) such that πTu 6= 0. Also let xi := x + λiu for

i ∈ {0, 1}, where λi = πi−πTx
πTu

, and let β ∈ (0, 1) be such that πTx = βπ0 + (1− β)π1. Because u ∈ lin (C)

and since πTxi = πi, we have xi ∈ C ∩ bd (F) for i ∈ {0, 1}. The result then follows by noting that
x = βx0 + (1− β)x1. ut

Using Propositions 1 and 2 we obtain the following split cut formula for separable functions.

Proposition 3 Let F be a split, g : Rn → R and f : R→ R be closed convex functions,

Sg,f :=
{

(x, t) ∈ Rn+1 : g(P⊥π x) + f(πTx) ≤ t
}
,

a = f(π1)−f(π0)
π1−π0

, and b = π1f(π0)−π0f(π1)
π1−π0

. Then Sg,f = Sg,f ∩ C, where

C =
{

(x, t) ∈ Rn+1 : g(P⊥π x) + aπTx+ b ≤ t
}
.

Proof Interpolation condition (2) holds by the definition of a and b and convexity of f . Friends condition
(3) follows from Proposition 2 by noting that u =

(
π, a ‖π‖22

)
∈ lin (C) and (π, 0)T u 6= 0. The result then

follows from Proposition 1. ut

3.1.2 Non-separable positive homogeneous functions

Proposition 1 can also be used to construct cuts for some non-separable functions, but as illustrated in
the following example, we need slightly more complicated interpolations. Consider G : R × R → R given
by G(z, y) =

√
z2 + y2 and let F be the elementary split associated with π = e1, π0 = −10, and π1 = 1.

Constructing a parametric linear interpolation as in (6) yields

JL(z, y) =
10
√

1 + y2 +
√

100 + y2 + z
(√

1 + y2 −
√

100 + y2
)

11
. (9)

8 Modaresi et al.

The associated cut is certainly valid, binding, and sufficient for epi (G) (we can always find friends by
wiggling z toward π0 and π1, and using t to correct by following the slope of JL for fixed y). However,
while J is linear with respect to z, it is not convex with respect to y. We hence cannot use Proposition 1
for this interpolation. Fortunately, we can construct an alternative interpolation given by

JC(z, y) =

√(
20− 9z

11

)2

+ y2 (10)

that is convex on (z, y). This function is not linear on z for fixed y, but we can still show it satisfies the

interpolation condition (2) by noting that
(

20−9z
11

)2 ≤ z2 for any z /∈ (π0, π1) and that equality holds for
z ∈ {π0, π1}. This is illustrated in Figure 2 for y = −4 where the graphs of G, JC , and JL are given by the
thick black curve, the thin blue curve, and the dash-dotted green line, respectively. The figure shows that
JC(z, y) ≤ t is a nonlinear binding valid cut, but is strictly weaker than JL(z, y) ≤ t. While JC yields a
weaker cut than JL, JC is in fact the strongest convex function that satisfies the interpolation condition (2)
and we can show that epi(G) = epi(G) ∩ epi(JC). However, for the point

(
z, y, t

)
∈ epi (JC) ∩ int (F) with

y = −4 depicted in Figure 2, the friends construction cannot be done by wiggling in a direction that leaves
y fixed to −4. In other words, there are points in Ĥ :=

{
(z, y, t) ∈ R3 : y = −4

}
that do not have friends in

Ĥ. We can construct friends by wiggling in a direction that does change y, but since lin(epi(JC)) = {0}, such
a direction cannot be directly obtained from Proposition 2. Fortunately, the general idea of Proposition 2
can be adapted to obtain a variant that directly reveals an appropriate direction.

�
z, y, t

�

Fig. 2 Nonlinear interpolation for non-separable functions.

The variant of Proposition 2 that we need, exploits a different geometric characteristic of epi (JC)
through the generalization of a technique used in [6, 7]. The required geometric characteristic is given by
the following definition.

Definition 3 Let C ⊆ Rn be a closed convex set. We say C is a translated cone or conic set if there exists
x∗ ∈ C such that C − x∗ is a convex cone. We refer to such x∗ as an apex of C, noting that it is not
necessarily unique (e.g. a half space is a conic set whose apex is not unique).

Intersection Cuts for Nonlinear Integer Programming 9

One can check that epi (JC) is a conic set with the unique apex (z∗, y∗, t∗) = (20/9, 0, 0). Hence, because
(z̄, y, t) ∈ epi (JC), we have that the ray

R :=
{(
z∗, y∗, t∗

)
+ α

((
z̄, y, t

)
−
(
z∗, y∗, t∗

))
: α ≥ 0

}
⊆ epi (JC) . (11)

Furthermore, because z∗ > π1 and z̄ ∈ (π0, π1), there exists αi > 0 such that z∗ +αi(z̄− z∗) = πi for each
i ∈ {0, 1}. Therefore the friends of (z̄, y, t) are given by

(
zi, yi, ti

)
:= (z∗, y∗, t∗) +αi

(
(z̄, y, t)− (z∗, y∗, t∗)

)

for i ∈ {0, 1}.

0

10

-10

-10
-5

0
5

z

-10

0

10 y

0

5

10

15

t

(a) Construction in the (z, y, t) space.

�
z, y, t

�

�
z0, y0, t0

�

�
z1, y1, t1

�

(b) Construction in the hyperplane H̃.

Fig. 3 Friends construction for non-separable positive homogeneous functions.

Figure 3 illustrates the ray-based friends construction for (z̄, y, t) with y = −4. Figure 3(a) shows the
construction in the (z, y, t) space, while Figure 3(b) shows the section obtained by intersecting Figure 3(a)
with the hyperplane H̃ := aff (R ∪ {(0, 0, 1)}), for the ray R given in (11). The intersection of H̃ with
the bounding box is depicted by the dash-dotted line in Figure 3(a). The graph of G is given by a black
wire-frame in Figure 3(a), while the intersection of this graph with H̃ is given by the thick black curve in
both figures. Meanwhile, the graph of JC is depicted by the blue shaded region in Figure 3(a) and by a
thin blue curve in Figure 3(b). The figures also depict

(
zi, yi, ti

)
for i ∈ {0, 1} and (z̄, y, t) as black dots

and (z∗, y∗, t∗) as a red box. In addition, the intersection of z = πi for i ∈ {0, 1} with the epigraphs of both
G and JC are depicted in Figure 3(a) by the gray shaded regions. The intersection of z = πi for i ∈ {0, 1}
with H̃ are depicted in both figures by dotted lines. Finally, ray R is depicted in both figures as a red
dashed arrow. Note that H̃ is tilted in the (z, y) space precisely to contain (z∗, y∗, t∗) and

(
z̄, y, t

)
. Noting

that y∗ 6= y we have that, unlike Ĥ, H̃ allows the variation of y. Furthermore, while (z̄, y, t) ∈ Ĥ ∩ H̃ might
not have friends in Ĥ, Figure 3 shows that it does have friends in H̃.

Similarly to Proposition 2, the above construction can be extended to general convex sets as follows.

Proposition 4 Let F ⊆ Rn be a split. If C ⊆ Rn is a conic set with apex x∗ ∈ Rn such that πTx∗ /∈
(π0, π1), then condition (3) in Proposition 1 is satisfied.

Proof Let x ∈ C such that πTx ∈ (π0, π1). Note that since x∗ is the apex of C, all points on the ray
R := {x∗ + α (x− x∗) : α ∈ R+} belong to C. Let the intersections of R with the hyperplanes πTx = π0

and πTx = π1 be x0 and x1, respectively. Such points are obtained from R by setting αi = πi−πTx∗

πTx−πTx∗
,

10 Modaresi et al.

for i ∈ {0, 1}. We have xi ∈ C ∩ bd (F) for i ∈ {0, 1}, since πTxi = πi and R ⊆ C. Note that x is
obtained from R by setting α = 1. If α0 < 1 < α1 or α1 < 1 < α0, then there exists β ∈ (0, 1) such that
x = βx0 + (1− β)x1. Seeing that πT x̄ ∈ (π0, π1) and πTx∗ /∈ (π0, π1), one can check α0 < 1 < α1 or
α1 < 1 < α0. ut

Note that Propositions 2 and 4 ask for very different requirements on C. In Proposition 2, we only need
to have a direction u ∈ lin (C) such that πTu 6= 0. In such a case, C always defines a non-pointed region (i.e.,
C contains a line). On the other hand, as illustrated by (10), the sets C for which Proposition 4 is applicable
are usually pointed (i.e. C has at least one extreme point). However, pointedness is not a requirement in
Proposition 4 (e.g. half-spaces are conic sets). The real price of Proposition 4 over Proposition 2 is requiring
C to be conic, which is a much more global requirement than asking for the lineality space of C to contain
a non-orthogonal direction to π. However, both propositions are needed to construct split cuts for positive
homogeneous functions. To see this, consider the same function G(z, y) =

√
z2 + y2 for which (10) yields a

split cut, but instead consider the split z ∈ [−1, 1]. For this case, we can check that epi(G) = epi(G)∩epi(JD)
for JD(z, y) =

√
1 + y2, which does not have a conic epigraph. However, (1, 0, 0) ∈ lin(epi(JC)) and hence

Proposition 2 is applicable. This dichotomy between a non-pointed and a conic (and potentially pointed)
cut will be a common occurrence that we highlight further when characterizing intersection cuts for conic
quadratic sets in Section 4.

While Propositions 2 and 4 can be used to prove sufficiency of the split cuts for positive homogeneous
functions, such cuts first have to be constructed with an appropriate interpolation technique. Fortunately,
both interpolations of G(z, y) =

√
z2 + y2 (conic and non-pointed) can be generalized to functions based

on p-norms by using the following simple lemma whose proof is included in the appendix.

Lemma 1 Let p ∈ N, π0, π1 ∈ R such that π0 < π1, l ∈ R, a = (|l|p+|π1|p)1/p−(|l|p+|π0|p)1/p

π1−π0
, and b =

π1(|l|p+|π0|p)1/p−π0(|l|p+|π1|p)1/p

π1−π0
.

– If s ∈ {π0, π1}, then |as+ b|p = |s|p + |l|p and
– if s /∈ (π0, π1), then |as+ b|p ≤ |s|p + |l|p.

Using this lemma we can construct split cuts for epigraphs of a wide range of positive homogeneous
convex functions and their sections (i.e. the epigraphs of such positive homogeneous functions after a
variable is fixed to a constant).

Proposition 5 Let F be a split, β, l ∈ R, g : Rn → R be a positive homogeneous closed convex function, a
and b as in Lemma 1, and

Hp,g :=

{
(x, t) ∈ Rn+1 :

(
g
(
P⊥π x

)p
+
∣∣∣βπTx

∣∣∣
p

+ |βl|p
)1/p

≤ t
}
.

Then Hp,g = Hp,g ∩ C, where C =

{
(x, t) ∈ Rn+1 :

(
g
(
P⊥π x

)p
+
∣∣β
(
aπTx+ b

)∣∣p
)1/p

≤ t
}

.

Proof Interpolation condition (2) holds by the definition of a and b and Lemma 1. If |π0| = |π1|, then
(π, 0) ∈ lin (C) and friends condition (3) follows from Propositions 2. If |π0| 6= |π1|, then C is a conic set

with apex (x∗, t∗) =
(
−b

a‖π‖22
π, 0

)
. Furthermore,

(π, 0)T
(
x∗, t∗

)
= πTx∗ = π1 + (|l|p + |π1|p)1/p ρ = π0 + (|l|p + |π0|p)1/p ρ,

where ρ = π0−π1

(|l|p+|π1|p)1/p−(|l|p+|π0|p)1/p . If |π1| < |π0|, then πTx∗ ≥ π1 and if |π1| > |π0|, then πTx∗ ≤ π0.

Therefore, friends condition (3) follows from Proposition 4. The result then follows from Proposition 1. ut

The following direct corollary of Proposition 5 yields simplified formulas for split cuts when l = 0 and
Hp,g is the epigraph of a positive homogeneous convex function.

Intersection Cuts for Nonlinear Integer Programming 11

Corollary 1 Let F be a split, β ∈ R, p ∈ N, g : Rn → R be a positive homogeneous closed convex function,
a = π0+π1

π1−π0
, b = − 2π1π0

π1−π0
, and

Cp,g :=

{
(x, t) ∈ Rn+1 :

(
g
(
P⊥π x

)p
+
∣∣∣βπTx

∣∣∣
p)1/p

≤ t
}
.

If 0 /∈ (π0, π1), then Cp,g = Cp,g. Otherwise, Cp,g = Cp,g ∩ C, where

C =

{
(x, t) ∈ Rn+1 :

(
g
(
P⊥π x

)p
+
∣∣∣β
(
aπTx+ b

)∣∣∣
p)1/p

≤ t
}
.

In particular, if g is a p-norm and the splits are elementary, Corollary 1 further specializes as follows.

Corollary 2 Let F be an elementary split associated with π = ek, Kp := {(x, t) ∈ Rn+1 : ‖x‖p ≤ t}, a and

b as in Corollary 1, and Â := I − ekekT . If 0 /∈ (π0, π1), then Kp = Kp. Otherwise, Kp = Kp ∩ C, where

C =

{
(x, t) ∈ Rn+1 :

∥∥∥
(
Â+ aekek

T
)
x+ bek

∥∥∥
p
≤ t
}
.

Proof Direct from Corollary 1 by noting that Kp =

{
(x, t) ∈ Rn+1 :

(∥∥∥Âx
∥∥∥
p

p
+ |xk|p

)1/p

≤ t

}
,

C =

{
(x, t) ∈ Rn+1 :

(∥∥∥Âx
∥∥∥
p

p
+ |axk + b|p

)1/p

≤ t

}
, and seeing that Â = P⊥π .

3.2 Split cuts for level sets

The interpolation technique can also be applied to some non-epigraphical sets. This is illustrated in the
following proposition.

Proposition 6 Let F be a split, g : Rn → R be a positive homogeneous convex function, f : R→ R∪{+∞}
be a closed convex function such that f(π0), f(π1) ≤ 0, a = f(π1)−f(π0)

π1−π0
, b = π1f(π0)−π0f(π1)

π1−π0
and

Lg,f :=
{
x ∈ Rn : g(P⊥π x) + f(πTx) ≤ 0

}
.

Then Lg,f = Lg,f ∩ C, where C =
{
x ∈ Rn : g(P⊥π x) + aπTx+ b ≤ 0

}
.

Proof Interpolation condition (2) holds by the definition of a and b and convexity of f . If f(π0) = f(π1),
then π ∈ lin (C) and friends condition (3) follows from Proposition 2. If f(π0) 6= f(π1), then C is a conic

set with apex x∗ = −b
a‖π‖22

π. Furthermore, πTx∗ = π0f(π1)−π1f(π0)
f(π1)−f(π0) = π1 + (π0−π1)f(π1)

f(π1)−f(π0) = π0 + (π0−π1)f(π0)
f(π1)−f(π0) .

If f(π0) < f(π1), then πTx∗ ≥ π1 and if f(π0) > f(π1) then πTx∗ ≤ π0. Therefore, friends condition (3)
follows from Proposition 4. The result then follows from Proposition 1. ut

As a direct corollary of Proposition 6, we obtain formulas for elementary split cuts for balls of p-norms.

Corollary 3 Let F be an elementary split associated with π = ek, r ∈ R such that |π0| , |π1| ≤ r,

Ep := {x ∈ Rn : ‖x‖p ≤ r},

f(u) := − (rp − |u|p)1/p, a, b as in Proposition 6, and Â := I − ekekT . Then Ep = Ep ∩ C, where

C =

{
x ∈ Rn :

∥∥∥Âx
∥∥∥
p

+ axk + b ≤ 0

}
.

Proof Direct from Proposition 6 by noting that Ep =

{
x ∈ Rn :

∥∥∥Âx
∥∥∥
p

+ f(xk) ≤ 0

}
and Â = P⊥π . ut

12 Modaresi et al.

3.3 Non-trivial extensions

In this section we consider two non-trivial extensions/applications of the interpolation technique. The first
example considers t-inclusive split cuts for epigraphical sets and illustrates the case when the interpolation
coefficients cannot be easily calculated. The second example shows how the technique can be used beyond
split sets to construct k-branch split cuts for epigraphical sets. We hope these examples serve as a guide
for future applications or extensions of the interpolation technique.

3.3.1 t-inclusive split cuts for epigraphical sets

Consider the base set Q0 :=
{

(x, t) ∈ R2 : x2 ≤ t
}

and the t-inclusive split x+ t ∈ [0, 1]. The first step to

construct the associated split cut C ⊆ R2 such that Q0 = Q0 ∩C is to find the general form of such a cut.
The inclusion of t in the split prevents us from directly using the interpolation arguments for regular splits
to construct this general form. However, by extrapolating these arguments to the t-inclusive setting and
analyzing the geometry of the problem (e.g. the intersection of Q0 with x + t ∈ {0, 1} corresponds to two
ellipses), we may guess that the appropriate interpolation form is

C =

{
(x, t) ∈ R2 :

√
(ax+ b)2 ≤ cx+ dt+ e

}
, (12)

for some interpolation coefficients a, b, c, d, e ∈ R. Unlike the regular split setting, it is not immediately
clear what these coefficients should be, but we may try to deduce them by forcing interpolation conditions
(2). Interpolation condition (2a) corresponds to

{(x, t) ∈ Q0 : t = −x} = {(x, t) ∈ C : t = −x} (13)

{(x, t) ∈ Q0 : t = 1− x} = {(x, t) ∈ C : t = 1− x} , (14)

which induces an infinite number of constraints on the coefficients.2 We could try to reduce such a set of
constraints to find the interpolation coefficients. In particular, the arguments for the regular splits effectively
reduce such a set of constraints to two equality constraints. For instance, in the interpolation given in (1), the
corresponding interpolation conditions analogous to (13) and (14) reduce to G (πi) = J (πi) for i ∈ {0, 1}.
To obtain a similar reduction, we here take a possibly naive approach that, nonetheless, is successful for
several classes of cuts and is flexible enough to be extended to more complicated base and forbidden sets.
The idea of this approach is to note that (13) and (14) can be expressed as

{
x ∈ R : x2 ≤ −x

}
=
{
x ∈ R : (ax+ b)2 ≤ ((c− d)x+ e)2 , (c− d)x+ e ≥ 0

}
(15)

{
x ∈ R : x2 ≤ 1− x

}
=
{
x ∈ R : (ax+ b)2 ≤ ((c− d)x+ d+ e)2 , (c− d)x+ d+ e ≥ 0

}
. (16)

A sufficient condition for these constraints is for the quadratic polynomials in both sides of (15) and (16)
to be identical, and for the following condition to hold:

{x ∈ R : x2 ≤ −x} ⊆ {x ∈ R : (c− d)x+ e ≥ 0} (17)

{x ∈ R : x2 ≤ 1− x} ⊆ {x ∈ R : (c− d)x+ d+ e ≥ 0} . (18)

Forcing the polynomials to be identical is a simple matter of matching coefficients, which results in the set
of polynomial inequalities on a, b, c, d and e given by

a2 − (c− d)2 = 1, ab− (c− d) e = 1/2, ab− (c− d) (d+ e) = 1/2, b2 − e2 = 0 and b2 − (d+ e)2 = −1.

2 For instance, (13) implies
√

(ax+ b)2 ≤ (c− d)x+ e for all (x,−x) ∈ Q0.

Intersection Cuts for Nonlinear Integer Programming 13

The above linear system has four solutions given by (1, 1
2 ,
√

5−1
2 ,

√
5−1
2 , 1

2), (1, 1
2 ,
−
√

5+1
2 , −

√
5+1
2 , −1

2),

(1, 1
2 ,
√

5+1
2 ,

√
5+1
2 , −1

2), and (1, 1
2 ,
−
√

5−1
2 , −

√
5−1
2 , 1

2), of which only the first satisfies the additional con-
ditions (17) and (18). Note that since c = d in the first solution, checking (17) and (18) is equivalent to
checking e ≥ 0 and d + e ≥ 0, which is trivial. Furthermore, this point also satisfies the interpolation
condition (2b) which in this case, corresponds to

{(x, t) ∈ Q0 : x+ t /∈ (0, 1)} ⊆ {(x, t) ∈ C : x+ t /∈ (0, 1)} . (19)

Finally, to show that this choice of interpolation coefficients yields the desired split cut, note that C for

such coefficients is a conic set with apex (x∗, t∗) =
(
−1
2 ,
√

5−3
2
√

5−2

)
and x∗ + t∗ < 0. Then friends condition

(3) follows from Proposition 4.
Note that identifying the coefficients of the quadratic polynomials and having (17) and (18) are sufficient

for the interpolation condition (2a), but they may not be necessary in general. Hence, there might be other
interpolation coefficients for which Q0 = Q0∩C. Moreover, it is not even clear that (12) is the only possible
interpolation form for the associated split cut. However, if the described procedure is successful, we need
not worry about alternative characterizations, since they will all yield Q0 when intersected with Q0. There
is of course no guarantee that the above procedure for finding a representation of C will always succeed.
However, as we illustrate in Section 4, the procedure is successful in constructing rather complicated cuts
for conic quadratic sets.

3.3.2 k-branch split cuts for epigraphical sets

We now illustrate how Proposition 1 can be used for sets other than splits by constructing certain k-branch
split cuts for separable functions. The following proposition is a direct, but technical, generalization of
Proposition 3, which explains our reason to postpone its introduction to this stage of the paper.

Proposition 7 Let g : R→ R and fi : R→ R for each i ∈ [k] be closed convex functions. Furthermore, let

F be a k-branch split such that πi ⊥ πj for every i 6= j. Finally, let P⊥Π := I −
∑k
i=1

πiπ
T
i

‖πi‖22
,

Bg,f :=

{
(x, t) ∈ Rn+1 : g

(
P⊥Πx

)
+

k∑

i=1

fi
(
πTi x

)
≤ t

}
,

ai :=
fi(πi

1)−fi(πi
0)

πi
1−πi

0
, bi :=

πi
1fi(πi

0)−π
i
0fi(πi

1)
πi

1−πi
0

for all i ∈ [k], and for every I ⊆ [k] let

hI(x) := g
(
P⊥Πx

)
+

∑

i∈[k]\I

fi
(
πTi x

)
+
∑

i∈I
aiπ

T
i x+ bi.

Then Bg,f = Bg,f ∩ C, where C =
{

(x, t) ∈ Rn+1 : maxI⊆[k] hI(x) ≤ t
}

.

Proof Interpolation condition (2) holds by the definition of ai and bi and convexity of fi. Now let
(
x, t
)
∈

C ∩ int (F). To construct the friends of
(
x, t
)

we proceed as follows.

Let I ⊆ [k] be such that for all i ∈ I we have πTi x ∈
(
πi0, π

i
1

)
, and for all i ∈ [k] \ I we have

πTi x /∈
(
πi0, π

i
1

)
. For each s ∈ {0, 1}I , let

xs = P⊥Π x̄+
∑

i∈[k]\I

πTi x̄

‖πi‖22
πi +

∑

i∈I

siπ
i
0 + (1− si)πi1
‖πi‖22

πi, ts = t+
∑

i∈I
ai
(
siπ

i
0 + (1− si)πi1 − πTi x̄

)
, (20)

and λs =
∏
i∈I

(
si
πi

1−π
T
i x

πi
1−πi

0
+ (1− si)π

T
i x−π

i
0

πi
1−πi

0

)
. Note that

(
x, t
)

=
∑
s∈{0,1}I λs (xs, ts),

∑
s∈{0,1}I λs = 1,

and λs ≥ 0 for all s ∈ {0, 1}I . Furthermore, by construction and the assumption on I, we have that
xs ∈ bd (F) and (xs, ts) ∈ epi (hI) for all s ∈ {0, 1}I . The result then follows from Proposition 1 by noting
that for all s ∈ {0, 1}I , we have maxJ⊆[k] hJ (xs) = hI (xs). ut

14 Modaresi et al.

4 Intersection cuts for conic quadratic sets

In this section we consider intersection cuts for conic quadratic sets of the form C := {x ∈ Rn : Ax− d ∈ Lm}
where A ∈ Rm×n, d ∈ Rm, and Lm is the m-dimensional Lorentz cone. Note that C can be written as

C =
{
x ∈ Rn : ‖A0x− d0‖2 ≤ a

T
mx− dm

}
, (21)

where (A0, d0) is obtained from (A, d) by deleting the m-th row, and (am, dm) is the m-th row of (A, d).
Using (21), one can rewrite C as

Q :=
{
x ∈ Rn : xTQx− 2hTx+ ρ ≤ 0, aTmx− dm ≥ 0

}
,

where Q = AT0 A0− amaTm, h = AT0 d0− amdm, and ρ = dT0 d0− d2
m. Also note that Q ∈ Rn×n is symmetric

with at most one negative eigenvalue. Using known classifications of sets described by a quadratic inequality
with at most one negative eigenvalue (e.g. see Table 2.1 and the reasoning after the proof of Lemma 2.1 in
[11]), we have that all conic quadratic sets of the form C correspond to the following list:

1. A full dimensional paraboloid,
2. a full dimensional ellipsoid (or a single point),
3. a full dimensional second-order cone,
4. one side of a full dimensional hyperboloid of two sheets,
5. a cylinder generated by a lower-dimensional version of one of the previous sets, or
6. an invertible affine transformation of one of the previous sets.

We first consider split cuts for conic quadratic sets with simple structures that can be obtained as
direct corollaries of Propositions 3, 5, and 6. We then consider t-inclusive and k-branch split cuts for conic
quadratic sets that require ad-hoc proofs based on Proposition 1. As expected, we see that split cut formulas
are significantly simpler than those for t-inclusive and k-branch split cuts. However, in either case, it is
crucial to exploit the symmetry of the Euclidean norm through the following standard lemma.

Lemma 2 For v ∈ Rn, ‖x‖22 = ‖Pvx‖22 + ‖P⊥v x‖22.

To give formulas for split cuts for all the sets 1–6, it suffices to consider cases 1–4. With these, we can
construct split cut formulas for cylinders using the following lemma, which we prove in the appendix.

Lemma 3 Let B ⊆ Rn be a closed convex set of the form B0 + L where L is a linear subspace, and let
F ⊆ Rn be a split. If π ∈ L⊥ and conv (B0 \ int (F)) = B0 ∩ C, then conv (B \ int (F)) = (B0 ∩ C) + L. If
π /∈ L⊥, then conv (B \ int (F)) = B.

Finaly, we can construct split cut formulas for affine transformations by using the following straightfor-
ward lemma.

Lemma 4 Let B ⊆ Rn be a closed convex set, F ⊆ Rn be a split, and M : Rn → Rn be an invertible affine
mapping. If conv (B \ int (F)) = B ∩ C for a closed convex set C ⊆ Rn, then

conv (M (B) \ int (M (F))) = M (B) ∩M (C) .

We note that classification 1–6 is not strictly necessary for constructing split cuts for quadratic sets.
In particular, an algorithm introduced in [76] can be used to obtain an SDP representation of split cuts
for any quadratic set (convex or not) without a priori classifying its specific geometry as in 1–6. However,
the procedure in [76] requires the execution of a numerical algorithm to construct split cuts and does not
provide closed form expressions of the cuts. Furthermore, such an algorithm requires elaborate algebraic
tools specific to quadratic sets that go far beyond a basic property such as that described by Lemma 2.
Hence, the objective of the following subsection is not to present the shortest possible constructions of all
quadratic split cuts, but to (i) present simple proofs tailored to the specific geometries in classification 1–6
and (ii) present a case study on the power and limitations of the general interpolation approach to split
cuts.

Intersection Cuts for Nonlinear Integer Programming 15

4.1 Split cuts for conic quadratic sets

Split cuts can be obtained for ellipsoids when interpreted as lower level sets of quadratic or conic functions
(i.e., based on the Euclidean norm). Similarly, split cuts can also be characterized for paraboloids and cones
that, when interpreted as epigraphs of quadratic or conic functions, are such that t is unaffected by the split
disjunctions. We note that the ellipsoid case has already been proven on [10, 30], and that the conic case
generalizes Proposition 2 in [7] which considers elementary disjunctions for the standard three dimensional
second-order cone. Through the rest of the section, we let A ∈ Rn×n be an invertible matrix and c ∈ Rn.

Corollary 4 (Split cuts for paraboloids) Let F be a split, Q :=
{

(x, t) ∈ Rn+1 : ‖A (x− c) ‖22 ≤ t
}

,

a = π0+π1−2πT c
‖A−Tπ‖22

, b = − (π1−πT c)(π0−πT c)
‖A−Tπ‖22

, and Â = P⊥A−TπA. Then Q = Q ∩ C, where

C =

{
(x, t) ∈ Rn+1 :

∥∥∥Â (x− c)
∥∥∥

2

2
+ aπT (x− c) + b ≤ t

}
.

Proof Note that for the affine mappings M,M−1 given by M(x, t) := (A (x− c) , t) and M−1(x, t) :=
(A−1x + c, t), we have Q = M−1 (Q0) and Q0 = M (Q), where Q0 :=

{
(x, t) ∈ Rn+1 : ‖x‖22 ≤ t

}
. Using

Lemma 4, we prove the corollary by finding a closed form expression for Q0 where the forbidden set is
the split M (F) associated with π̃ = A−Tπ, π̃0 = π0 − πT c, and π̃1 = π1 − πT c. By Lemma 2, we have

Q0 =
{

(x, t) ∈ Rn+1 : ‖P⊥π̃ x‖22 + (π̃Tx)2

‖π̃‖22
≤ t
}

. The result then follows from Proposition 3. ut

Corollary 5 (Split cuts for cones) Let F be a split, K :=
{

(x, t) ∈ Rn+1 : ‖A (x− c) ‖2 ≤ t
}

, a =

π1+π0−2πT c
π1−π0

, b =
−2(π1−πT c)(π0−πT c)

π1−π0
, Â =

(
P⊥A−Tπ + aPA−Tπ

)
A, ĉ =

(
b/
∥∥A−Tπ

∥∥2

2

)
A−Tπ. If πT c /∈

(π0, π1), then K = K. Otherwise, K = K ∩ C, where

C =
{

(x, t) ∈ Rn+1 :
∥∥∥Â (x− c) + ĉ

∥∥∥
2
≤ t
}
.

Proof Note that for the affine mappings M,M−1 defined in the proof of Corollary 4 we have K = M−1 (K0)
and K0 = M (K), where K0 :=

{
(x, t) ∈ Rn+1 : ‖x‖2 ≤ t

}
. Using Lemma 4, we prove the corollary by

finding a closed form expression for K0 where the forbidden set is the split M (F) defined in the proof of

Corollary 4. By Lemma 2, we have K0 =

{
(x, t) ∈ Rn+1 :

(
‖P⊥π̃ x‖22 + (π̃Tx)2

‖π̃‖22

)1/2
≤ t
}

. The result then

follows from Corollary 1. ut

A particularly interesting application of Corollaries 4 and 5 is the Closest Vector Problem [57], which
can alternatively be written as min

{
‖A (x− c)‖22 : x ∈ Zn

}
or min

{
‖A (x− c)‖2 : x ∈ Zn

}
. In turn, these

problems can be reformulated as

min {t : (x, t) ∈ Q, x ∈ Zn} and min {t : (x, t) ∈ K, x ∈ Zn} ,

respectively. We can then use Corollaries 4 and 5 with lattice free splits to construct split cuts that could
improve the solution speed of these problems. We are currently studying the effectiveness of such cuts.

We can also obtain as a corollary the following result from [10, 30].

Corollary 6 (Split cuts for ellipsoids) Let F be a split, r ∈ R+,

E := {x ∈ Rn : ‖A (x− c) ‖2 ≤ r} ,

f(u) := −
√
r2 − u2

‖A−Tπ‖22
, a = f(π0−πT c)−f(π1−πT c)

π1−π0
, and b = (π1−πT c)f(π0−πT c)−(π0−πT c)f(π1−πT c)

π1−π0
.

If πT c− r‖A−Tπ‖2 ≤ π0 < π1 ≤ πT c+ r‖A−Tπ‖2, then E = E ∩ C, where

C =
{
x ∈ Rn : ‖P⊥A−TπA (x− c) ‖2 ≤ aπT (x− c)− b

}
, (22)

16 Modaresi et al.

if π0 < πT c− r‖A−Tπ‖2 < π1 ≤ πT c+ r‖A−Tπ‖2, then

E =
{
x ∈ E : πTx ≥ π1

}
, (23)

if πT c− r‖A−Tπ‖2 ≤ π0 < πT c+ r‖A−Tπ‖2 < π1, then

E =
{
x ∈ E : πTx ≤ π0

}
, (24)

if πT c− r‖A−Tπ‖2 ≥ π1 or π0 ≥ πT c+ r‖A−Tπ‖2, then E = E, and otherwise, E = ∅.

Proof All the cases except the first one can be shown by studying when the ellipsoid is partially or completely
contained in one side of the disjunction, or when it is strictly contained between the disjunction.

We now prove the first case. Note that for the affine mappings M,M−1 given by M(x) := A (x− c) and
M−1(x) := A−1x+ c, we have E = M−1 (E0) and E0 = M (E), where E0 :=

{
(x, t) ∈ Rn+1 : ‖x‖2 ≤ r

}
.

Using Lemma 4, we prove the corollary by finding a closed form expression for E0 where the forbidden set
is the split M (F) associated with π̃ = A−Tπ, π̃0 = π0 − πT c, and π̃1 = π1 − πT c. By Lemma 2, we have

E0 =
{
x ∈ Rn : ‖P⊥π̃ x‖2 −

√
r2 − (π̃Tx)2

‖π̃‖22
≤ 0

}
. The result then follows from Proposition 6. ut

We note that Corollary 6 shows there are two types of split cuts for E. In (22), we obtain a nonlinear split cut
that we would expect from Proposition 6, while in (23)–(24) we obtain simple linear split cuts. These linear
inequalities are actually Chvátal-Gomory (CG) cuts for E [23, 28, 29, 35, 40], but they are still sufficient
to describe E together with the original constraint. We hence follow the same MILP convention used in
[30] and still consider them split cuts. Note that we can also consider “CG split cuts” in Proposition 6 if
we include additional structure on the functions such as g being non-negative. Similarly, we can also do the
case analysis for CG cuts in Corollary 3.

Proposition 8 (Split cuts for hyperboloids) Let F be a split, l ∈ R \ {0},

H :=

{
(x, t) ∈ Rn+1 :

√
‖x‖22 + l2 ≤ t

}
,

a =

√
l2‖π‖22+π2

1−
√
l2‖π‖22+π2

0
π1−π0

, and b =
π1

√
l2‖π‖22+π2

0−π0

√
l2‖π‖22+π2

1
π1−π0

. Then H = H ∩ C, where

C =

{
(x, t) ∈ Rn+1 :

∥∥∥∥∥P
⊥
π x+

aπTx+ b

‖π‖22
π

∥∥∥∥∥
2

≤ t

}
.

Proof Direct from Proposition 5 by noting that H =

{
(x, t) ∈ Rn+1 :

√
‖P⊥π x‖22 + (πTx)2

‖π‖22
+ l2 ≤ t

}
. ut

4.2 t-inclusive split cuts for conic quadratic sets

The split cut formulas in this section are significantly more complicated. For this reason, we only present
them for standard sets (i.e., with A = I and c = 0). Formulas for the general case may be obtained by
combining the formulas for the standard case with Lemma 4.

Proposition 9 (t-inclusive split cuts for paraboloids) Let F be a t-inclusive split and

Q0 := {(x, t) ∈ Rn+1 : ‖x‖22 ≤ t}.

If π̂ > 0 and π1 ≤ −‖π‖
2
2

4π̂ , or if π̂ < 0 and
−‖π‖22

4π̂ ≤ π0, then

Q0 = Q0,

Intersection Cuts for Nonlinear Integer Programming 17

if π̂ > 0 and π0 <
−‖π‖22

4π̂ < π1, then

Q0 =
{

(x, t) ∈ Q0 : πTx+ π̂t ≥ π1

}
,

if π̂ < 0 and π0 <
−‖π‖22

4π̂ < π1, then

Q0 =
{

(x, t) ∈ Q0 : πTx+ π̂t ≤ π0

}
,

and if π̂ > 0 and
−‖π‖22

4π̂ ≤ π0, or if π̂ < 0 and π1 ≤ −‖π‖
2
2

4π̂ , then Q0 = Q0 ∩ C, where

C =

{
(x, t) ∈ Rn+1 :

∥∥∥∥∥P
⊥
π x+

πTx+ b

‖π‖22
π

∥∥∥∥∥
2

≤ cπTx+ dt+ e

}
,

for

b =
‖π‖22
2π̂

, c =
f√

2 (π1 − π0) π̂
, d = cπ̂, e =

‖π‖22 +
√
‖π‖22 + 4π0π̂

√
‖π‖22 + 4π1π̂

4
√

2 (π1 − π0) π̂2
f,

f =

√
‖π‖22 + 2 (π0 + π1) π̂ −

√
‖π‖22 + 4π0π̂

√
‖π‖22 + 4π1π̂,

where we use the convention 0/0 := 0 for the case ‖π‖2 = 0.

Proof See appendix. ut

Proposition 10 (t-inclusive split cuts for cones) Let F be a t-inclusive split and

K0 := {(x, t) ∈ Rn+1 : ‖x‖2 ≤ t}.

If 0 /∈ (π0, π1), then K0 = K0. Otherwise, if 0 ∈ (π0, π1) and π̂ ≤ −‖π‖2, then

K0 =
{

(x, t) ∈ K0 : πTx+ π̂t ≤ π0

}
,

if 0 ∈ (π0, π1) and π̂ ≥ ‖π‖2, then

K0 =
{

(x, t) ∈ K0 : πTx+ π̂t ≥ π1

}
,

and if 0 ∈ (π0, π1) and π̂ ∈
(
−‖π‖2 , ‖π‖2

)
, then K0 = K0 ∩ C, where

C =

{
(x, t) ∈ Rn+1 :

∥∥∥∥∥P
⊥
π x+

aπTx+ b

‖π‖22
π

∥∥∥∥∥
2

≤ cπTx+ dt+ e

}
,

where

a =
(π0 + π1)

(
‖π‖22 − π̂

2
)

f
, b = −

2π0π1 ‖π‖22
f

, c = − 4π0π1π̂

(π1 − π0) f
, d =

f

(π1 − π0)
(
‖π‖22 − π̂2

) ,

e =
2π0π1 (π0 + π1) π̂

(π1 − π0) f
, f =

√(
‖π‖22 − π̂2

) (
‖π‖22 (π1 − π0)2 − π̂2 (π0 + π1)2).

Proof See appendix. ut

18 Modaresi et al.

With regards to the general interpolation forms of the obtained split cuts in Sections 4.1 and 4.2, we
note that these fall into two categories. The first category corresponds to the case in which the intersection
of the boundary of the split and the base set is bounded such as when the base set is an ellipsoid. In
such a case, the obtained split cuts are always an ellipsoidal cylinder or a conic set. The second category
corresponds to the case in which the intersection of the boundary of the split and the base set is unbounded.
In such a case, the obtained split cut is of the same form as the base set. For instance, split cuts for conic
sets or sections of conic sets are conic. A nice illustration of this dichotomy is the case of paraboloids, where
t-inclusive splits have bounded intersections and yield conic cuts, while splits that are not t-inclusive have
unbounded intersections and yield parabolic cuts.

Finally, we note that the only formulas that we did not explicitly characterize here are t-inclusive split
cuts for affine transformations of paraboloids and cones, split cuts for affine transformation of hyperboloids,
and t-inclusive split cuts for hyperboloids and their affine transformations. All such formulas can be obtained
using Lemma 4, except t-inclusive split cuts for hyperboloids. We can still obtain formulas for t-inclusive
split cuts for hyperboloids using the interpolation technique; however, the resulting formulas are significantly
more involved and no longer fit the “simple” formulas theme of the paper. However, the analysis so far is
still a significant generalization of what is known for split cuts for conic quadratic sets. In fact, the most
general alternative that we are aware of is the concurrently developed technique in [3], which considers
conic sets of the form {x ∈ Rn : Ax− d ∈ Lm} for a full rank matrix A, which we do not require. When A
does not have full row rank, it is possible to consider a full row rank submatrix of A and use this relaxation
to generate the cuts from [3]. However, as noted in Example 1 of [3], this approach fails to give split cuts
for hyperboloids which we can obtain from Proposition 8 and Lemma 4. Nevertheless, one advantage of the
approach in [3] is the use of a more systematic procedure to obtain the interpolation coefficients, which can
be particularly useful when constructing t-inclusive split cuts. For instance, in Proposition 10 we obtain
the interpolation coefficients through the heuristic procedure described in Section 3.3.1, which required
guessing the interpolation form of the split cut and was not guaranteed to be successful even if this guess
was accurate. In contrast, the approach in [3] only assumes that the split cut is a polynomial inequality
and calculates the coefficients of the associated polynomial through a systematic use of techniques from
algebraic geometry. The conversion of this polynomial inequality to a conic quadratic inequality is an ad-hoc
procedure that might be limited to quadratic cones. However, the construction of the initial polynomial
inequality seems to have a higher chance of being extended to higher order cones or more general semi-
algebraic sets than the approach in Section 3.3.1. In contrast, when we consider split disjunctions that are
not t-inclusive, the approach from Section 3.1.2 has an advantage as it is not restricted to semi-algebraic
sets.

4.3 k-branch split cuts for conic quadratic sets

Similarly to Corollary 4, we can use the following direct generalization of Lemma 2 to get formulas for
several families of k-branch split cuts for convex quadratic sets.

Lemma 5 Let {πi}ki=1 ⊆ Rn \ {0n} be such that πi ⊥ πj for every i 6= j and P⊥Π := I −
∑k
i=1

πiπ
T
i

‖πi‖22
. Then

for any v ∈ Rn we have ‖x‖22 =
∥∥P⊥Πx

∥∥2

2
+
∑k
i=1

(πT
i x)

2

‖πi‖22
.

The following corollary generalizes the result of Corollary 4 to the case of k-branch split cuts for paraboloids.

Corollary 7 (k-branch split cuts for paraboloids) Let

Q :=
{

(x, t) ∈ Rn+1 : ‖A (x− c) ‖22 ≤ t
}
.

Intersection Cuts for Nonlinear Integer Programming 19

Also let F be a k-branch split such that A−Tπi ⊥ A−Tπj for every i 6= j, ai =
πi

0+πi
1−2πT

i c

‖A−Tπi‖22
and bi =

− (πi
1−π

T
i c)(π

i
0−π

T
i c)

‖A−Tπi‖22
for all i ∈ [k], and for every I ⊆ [k] let

hI(x) :=

∥∥∥∥∥

(
A−

∑

i∈I

A−Tπiπ
T
i

‖A−Tπi‖22

)
(x− c)

∥∥∥∥∥

2

2

+
∑

i∈I
aiπ

T
i (x− c) + bi.

Then Q = Q ∩ C, where C =
{

(x, t) ∈ Rn+1 : maxI⊆[k] hI(x) ≤ t
}

.

Proof Note that for the affine mappings M,M−1 defined in the proof of Corollary 4 we have Q = M−1 (Q0)
and Q0 = M (Q), where Q0 :=

{
(x, t) ∈ Rn+1 : ‖x‖22 ≤ t

}
. Using Lemma 4, we prove the corollary by

finding a closed form expression for Q0 where the forbidden set is a k-branch split M (F) associated with
π̃i = A−Tπi, π̃

i
0 = πi0 − πTi c, and π̃i1 = πi1 − πTi c for i ∈ [k]. By Lemma 5, we have

Q0 =

{
(x, t) ∈ Rn+1 :

∥∥∥P⊥Π̃x
∥∥∥

2

2
+

k∑

i=1

(
π̃Ti x

)2

‖π̃i‖22
≤ t.

}

The result then follows from Proposition 7. ut

5 General intersection cuts through aggregation

In this section we consider the case in which the base sets are either epigraphs or lower level sets of
convex functions and the forbidden sets are hypographs or upper level sets of concave functions. Our cut
construction approach in this case is based on a simple aggregation technique, which again can be more
naturally explained for epigraphs of specially structured functions. Following the structure of Section 3, we
also begin by studying the epigraphical sets and then consider the case of non-epigraphical sets. We end this
section by illustrating the power and limitations of the aggregation approach by considering intersection
cuts for quadratic sets.

5.1 Intersection cuts for epigraphs

Let G, J : R × R → R be a convex and a concave function given by G(z, y) = z2 + 2y2 and J(z, y) =
−(z − 1)2 + 1 − y2, and let B = epi (G) and F = hyp(J). For λ ∈ [0, 1], let Wλ(z, y) = (1 − λ)G + λJ .
As illustrated in Figure 4(a), for any λ ∈ [0, 1], we have that Wλ(z, y) ≤ t is a binding valid cut for B. In
Figure 4(a), the graph of G is given by the thick black curve, graph of J by the thin blue curve, and valid
aggregation cuts Wλ for λ ∈ {1/4, 1/2, 3/4} by the red dotted, green dash-dotted, and brown dashed curves,
respectively. Figure 4(a) illustrates that, depending on the choice of λ, the inequality could be non-convex,
or it could be convex but not sufficient. It is clear from the figure that, in this case, the correct choice
of λ is 1/2 = arg max {λ ∈ [0, 1] : Wλ is convex}, which yields the strongest convex cut from this class.
Furthermore, as illustrated in Figure 4(b), we have that for any

(
z, y, t

)
∈ epi(W1/2) ∩ int (F), we can find

friends in epi
(
W1/2

)
∩ bd (F) by following the slope of W1/2 similar to what we did in Section 3.1.1 for

split cuts of separable functions. We can then show that B = B ∩ epi
(
W1/2

)
. A similar construction can

also be obtained if we instead study conv ({(z, y, t) ∈ epi(G) : J(z, y) ≤ 0}).
Wλ and the convexity requirement on it are the basis of many techniques such as Lagrangian/SDP

relaxations of quadratic programming problems [38, 63, 65, 66], the QCR method for integer quadratic
programming [14, 15], and an algorithm for constructing projected SDP representations of the convex
hull of quadratic constraints introduced in [76]. It is hence not surprising that the approach works in the
quadratic case. However, as shown in [76], even in the quadratic case the approach can fail to yield convex

20 Modaresi et al.

z

t

(a) Various aggregations of G and J .

�
z, y, t

�

�
z1, y, t1

�

�
z2, y, t2

�

z

t

(b) Friends construction by following slope of W1/2.

Fig. 4 Cuts from aggregation.

constraints or closed form expressions. Furthermore, for general functions, Wλ can easily be non-convex for
every λ. Fortunately, as the following proposition shows, the aggregation approach can yield closed form
expressions for general intersection cuts for problems with special structures.

Proposition 11 Let gi : R → R be convex functions for each i ∈ [n], m,h ∈ Rn, r, q ∈ R, and γ ∈ R+.
Furthermore, let {ai}ni=1 ⊆ Rn be such that an 6= 0n and ai ⊥ aj for every i 6= j, and {αi}ni=1 ⊆ R+ be
such that 0 6= αn ≥ αi for all i. Let

G(x) =
n∑

i=1

gi
(
aTi x

)
+mTx+ r, J(x) = −

n∑

i=1

αigi
(
aTi x

)
− hTx− q,

B := epi(G), and F :=
{

(x, t) ∈ Rn+1 : γt ≤ J(x)
}

. If (1 + γ/αn) > 0 and

lim
|s|→∞

−αngn
(
saTnan

)
− s

(
hT an + γ

(m− h/αn)T an
1 + γ/αn

)
= −∞, (25)

then
B = conv ({(x, t) ∈ epi(G) : J(x) ≤ γt}) = epi(G) ∩ epi(W), (26)

where W (x) := G(x)+(1/αn)J(x)
1+γ/αn

=
∑n−1

i=1 (1−αi/αn)gi(aT
i x)+(m−h/αn)Tx+(r−q/αn)

(1+γ/αn) .

Proof The first equality in (26) is direct. For the second equality, we proceed as follows. W is a non-negative
linear combination of G and J that is also a convex function from which it is easy to see that the left to
right containment holds.

To show the right to left containment, let
(
x, t
)
∈ epi(G) ∩ epi(W) be such that J (x) > γt. Let

k = (m−h/αn)Tan

1+γ/αn
. Because of (25), there exists s1 > 0 and s2 < 0, for which (xi, ti) =

(
x+ sian, t+ sik

)

for i = 1, 2 are such that J(xi) = γti. Furthermore, by design,
(
xi, ti

)
∈ epi(W) for i = 1, 2 which

implies G(xi) + J(xi)/αn ≤ (1 + γ/αn) ti and hence G(xi) ≤ ti. The result then follows by noting that(
x, t
)
∈ conv

({(
x1, t1

)
,
(
x2, t2

)})
. ut

Intersection Cuts for Nonlinear Integer Programming 21

5.2 Intersection cuts for level sets

We can extend the aggregation approach to certain non-epigraphical sets through the following proposition
whose proof is a direct analog to that of Proposition 11.

Proposition 12 Let G(x) be as defined in Proposition 11 and

J(x) = −
n∑

i=1

αigi
(
aTi x

)
− αnmTx− q,

where q ∈ R. Also let B := {x ∈ Rn : G(x) ≤ 0}, and F := {x ∈ Rn : J(x) ≥ 0}. If

lim
|s|→∞

−αngn
(
saTnan

)
− sαnmT an = −∞, (27)

then
B = conv ({x ∈ Rn : G(x) ≤ 0, J(x) ≤ 0}) = {x ∈ Rn : G(x) ≤ 0, W (x) ≤ 0} , (28)

where W (x) := G(x) + (1/αn)J(x) =
∑n−1
i=1 (1− αi/αn) gi(a

T
i x) + (r − q/αn).

The special structure in both of these propositions is extremely simple, but thanks to the symmetry of
the quadratic constraints, they can be used to get formulas for several quadratic intersection cuts.

5.3 Intersection cuts for quadratic sets

Through the rest of the section, we let A ∈ Rn×n be an invertible matrix and c ∈ Rn.

Corollary 8 Let D ∈ Rn×n, d ∈ Rn, q ∈ R, γ ∈ R+, Q :=
{

(x, t) ∈ Rn+1 : ‖A (x− c) ‖22 ≤ t
}

, and

F :=
{

(x, t) ∈ Rn+1 : γt+ q ≤ −‖D (x− d)‖22
}

. Then

Q =
{

(x, t) ∈ Rn+1 : ‖A (x− c)‖22 ≤ t, xTNx+ aTx+ f ≤ (αn + γ)t
}
, (29)

for N = ATRA, a = −2AT e− 2ATRAc, f = cTATRAc+ 2
(
AT e

)T
c− w − q, R =

∑n−1
i=1 (αn − αi) vivTi ,

e =
∑n
i=1 αiv

T
i A(c− d)vi, w =

∑n
i=1 αi

(
vTi A(c− d)

)2
, where (vi)

n
i=1 ⊆ Rn and (αi)

n
i=1 ⊆ R correspond to

an eigenvalue decomposition of A−TDTDA−1 so that

A−TDTDA−1 =
n∑

i=1

αiviv
T
i ,

‖vi‖2 = 1 for all i ∈ [n], vTi vj = 0 for all i 6= j, and αn ≥ αi for all i ∈ [n].

Proof Let y = A(x− c) and T := Q \ int (F). Using orthonormality of the vectors vi, T can be written on
the y variables as T = {(y, t) ∈ Rn+1 :

∑n
i=1(vTi y)2 ≤ t, −

∑n
i=1 αi(v

T
i y)2 − 2eT y − w − q ≤ γt}. The

result then follows by using Proposition 11. ut

An interesting case of Corollary 8 arises when γ = 0. In this case, the base set B corresponds to a
paraboloid and the forbidden set F corresponds to an ellipsoidal cylinder. In such a case, the minimization of
t over (x, t) ∈ B\int (F) is equivalent to the minimization of a convex quadratic function outside an ellipsoid,
which corresponds to the simplest indefinite version of the well known trust region problem. While this is a
non-convex optimization problem, it can be solved in polynomial time through Lagrangian/SDP approaches
[65]. It is known that optimal dual multipliers of an SDP relaxation of a non-convex quadratic programming
problem such as the trust region problem can be used to construct a finite convex quadratic optimization
problem with the same optimal value as the original non-convex problem (e.g. [39]). Furthermore, the

22 Modaresi et al.

complete feasible region induced by an SDP relaxation on the original space (in this case (x, t)) can be
characterized by an infinite number of convex quadratic constraints [51]. This characterization has recently
been simplified for the feasible region of the trust region problem in [12, 13]. This work gives a semi-infinite
characterization of T for γ = 0 composed by the convex quadratic constraint ‖A (x− c)‖22 ≤ t plus an infinite
number of linear inequalities that can be separated in polynomial time. Corollary 8 shows that these linear
inequalities can be subsumed by a single convex quadratic constraint, which gives another explanation
for their polynomial time separability3. We note that the techniques in [12, 13] are also adapted to other
non-convex optimization problems (both quadratic and non-quadratic). Hence, combining Corollary 8 with
these techniques could yield valid convex quadratic inequalities for more general non-convex problems.

Another interesting application of Corollary 8 for the case γ = 0 is the Shortest Vector Problem (SVP)
[57] of the form min

{
‖Ax‖22 : x ∈ Zn \ {0n}

}
. Similar to the Closest Vector Problems (CVP) studied in

Section 4.1, we can transform this problem to min(x,t)∈Y ∩(Zn×R) t for

Y =
{

(x, t) ∈ Rn+1 : ‖Ax‖22 ≤ t, x 6= 0n
}
,

so that we can strengthen the problem by generating valid inequalities for Y . Unfortunately, as the following
simple lemma shows, split cuts will not add any strength.

Lemma 6 Let Y0 := Y ∪ {(0n, 0)} and F be a split. For any A ∈ Rn×n,

t∗ = min
{
t : (x, t) ∈ ∩(π,π0)∈Zn×Z Y0

}
= 0.

Proof Note that for all integer splits (π, π0) ∈ Zn×Z, (x, t) = (0n, 0) belongs to one side of the disjunction.
Thus, we have t∗ ≤ 0 and the result follows from non-negativity of the norm. ut

However, we can easily construct near lattice free ellipsoids centered at 0n that do not contain any
point from Zn \ {0n} in their interior, and use them to get some bound improvement. For instance, in the
trivial case of A = I, Corollary 8 applied to the single near lattice free ellipsoid given by the unit ball{
x ∈ Rn : ‖x‖2 ≤ 1

}
yields a cut that provides the optimal value t∗ = 1. Similar ellipsoids could be used

to generate strong valid convex quadratic inequalities for non-trivial cases to significantly speed up the
solution of SVP problems. Studying the effectiveness of these cuts is left for future research.

We end this section with a brief discussion about the strength and possible extensions of the aggregation
technique. For this, we begin by presenting the following corollary of Proposition 12 whose proof is analogous
to that of Corollary 8.

Corollary 9 Let D ∈ Rn×n, r1, r2 ∈ R+, E2 :=
{
x ∈ Rn : ‖A (x− c) ‖22 ≤ r1

}
, and

F :=
{
x ∈ Rn : ‖D (x− c)‖22 ≤ r2

}
.

Then
E2 =

{
x ∈ Rn : ‖A (x− c)‖22 ≤ r1, xTNx+ aTx+ f ≤ 0

}
, (30)

for a = −2ATRAc, f = cTATRAc + r2/αn − r1, R =
∑n−1
i=1 (1− αi/αn) viv

T
i , where N is defined in

Corollary 8, and (vi)
n
i=1 ⊆ Rn and (αi)

n
i=1 ⊆ R correspond to an eigenvalue decomposition of A−TDTDA−1

given in Corollary 8.

Corollary 9 shows how to construct the convex hull of the set obtained by removing an ellipsoid or an
ellipsoidal cylinder from an ellipsoid. However, this construction only works if the ellipsoids have a common
center c. The following example shows how the construction can fail for non-common centers. In addition,
the following example shows that the aggregation technique does not subsume the interpolation technique
and sheds some light into the relationship between Corollaries 8 and 9 and SDP relaxations for quadratic
programming.

3 After our original submission, it was brought to our attention that reduction of the infinite number of inequalities to
a single quadratic inequality can also be directly deduced from the formulas for such linear inequalities given in [12, 13].

Intersection Cuts for Nonlinear Integer Programming 23

Example 1 Let B =
{

(z, y) ∈ R2 : z2 + y2 ≤ 4
}

and F be a split associated with the split disjunction
z ≤ 0 ∨ z ≥ 1. From Corollary 6, we have that

B := conv ({(z, y) ∈ B : z ≤ 0} ∪ {(z, y) ∈ B : z ≥ 1}) = {(z, y) ∈ B : |y| ≤ (
√

3− 2)z + 2}.

Now let G(z, y) = z2 + y2 − 4 and J(z, y) = −(z − 1/2)2 + 1/4. Since split disjunction z ≤ 0 ∨ z ≥ 1 is
equivalent to J(z, y) ≤ 0, we have B = conv (S), where

S =
{

(z, y) ∈ R2 : G(z, y) ≤ 0, J(z, y) ≤ 0
}
. (31)

Now consider Wλ = (1 − λ)G + λJ for λ ∈ [0, 1]. One can check that the split cut |y| ≤ (
√

3 − 2)z + 2
obtained through Corollary 6, can be equivalently written as

y2 −
(

(
√

3− 2)z + 2
)2
≤ 0 (32a)

(
√

3− 2)z + 2 ≥ 0. (32b)

In turn, (32a) is equivalent to Wλ∗ ≤ 0 for λ∗ = 4
33

(
6−
√

3
)

because Wλ∗/
(

1
33

(
9 + 4

√
3
))

= y2 −(
(
√

3− 2)z + 2
)2

. By noting that (32b) holds for B, we conclude that

B = {(z, y) ∈ B : Wλ∗(z, y) ≤ 0} . (33)

Unfortunately, Wλ∗ is not a convex function, so it does not fit in the aggregation framework described in
this section. In particular, Wλ∗ is an indefinite quadratic function so it cannot be obtained from an SDP
relaxation of S. Indeed, we can show that the SDP relaxation of S strictly contains B. Finally, while we
can obtain Wλ∗ through a procedure described in [76], this procedure requires the execution of a numerical
algorithm and does not give closed form expressions such as those provided by Corollary 6.

6 Final remarks and future work

We introduced two techniques that can be used to construct formulas for split, k-branch split, and general
intersection cuts for several classes of convex sets. While obtaining closed form expressions of these formulas
requires sets with specific structures, the techniques can yield general intersection cuts for a wide range of
non-polyhedral sets including conic quadratic sets. Furthermore, the independence of the approaches on the
specific class of the considered convex set (e.g. quadratic, semi-algebraic, etc.) suggests a high potential for
extending to other settings by perhaps sacrificing closed form expressions in favor of numerical methods.
For instance, consider the approach described in Section 3.3.1. While this approach was used in Sections 4.1
and 4.2 to obtain closed form expressions of split cuts for conic quadratic sets, it may not be successful
when applied to sets that are not semi-algebraic or quadratic. However, the approach may be successful in
numerically constructing split cuts for a given disjunction (i.e., when π, π̂, π0, and π1 are fixed to certain
numerical values).

With regards to the potential effectiveness of the developed cuts in the context of solution methods
for MINLP, we note that adding such nonlinear cuts to the continuous relaxation of a MINLP could
significantly increase its solution time. Hence there will likely be a strong trade-off between the strength
provided by such cuts and their computational cost. It is then unclear if such nonlinear cuts can provide
a significant computational advantage over linearization approaches such as those in [19, 50], which do
not require explicit cut formulas. However, even in such cases, the developed nonlinear cuts can provide
valuable information about the performance of the linearization approaches. For instance, the linearization
approaches can sometimes require a large number of iterations to yield a bound improvement similar to that
obtained with the associated nonlinear cut. Adding the nonlinear cut provides a simple way to evaluate if
the lack of bound improvement is due to lack of strength of the cut or lack of convergence of the linearization
approach. Similarly, the availability of explicit formulas of split cuts for quadratic sets proven extremely

24 Modaresi et al.

useful to evaluate the strength of a cutting plane approach based on extended formulations in [58]. We are
further exploring the computational effectiveness of the interpolation and aggregation techniques and the
techniques in [58].

Acknowledgements

We thank the review team including an anonymous associate editor and two referees for their thoughtful
and constructive comments, which significantly improved the exposition of the paper. This research was
partially supported by the National Science Foundation under grant CMMI-1030662 and by the Office of
Naval Research under grant N000141110724.

Appendix

Here we provide the omitted proofs.

Proof of Lemma 1 We show the equivalent version of the lemma given by

(i) If s ∈ {π0, π1}, then |as+ b| = (|s|p + |l|p)1/p and
(ii) if s /∈ (π0, π1), then |as+ b| ≤ (|s|p + |l|p)1/p.

Let f(s) := as + b and g(s) := (|s|p + |l|p)1/p. By definition of a and b we have that f(πi) = g(πi) for
i ∈ {0, 1}. Indeed, f(s) is the (affine) linear interpolation of g(s) through z = π0 and z = π1. Convexity of
g(s) then implies f(s) ≤ g(s) for all s /∈ (π0, π1). If |π0| = |π1|, then |as+ b| = f(s) and the result follows
directly. If |π0| 6= |π1|, one can check that |as+ b| = f(s) for s ∈ [π0, π1] and hence (i) holds. For (ii) it
suffices to show that −as−b ≤ g(s) for all s ∈ R. To show this we first assume a > 0 and hence π1 > 0 (case
a < 0 is analogous). Because f(s) is affine and f(πi) = g(πi) for i ∈ {0, 1}, by a sub-differential version of
the mean value theorem we have that there exists s̄ ∈ (π0, π1) such that a ∈ ∂g(s̄). Then, by symmetry
of g(s) and its convexity, we have that g(s) ≥ g(−s̄) − a(s + s̄) = −as + g(−s̄) − as̄ for s ∈ R. The result
then follows by noting that g(−s̄) − as̄ ≥ −b for all s̄ ∈ (π0, π1) because g(s) − as ≥ 0 for all s ∈ R and
−b ≤ 0. ut

Proof of Lemma 3 We first prove the second case π /∈ L⊥. The left to right containment follows from
B\int (F) ⊆ B and convexity of B. To show the right to left containment, let x ∈ B such that πTx ∈ (π0, π1)

and u ∈ L. Note that π /∈ L⊥ implies πTu 6= 0. Let xi := x + λiu for i ∈ {0, 1}, where λi = πi−πTx
πTu

,

and let β ∈ (0, 1) be such that πTx = βπ0 + (1− β)π1. Because u ∈ L and since πTxi = πi, we have
xi ∈ B \ int (F) for i ∈ {0, 1}. The results then follows by noting that x = βx0 + (1− β)x1.

We prove the first case by showing that

conv (B \ int (F)) = conv ((B0 + L) \ int (F)) (34)

= conv (B0 \ int (F)) + L (35)

= (B0 ∩ C) + L (36)

Note that (34) and (36) follow from the assumptions. To show the left to right containment in (35), let
x ∈ conv ((B0 + L) \ int (F)). There exist yi ∈ B0, ui ∈ L for i ∈ {0, 1}, and β ∈ [0, 1] such that for
xi := yi + ui, we have xi /∈ int (F) and x = βx0 + (1− β)x1. Note that π ∈ L⊥ and xi /∈ int (F) imply
yi /∈ int (F) for i ∈ {0, 1}. The result then follows from noting that βy0 + (1− β) y1 ∈ conv (B0 \ int (F))
and βu0 + (1− β)u1 ∈ L.

To show the right to left containment in (35), let x ∈ conv (B0 \ int (F)) + L. There exist u ∈ L,
yi ∈ B0 \ int (F) for i ∈ {0, 1}, and β ∈ [0, 1] such that x = βy0 + (1− β) y1 + u. If β ∈ {0, 1}, the
result follows by noting that π ∈ L⊥ and y0, y1 /∈ int (F) imply x /∈ int (F). Assume β ∈ (0, 1) and let

Intersection Cuts for Nonlinear Integer Programming 25

x0 := y0 + u
2β and x1 := y1 + u

2(1−β) . The result then follows by noting that xi ∈ B0 + L \ int (F) for

i ∈ {0, 1} and x = βx0 + (1− β)x1. ut

Proof of Proposition 9 We first prove the last case using Proposition 1. Using Lemma 2, we have

C =

{
(x, t) ∈ Rn+1 :

∥∥∥P⊥π x
∥∥∥

2

2
≤ (cπTx+ dt+ e)2 − (πTx+ b)2

‖π‖22
, cπTx+ dt+ e ≥ 0

}
. (37)

Now consider the following two cases.
Case 1. Assume that ‖π‖2 6= 0. To prove the right to left containment in (2a), let (x, t) ∈ C ∩ bd (F). We
need to show that

(cπTx+ dt+ e)2 − (πTx+ b)2

‖π‖22
= t− (πTx)2

‖π‖22
. (38)

Replacing t with (πi − πTx)/π̂ for i ∈ {0, 1}, one can check that (38) follows from the definition of b, c, d,
and e. To prove the left to right containment in (2a), let (x, t) ∈ Q0 ∩ bd (F). We only need to show that
cπTx + dt + e ≥ 0. Since d = cπ̂, we can equivalently show that c(πTx + π̂t) ≥ −e, which after a few
simplifications, can be written as

π̂(πTx+ π̂t) ≥ −
(
‖π‖22 +

√
‖π‖22 + 4π0π̂

√
‖π‖22 + 4π1π̂

)
/4. (39)

(39) follows from noting that min{π̂(πTx+ π̂t) : (x, t) ∈ Q0} = −‖π‖
2
2

4 .

To show (2b), let
(
x, t
)
∈ Q0 \ int (F). Proving cπTx+ dt+ e ≥ 0 is similar as before. We only need to

show that (x, t) satisfies the quadratic inequality in (37), which we prove by showing that

(
(cπTx+ dt+ e)2 − (πTx+ b)2

‖π‖22

)
−

(
t− (πTx)2

‖π‖22

)
≥ 0. (40)

One can check that proving (40) is equivalent to showing that

f2(πTx+ π̂t− π0)(πTx+ π̂t− π1)

2 (π1 − π0)2 π̂2
≥ 0,

which follows from πTx + π̂t /∈ (π0, π1). Note that C is a conic set with apex (x∗, t∗) = (−b‖π‖22
π, bc−ed).

Furthermore,

(π, π̂)T
(
x∗, t∗

)
= −e/c =

−‖π‖22
4π̂

−

√
‖π‖22 + 4π0π̂

√
‖π‖22 + 4π1π̂

4π̂
.

Hence, if π̂ < 0, then (π, π̂)T (x∗, t∗) ≥ −‖π‖22
4π̂ ≥ π1 and if π̂ > 0, then (π, π̂)T (x∗, t∗) ≤ −‖π‖22

4π̂ ≤ π0.
Friends condition (3) then follows from Proposition 4.
Case 2. If ‖π‖2 = 0, C is simplified to C =

{
(x, t) ∈ Rn+1 : ‖x‖22 ≤ (dt+ e)2 , dt+ e ≥ 0

}
.

Interpolation condition (2a) follows from noting that
(
dt+ b

)2
= t. Non-negativity of d, e, and t also

imply dt+ e ≥ 0. Proving (2b) is equivalent to showing that

f2
(
π̂t− π0

) (
π̂t− π1

)

2 (π1 − π0)2 π̂2
≥ 0,

which follows from π̂t /∈ (π0, π1). Note that C is a conic set with apex (x∗, t∗) =
(
0, −ed

)
. Furthermore,

(π, π̂)T (x∗, t∗) = −e/c. As shown in Case 1, we have (π, π̂)T (x∗, t∗) /∈ (π0, π1). Friends condition (3) then
follows from Proposition 4.

26 Modaresi et al.

To prove the other cases, let S0 := {(x, t) ∈ Q0 : πTx+ π̂t ≤ π0} and S1 := {(x, t) ∈ Q0 : πTx+ π̂t ≥
π1}. Consider the first case where π̂ > 0 and π1 ≤ −‖π‖

2
2

4π̂ . We prove the result by showing that S0 = ∅
and S1 = Q0. If ‖π‖2 = 0, the result follows from non-negativity of t. Now assume that ‖π‖2 6= 0. We

prove S0 = ∅ by showing that (πTx)2/ ‖π‖22 > (π0 − πTx)/π̂ for x ∈ Rn. This follows from noting that

for y ∈ R, the quadratic equation y2

‖π‖22
= π0−y

π̂ does not have any solution. To prove S1 = Q0, we show

that πTx + π̂t ≥ π1 is a valid inequality for Q0. This comes from the fact that the quadratic equation
y2

‖π‖22
= π1−y

π̂ has at most a single solution and we thus have (π1− πTx)/π̂ ≤ (πTx)2/ ‖π‖22 ≤ t for x ∈ Rn.

The proof for the case π̂ < 0 and
−‖π‖22

4π̂ ≤ π0 is analogous and follows by noting that S0 = Q0 and S1 = ∅.
We prove the second case where π̂ > 0 and π0 <

−‖π‖22
4π̂ < π1 by showing that S0 = ∅, S1 (Q0, and

S1 6= ∅. Proving S0 = ∅ is analogous to the previous case. We have S1 (Q0 since
(
x̄, t
)

= (−π2π̂ ,
‖π‖22
4π̂2) ∈ Q0,

but
(
x̄, t
)
/∈ S1. To prove S1 6= ∅, one can check that for any x̄ ∈ Rn and t = max{‖x‖22 ,

π1−πT x̄
π̂ },(

x̄, t
)
∈ S1. The proof of the third case is analogous and follows by noting that S1 = ∅, S0 (Q0, and

S0 6= ∅. ut

Proof of Proposition 10 We first prove the last case using Proposition 1. Note that π̂ 6= 0 and π̂ ∈
(−‖π‖2 , ‖π‖2) imply ‖π‖2 6= 0. Using Lemma 2, we have

C =

{
(x, t) ∈ Rn+1 :

∥∥∥P⊥π x
∥∥∥

2

2
≤ (cπTx+ dt+ e)2 − (aπTx+ b)2

‖π‖22
, cπTx+ dt+ e ≥ 0

}
. (41)

Observe that d > 0. Similarly to the proof of Proposition 9, one can show that interpolation condition (2)

holds by the definition of a, b, c, d, and e. If |π0| = |π1|, then u = (π,
−c‖π‖22

d) ∈ lin (C) and friends condition

(3) follows from Proposition 2. If |π0| 6= |π1|, then C is a conic set with apex (x∗, t∗) = (−b
a‖π‖22

π, bc−aead).

Furthermore, (π, π̂)T (x∗, t∗) = 2π0π1
π0+π1

. If π0 + π1 < 0, then we have 2π0π1
π0+π1

≥ π1, and if π0 + π1 > 0, then

we have 2π0π1
π0+π1

≤ π0. Friends condition (3) then follows from Proposition 4.
To prove the first case 0 /∈ (π0, π1), we only need to show that friends condition (3) holds. This follows

from Proposition 4 by noting that K0 is a conic set whose apex is the origin.
To prove the other cases, let S0 := {(x, t) ∈ K0 : πTx+ π̂t ≤ π0} and S1 := {(x, t) ∈ K0 : πTx+ π̂t ≥

π1}. Consider the second case 0 ∈ (π0, π1) and π̂ ≤ −‖π‖2. We prove the result by showing that S1 = ∅,
S0 (K0, and S0 6= ∅. If ‖π‖2 = 0, the result follows from non-negativity of t. Now assume that ‖π‖2 6= 0.

We prove S1 = ∅ by showing that (πTx)2/ ‖π‖22 > (π1 − πTx)2/π̂2. Note that non-negativity of t, π̂ < 0,

and πTx + π̂t ≥ π1 imply πTx ≥ π1 > 0. One can see that −πTx < π1 − πTx < πTx, where the
first inequality comes from the fact that π1 > 0, and the second inequality follows from π1 ≤ πTx and
−πTx < 0. Thus, (πTx)2 > (π1−πTx)2 and the result follows by noting that 1

‖π‖22
≥ 1

π̂2 . We have S0 (K0

since
(
x̄, t
)

= (0n, 0) ∈ K0, but
(
x̄, t
)
/∈ S0. To prove S0 6= ∅, one can check that for any x̄ ∈ Rn and

t = max{‖x‖2 ,
π0−πT x̄

π̂ },
(
x̄, t
)
∈ S0. The proof of the third case 0 ∈ (π0, π1) and π̂ ≥ ‖π‖2 is analogous

and follows by noting that S0 = ∅, S1 (K0, and S1 6= ∅. ut

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Programmign Computation 1, 1–41 (2009)

2. Andersen, K., Cornuéjols, G., Li, Y.: Split closure and intersection cuts. Mathematical Programming 102, 457–493
(2005)

3. Andersen, K., Jensen, A.: Intersection cuts for mixed integer conic quadratic sets. In: M. Goemans, J. Correa (eds.)
16th international IPCO Conference, Valparaiso, Lecture Notes in Computer Science, pp. 37–48. Springer (2013)

4. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed integer linear sets based on lattice point free convex
sets. Mathematics of Operations Research 35, 233–256 (2010)

Intersection Cuts for Nonlinear Integer Programming 27

5. Anjos, M.F., Lasserre, J.B. (eds.): Handbook on semidefinite, conic and polynomial optimization, International Series
in Operations Research & Management Science, vol. 166. Springer (2012)

6. Atamtürk, A., Narayanan, V.: Cuts for conic mixed-integer programming. In: M. Fischetti, D.P. Williamson (eds.)
IPCO, LNCS, vol. 4513, pp. 16–29. Springer (2007)

7. Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Mathematical Programming 122, 1–20 (2010)

8. Balas, E.: Intersection cuts-a new type of cutting planes for integer programming. Operations Research 19, 19–39
(1971)

9. Balas, E., Margot, F.: Generalized intersection cuts and a new cut generating paradigm. Mathematical Programming
137, 19–35 (2013)

10. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: A conic representation of the convex hull of disjunctive
sets and conic cuts for integer second order cone optimization. Optimization Online (2012). URL http://www.
optimization-online.org/DB_HTML/2012/06/3494.html

11. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: On families of quadratic surfaces having fixed intersections
with two hyperplanes. Discrete Applied Mathematics 161(16), 2778–2793 (2013)

12. Bienstock, D., Michalka, A.: Strong formulations for convex functions over nonconvex sets. Optimization Online (2011).
URL http://www.optimization-online.org/DB_HTML/2011/12/3278.html

13. Bienstock, D., Michalka, A.: Cutting-planes for optimization of convex functions over nonconvex sets. SIAM Journal
on Optimization 24(2), 643–677 (2014)

14. Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general mixed-integer programs. Mathematical
programming 131, 381–401 (2012)

15. Billionnet, A., Elloumi, S., Plateau, M.: Improving the performance of standard solvers for quadratic 0-1 programs by
a tight convex reformulation: The QCR method. Discrete Applied Mathematics 157, 1185–1197 (2009)

16. Bixby, R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: Mixed-integer programming: a progress report. In: The
sharpest cut: the impact of Manfred Padberg and his work, chap. 18, pp. 309–326. SIAM, Philadelphia, PA (2004)

17. Bixby, R., Rothberg, E.: Progress in computational mixed integer programming - a look back from the other side of
the tipping point. Annals of Operations Research 149, 37–41 (2007)

18. Blekherman, G., Parrilo, P., Thomas, R.: Semidefinite Optimization and Convex Algebraic Geometry. MPS-SIAM
Series on Optimization. Society for Industrial and Applied Mathematics (2013)

19. Bonami, P.: Lift-and-project cuts for mixed integer convex programs. In: Günlük and Woeginger [44], pp. 52–64

20. Buchheim, C., Caprara, A., Lodi, A.: An effective branch-and-bound algorithm for convex quadratic integer program-
ming. In: Eisenbrand and Shepherd [37], pp. 285–298

21. Buchheim, C., Caprara, A., Lodi, A.: An effective branch-and-bound algorithm for convex quadratic integer program-
ming. Mathematical Programming 135, 369–395 (2012)

22. Çezik, M.T., Iyengar, G.: Cuts for mixed 0-1 conic programming. Mathematical Programming 104, 179–202 (2005)

23. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4, 305–337 (1973)

24. Conforti, M., Cornuéjols, G., Zambelli, G.: Polyhedral approaches to mixed integer linear programming. 50 Years of
Integer Programming 1958-2008 pp. 343–385 (2010)

25. Conforti, M., Cornuéjols, G., Zambelli, G.: Corner polyhedron and intersection cuts. Surveys in Operations Research
and Management Science 16, 105–120 (2011)

26. Cook, W.J., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Mathematical
Programming 47, 155–174 (1990)

27. Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Mathematical Programming 112, 3–44 (2008)

28. Dadush, D., Dey, S.S., Vielma, J.P.: The Chvátal-Gomory closure of a strictly convex body. Mathematics of Operations
Research 36, 227–239 (2011)

29. Dadush, D., Dey, S.S., Vielma, J.P.: On the Chvátal-Gomory closure of a compact convex set. In: Günlük and Woeginger
[44], pp. 130–142

30. Dadush, D., Dey, S.S., Vielma, J.P.: The split closure of a strictly convex body. Operations Research Letters 39, 121
–126 (2011)

31. Dash, S., Dey, S.S., Günlük, O.: Two dimensional lattice-free cuts and asymmetric disjunctions for mixed-integer
polyhedra. Mathematical programming 135, 221–254 (2012)

32. Dash, S., Günlük, O., Raack, C.: A note on the MIR closure and basic relaxations of polyhedra. Operations Research
Letters 39, 198–199 (2011)

33. Dash, S., Günlük, O., Vielma, J.P.: Computational experiments with cross and crooked cross cuts. INFORMS Journal
on Computing 26, 780–797 (2014)

http://www.optimization-online.org/DB_HTML/2012/06/3494.html
http://www.optimization-online.org/DB_HTML/2012/06/3494.html
http://www.optimization-online.org/DB_HTML/2011/12/3278.html

28 Modaresi et al.

34. Del Pia, A., Weismantel, R.: Relaxations of mixed integer sets from lattice-free polyhedra. 4OR: A Quarterly Journal
of Operations Research 10, 1–24 (2012)

35. Dey, S.S., Vielma, J.P.: The Chvátal-Gomory closure of an ellipsoid is a polyhedron. In: Eisenbrand and Shepherd
[37], pp. 327–340

36. Drewes, S.: Mixed integer second order cone programming. Ph.D. thesis, Technische Universität Darmstadt (2009)

37. Eisenbrand, F., Shepherd, F.B. (eds.): Proceedings of the 14th IPCO Conference, Lausanne, Switzerland, 2010, LNCS,
vol. 6080. Springer (2010)

38. Fujie, T., Kojima, M.: Semidefinite programming relaxation for nonconvex quadratic programs. Journal of Global
Optimization 10, 367–380 (1997)

39. Giandomenico, M., Letchford, A.N., Rossi, F., Smriglio, S.: A new approach to the stable set problem based on
ellipsoids. In: Günlük and Woeginger [44], pp. 223–234

40. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical
Society 64, 275–278 (1958)

41. Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra and its Applications 2, 451 – 558
(1969)

42. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra. Mathematical Programming 3,
23–85 (1972)

43. Gouveia, J., Thomas, R.: Convex hulls of algebraic sets. In: Anjos and Lasserre [5], pp. 113–138

44. Günlük, O., Woeginger, G.J. (eds.): Proceedings of the 15th IPCO Conference, New York, NY, 2011, LNCS, vol. 6655.
Springer (2011)

45. Helton, J.W., Nie, J.: Semidefinite representation of convex sets and convex hulls. In: Anjos and Lasserre [5], pp.
77–112

46. Henrion, D.: Semidefinite representation of convex hulls of rational varieties. Acta applicandae mathematicae 115,
319–327 (2011)

47. Horst, R., Tuy, H.: Global optimization: Deterministic approaches. Springer (2003)

48. Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P.: Progress in linear programming-based algorithms for integer
programming: An exposition. INFORMS Journal on Computing 12, 2–23 (2000)

49. Kılınç, M.R., Modaresi, S., Vielma, J.P.: Split cuts for conic programming. 9th Mixed Integer Programming Workshop
(MIP 2012), July 16–19, 2012, Davis, CA, Poster. (2012). URL https://www.math.ucdavis.edu/static/conferences/
mip_2012/posters/poster-sina-modaresi

50. Kılınç, M.R., Linderoth, J., Luedtke, J.: Effective separation of disjunctive cuts for convex mixed integer nonlinear
programs. Tech. rep., University of Wisconsin-Madison (2010)

51. Kojima, M., Tunçel, L.: Cones of matrices and successive convex relaxations of nonconvex sets. SIAM Journal on
Optimization 10, 750–778 (2000)

52. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization 11,
796–817 (2001)

53. Li, Y., Richard, J.P.P.: Cook, Kannan and Schrijvers example revisited. Discrete Optimization 5, 724–734 (2008)

54. Lodi, A.: Mixed integer programming computation. chap. 16, pp. 619–645. Springer-Verlag, New York (2010)

55. Lovász, L.: Geometry of numbers and integer programming. In: M. Iri, K. Tanabe (eds.) Mathematical Programming:
Recent Developments and Applications, pp. 177–210. Kluwer (1989)

56. Marchand, H., Wolsey, L.: Aggregation and Mixed Integer Rounding to solve MIPs. Operations Research 49, 363–371
(2001)

57. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic perspective, The Kluwer International
Series in Engineering and Computer Science, vol. 671. Kluwer (2002)

58. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed integer conic
quadratic programming. Tech. rep., MIT (2014). URL http://www.mit.edu/~jvielma/publications/
Split-Cuts-and-Extended-Formulations

59. Moran R, D.A., Dey, S.S., Vielma, J.P.: A strong dual for conic mixed-integer programs. SIAM Journal on Optimization
22(3), 1136–1150 (2012)

60. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley (1988)

61. Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for 0-1 mixed integer programs. Mathematical
Programming 46, 379–390 (1990)

62. Nesterov, Y., Wolkowicz, H., Ye, Y.: Nonconvex Quadratic Optimization. In: R. Saigal, L. Vandenberghe, H. Wolkowicz
(eds.) Handbook of Semidefinite Programming, pp. 361 – 420. Kluwer Academic Publishers (2000)

https://www.math.ucdavis.edu/static/conferences/mip_2012/posters/poster-sina-modaresi
https://www.math.ucdavis.edu/static/conferences/mip_2012/posters/poster-sina-modaresi
http://www.mit.edu/~jvielma/publications/Split-Cuts-and-Extended-Formulations
http://www.mit.edu/~jvielma/publications/Split-Cuts-and-Extended-Formulations

Intersection Cuts for Nonlinear Integer Programming 29

63. Oustry, C.: SDP relaxations in combinatorial optimization from a Lagrangian viewpoint. Advances in Convex Analysis
and Global Optimization: Honoring the Memory of C. Caratheodory (1873-1950) 54, 119–134 (2001)

64. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming 96(2),
293–320 (2003)

65. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM review 49, 371–418 (2007)

66. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for (0, 1)-quadratic programming. Journal of
Global Optimization 7, 51–73 (1995)

67. Ranestad, K., Sturmfels, B.: The convex hull of a variety. Notions of Positivity and the Geometry of Polynomials pp.
331–344 (2011)

68. Ranestad, K., Sturmfels, B.: On the convex hull of a space curve. Advances in Geometry 12, 157–178 (2012)

69. Sanyal, R., Sottile, F., Sturmfels, B.: Orbitopes. Mathematika 57, 275–314 (2011)

70. Scheiderer, C.: Convex hulls of curves of genus one. Advances in Mathematics 228, 2606 – 2622 (2011)

71. Sherali, H., Adams, W.: A reformulation-linearization technique for solving discrete and continuous nonconvex prob-
lems, vol. 31. Springer (1998)

72. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0-1 mixed convex programming. Mathematical Programming
86, 515–532 (1999)

73. Tawarmalani, M., Sahinidis, N.: Convexification and global optimization in continuous and mixed-integer nonlinear
programming: theory, algorithms, software, and applications, vol. 65. Springer (2002)

74. Vielma, J.P.: A constructive characterization of the split closure of a mixed integer linear program. Operations Research
Letters 35, 29–35 (2007)

75. Wolsey, L.A.: Integer Programming. Wiley (1998)

76. Yıldıran, U.: Convex hull of two quadratic constraints is an LMI set. IMA Journal of Mathematical Control and
Information 26, 417–450 (2009)

77. Yıldıran, U., Kose, I.E.: LMI representations of the convex hulls of quadratic basic semialgebraic sets. Journal of
Convex Analysis 17, 535–551 (2010)

	Introduction
	Notation, known results and other preliminaries
	Intersection cuts through interpolation
	Intersection cuts for conic quadratic sets
	General intersection cuts through aggregation
	Final remarks and future work

